интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Как посчитать 2+2, используя электромагнитные реле. Электромагнитное реле схема


Как посчитать 2+2, используя электромагнитные реле / Хабр

В прошлый раз я кратко описал то, как создавался первый модуль моего (будущего) компьютера на электромагнитных реле – арифметико-логическое устройство. Сейчас я хочу немного рассказать о принципах работы этого АЛУ, а точнее, как устроено выполнение логических и арифметических операций.

Электромагнитные реле состоят из обмотки, якоря и переключателей. При возникновении тока в обмотке, она притягивает к себе якорь, а тот переводит переключатели из одного состояния в другое. На картинке выше показано как выглядят реле, использованные в АЛУ, а на картинке ниже – назначение их контактов.

Эти реле имеют по 4 переключателя. Когда ток по обмотке не течет, переключатели соединяют между собой контакты 1-9, 2-10, 3-11 и 4-12. Если же на обмотку подать напряжение (в моем случае это 24В), то положение переключателей изменится на 5-9, 6-10, 7-11, 8-12. Для того чтобы рисовать схемы компонентов компьютера, я использовал те же обозначения реле, что и в документации к HPRC:

Здесь нарисован только один из проводников, подведенных к катушке, потому что второй всегда заземлен, а значит обозначать его на схеме нет смысла. Так как я использовал реле со светодиодными индикаторами включения, это однозначно определило то, какой контакт катушки используется как «+», а какой – как «–».

В полупроводниковых логических схемах низкий уровень напряжения означает логический «0», а высокий – логическую «1». Например, в КМОП-схемах, заданный вход соединяется с «землей», если на него нужно подать логический «0».

В схемах на электромагнитных реле все несколько проще. Если мы принимаем за «1» уровень напряжения, включающий реле, то за «0» можно принять любое как напряжение, при котором реле выключается, так и отсутствие подключения вообще. Во втором случае реле также отключится, как и задумывалось. Таким образом, за «1» принимается напряжение питания (в моем случае это 24 В), а за «0» – отсутствие подключения к питающей цепи. Такой способ позволяет легко управлять сигналами с помощью подключения/отключения к проводникам источника питания.

Еще одно отличие электромагнитных реле от полупроводниковой логики – нагрузочная способность выходов. Она ограничена лишь мощностью блока питания, т.е. к любому выходу реле можно подключить неограниченное (в разумных пределах, конечно) число входов, что упрощает проектирование устройства.

Принципы, по которым я строил АЛУ, в большинстве своем были заимствованы из подробного описания HPRC. А этот компьютер, в свою очередь, частично основан на идеях Конрада Цузе образца 1941 года. В частности, оттуда и берет свое начало.

Сумматор

Используемый в моем АЛУ сумматор был придуман Конрадом Цузе для его машины Z3, построенной в военной Германии. Такой сумматор состоит из 8 последовательно соединенных 1-битных сумматоров. На входе каждого из них два бита операндов, а также биты переноса и инвертированного переноса. На выход каждый 1-битный сумматор выдает результат вычислений, то есть сумму входных битов с учетом переноса. Кроме этого, вычисляются перенос и инвертированный перенос, подающиеся на следующий сумматор.

Чтобы эта схема смогла закончить вычисления, необходимо, чтобы прошло время для переключения 8 последовательно соединенных реле. Полная схема сумматора показана на картинке:

Вот что происходит со схемой, если на вход сумматора подать 2 и 2 (красным обозначены проводники, на которые подано напряжение питания). Два реле, соответствующие первым битам операндов, переключились, а остальные остались в исходном состоянии:

Логический модуль

Логический модуль я также полностью скопировал из HPRC. Побитовые логические операции выполняются параллельно для всех 8 битов результата сразу. Так как все биты независимы, схема работает быстрее, чем сумматор (хотя заметить это практически невозможно). Логический модуль выполняет операции НЕ, И, ИЛИ и ИСКЛЮЧАЮЩЕЕ ИЛИ (они же NOT, AND, OR и XOR).

Логическое НЕ работает так: вход логического элемента подключен к обмотке реле; к одному из входов подключен источник питания; выходом элемента является нормально замкнутый контакт для этого входа. Таким образом, при подаче «1» на вход, реле переключается, и от выходного контакта отключается источник питания:

Логическое И реализуется с помощью последовательного соединения двух нормально разомкнутых контактов, каждый из которых управляется одним из входом элемента:

Используемый способ представления логических значений с помощью электрических сигналов позволяет реализовать операцию OR с помощью «монтажного ИЛИ» просто соединив соответствующие провода:

Но у такой схемы есть один недостаток – значение одного из входных сигналов может повлиять на другой (а каждый из этих проводов может быть подключен куда-то еще). Например, на рисунке ниже b=1 приведет к тому, что «1» будет не только на обоих выходах, но и на входах c и d, даже если сами c и d равняются «0».

Проблема решается с помощью дублирования сигналов нормально разомкнутыми контактами реле, к катушкам которых эти сигналы подключены:

Полностью схема логического модуля выглядит так:

Кроме перечисленных логических операций эта схема генерирует еще и входные сигналы для модуля сдвига. Это необходимо по той же причине, по которой в большинстве случаев не получается использовать простое «монтажное ИЛИ» – работа модуля сдвига может повлиять на его же входные сигналы.

Вычитатель

Модуль вычитателя мне скопировать было не с кого (так как HPRC вычитать попросту не умеет), поэтому я взял таблицы истинности для однобитных сумматоров и вычитателей, сравнил их, и переделал схему сумматора в схему вычитателя. Получилась очень похожая на сумматор конструкция:

Модуль сдвиговых операций

Модуль, выполняющий сдвиги, уникален тем, что состоит только из проводов. Мне были нужны только операции сдвига вправо (сдвиг влево легко делается с помощью операции сложения): сдвиг вправо с переносом и без, а также вращение вправо. Таким образом, чтобы выполнить эти операции, достаточно соединить входные сигналы с шины данных с выходными внутренней шины АЛУ в нужном порядке:

В заключение приведу картинку, на которой видно, какой результат вычисления всех операций получается для операндов 3 и 2 (выбранные значения видно по тумблерам в левом нижнем углу, а также по индикаторам реле в каждом из модулей). Это возможно, так как работа модулей не зависит от того, какая операция выбрана (от этого зависит только, какой именно из результатов будет защелкнут).

Здесь описаны все блоки, выполняющие логические и арифметические операции, в АЛУ, которое войдет в состав компьютера на электромагнитных реле.

Я начал эту работу с АЛУ, потому что в его состав входят очень многие вещи, которые будут использоваться в других модулях: элементарные логические операции, сумматор (операция увеличения PC будет выполняться специальным блоком инкремента), а также блоки для коммутации с шинами и регистры.

В следующей статье я планирую описать логическую структуру АЛУ, а также затронуть планируемые архитектуру и систему команд компьютера в целом.

habr.com

Устройство и принцип действия электромагнитных реле. Их преимущества и недостатки | RuAut

Реле - называется электрическое устройство, которое предназначается для осуществления коммутации различных участков электрических схем  при изменении электрических или неэлектрических входных воздействий. Впервые, термин «реле» фигурирует в тексте патента на изобретение телеграфа за авторством С. Морзе в 1837 году. А само устройство электромагнитного реле было изобретено Джозефом Генри за два года до этого в 1835 году. Интересно также, что термин «реле» произошел от английского слова «relay», которое в те времена означало действие при передаче эстафеты спортсменами или же подмену почтовых лошадей на станциях, когда они начинают уставать.

Наиболее широкое применение в схемах автоматики и системах защиты электроустановок получили электромагнитные реле, благодаря своей высокой надежности и простоте принципа действия. Электромагнитные реле подразделяются на реле переменного и постоянного тока. Последние, в свою очередь, подразделяются на поляризованные (реагируют на полярность управляющего сигнала) и нейтральные (в одинаковой степени реагируют на протекающий по его обмотке постоянный ток любой полярности).

Принцип работы электромагнитных реле основан на применении электромагнитных сил, которые возникают в металлическом сердечнике во время прохождения электрического тока по виткам его катушки. Все детали будущего реле необходимо смонтировать на основание и закрыть крышкой, после чего над сердечником электромагнита устанавливается пластина (подвижный якорь), к которой крепятся от одного до нескольких контактов. Напротив закрепленных контактов устанавливают парные им неподвижные контакты.

Работа электромагнитного реле

Поддерживать якорь в исходном положении помогает закрепленная пружина. Во время подачи напряжения на электромагнит якорь начинает притягиваться, преодолевая сопротивление пружины, при этом, в зависимости от конструкции имеющегося реле, происходит размыкание или замыкание контактов. Если отключить напряжение – благодаря пружине якорь вернется в исходное положение. Иные модели реле могут содержать в себе электронные элементы. Примерами таких реле могут послужить резистор, который подключается к обмотке катушки, чтобы реле более четко срабатывало, и конденсатор, расположенный параллельно контактам, дабы снизить вероятность появления искр и помех.

У электромагнитного реле имеется ряд преимуществ, недоступных полупроводниковым конкурентам:

  • Возможность коммутации нагрузок общей мощностью не более 4 кВт в то время когда объем реле не превышает 10см3;
  • Проявление устойчивости к импульсам перенапряжения и способным оказать разрушительное воздействие помехам, возникающим во время разряда молнии или по причине протекания коммутационных процессов в высоковольтном оборудовании;
  • Наличие исключительной электрической изоляции, проложенной между катушкой (управляющей цепью) и группой контактов (требования последнего стандарта – 5 кВ) – недоступная мечта для большей части полупроводниковых ключей;
  • Малый уровень выделения тепла замкнутых контактов вследствие малого падения напряжения: во время коммутации тока 10 А малогабаритным реле суммарно рассеивается по катушке и контактам не более 0,5 Вт, при учете что симисторным реле отдается в атмосферу не менее 15 Вт, в результате чего приходится решать вопрос по интенсивному охлаждению, а попутно усугубляется проблема парникового эффекта на нашей планете;
  • В сравнении с полупроводниковыми ключами электромагнитные реле имеют более низкую стоимость.
  • Кроме достоинств электромагнитные электромеханические реле имеют и свои недостатки: не высокая скорость работы, ограниченность электрического и механического ресурса, возникновение радиопомех во время замыкания и размыкания контактов, и последнее, но наиболее неприятное свойство – возникновение серьезных проблем во время коммутации высоковольтных и индуктивных нагрузок на постоянном токе.

Как правило, электромагнитные реле применяются при коммутации нагрузок при переменном токе с напряжением 220В или при постоянном токе в диапазоне напряжений 5 – 24В и токами коммутации 10 – 16 А. Стандартными нагрузками для мощных реле являются – лампы накаливания, нагреватели, обогреватели, электромагниты, маломощные электродвигатели (к примеру, сервоприводы и вентиляторы), иные активные, индуктивные и емкостные потребители электрической энергии с диапазоном мощностей 1 Вт – 3 кВт.

Рабочее напряжение и сила тока в катушке реле не должны превышать предельно допустимых значений, поскольку уменьшение этих значений значительно снизит надежность контактирования, а их увеличение приведет к перегреву катушки, тем самым снизив надежность реле при предельно допустимых значения положительной температуры. Крайне нежелательно даже кратковременное воздействие повышенного напряжения, поскольку при этом возникают в деталях магнитопровода и в контактных группах механические перенапряжения, а электрическое перенапряжение обмотки катушки может привести к пробою изоляции во время размыкания цепи.

Во время выбора режима работы реле стоит учитывать характер воздействующих нагрузок, род и значение коммутируемого тока, частоту коммутации.

Во время коммутации индуктивных и активных нагрузок самым тяжелым является процесс размыкания цепи, поскольку образовывающийся дуговой разряд становится причиной основного износа контактов.

ruaut.ru

Электромагнитное реле - Легкое дело

Электромагнитное реле

Устройство, обозначение и параметры реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка. состоящая из большого количества витков изолированного провода. Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь .Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1 ) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1 ; К1.2 ) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12V DC – это номинальное напряжение срабатывания реле (12V ). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, "залипать". Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC . Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U ) на ток (I ): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. - Power consumption ).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW ).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω ), до нескольких килоом (kΩ ). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное)

Сопротивление обмотки (Ω ±10%)

Номинальный ток (mA)

http://go-radio.ru

legkoe-delo.ru


Каталог товаров
    .