Bp9927F схема включения: Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает / Хабр

Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает / Хабр

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.


LED лампа выглядит вот так:


Рис 1. Внешний вид разобранной LED лампы

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.

Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Вернемся к проблемам драйвера.

Вот так выглядит плата драйвера:


Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

И с обратной стороны:


Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

В МТ7930 встроены защиты:

• от превышения тока ключевого элемента

• понижения напряжения питания

• повышения напряжения питания

• короткого замыкания в нагрузке и обрыва нагрузки.

• от превышения температуры кристалла

Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂

Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

Рис 4. LED Driver MT7930. Схема электрическая принципиальная

Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.


Рис 5. Фото разделительного трансформатора

Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

Почему же срабатывает защита и по какому именно параметру?

Первое предположение

Срабатывание защиты по превышению выходного напряжения?

Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…

Дал схеме поработать часок – все ОК.

А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

Очень хорошо, видимо дело в нагреве какого-то элемента?

Но какого? И какие же параметры элемента могут уплывать?

В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.

Что же это за элемент?

Второе предположение

Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.

Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

Третье предположение

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

Прогрев микросхемы паяльником ничего не давал.

И очень смущало малое время нагрева… что там может за 15 секунд измениться?

В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.

Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.

Остывает и перестает работать — что-то зависит от температуры…

Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?

Пролазил тестером холодную плату — нет обрывов.

Что же еще может мешать переходу от режима запуска в рабочий режим?!!!

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

И тут наступило счастье. Заработало!

Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

Вот он, виновник проблемы:


Рис 6. Конденсатор с неправильной емкостью

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.

Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.

Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.

• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Блоки питания, маленькие и очень маленькие

3.89+2.72+3.05+4.17

Перейти в магазин


Блоки питания бывают не только на большую мощность, а и совсем маленькие, но от этого не менее полезные.
Сегодня у меня на «операционном столе» четыре представителя этого класса блоков питания, но испытания у них будут такие же как всегда.

Иногда возникает ситуация, когда необходим совсем маломощный блок питания. Например питания совсем маломощного устройства, датчика, ардуино подобного устройства или тому подобного.
Можно конечно поставить большой блок питания, но тогда устройство заметно вырастает в габаритах, потому применяют малогабаритные и соответственно маломощные блоки питания.

Впрочем тесты будут стандартные, как и сам стиль обзора.

Но начну я сегодня не с упаковки, а с того, как эти БП (как минимум пара из них) путешествовали ко мне.

 Немного об их путешествии

Совсем немного об упаковке, чтобы не отвлекать от остального, спрячу под спойлер.

 Упаковка

Блоки питания действительно очень маленькие. Размеры я приведу по ходу обзора для каждой платы индивидуально, а пока общее фото в сравнении с известным спичечным коробком 🙂

Блоки питания, маленькие и очень маленькие

Для начала самый маломощный представитель.
Ссылка на товар в магазине, цена $3.89.
Сразу сделаю общий комментарий. В магазине предоставлена не вся информация, указанная ниже найдена на других сайтах, но вполне реальна.

Заявлены следующие характеристики:
Входное напряжение — 110 ~ 370V DC, 85 ~ 264V AC
Выходное напряжение — 12V
Выходной ток — 83mA
Мощность нагрузки — 1W
КПД — 80%
Точность поддержания выходного напряжения ±10%
Уровень пульсаций — не более 100мВ
Защита от КЗ и перегрузки выхода с автовосстановлением.
Размеры платы — 26 х 24 х 12мм без выводов, с выводами 26 х 33 х 12мм
расстояние между выводами 220В — 5мм, 12В — 2.5мм, но между входом и выходом расстояние не кратно 2.5мм и составляет 14.3мм

На плате отсутствует предохранитель и входной и выходной фильтры, конструкция предельно простая.
Входной конденсатор 2.2 мкФ (реально 1.9), выходной — 220мкФ (реально 183). Емкость достаточна для нормальной работы.
ШИМ контроллер OB2535, максимальная мощность 5 Ватт.

Блоки питания, маленькие и очень маленькие

Практически все резисторы установлены точные, качество пайки нормальное, замечаний внешне не возникло, параллельно выходному конденсатору установлен керамический.

Блоки питания, маленькие и очень маленькие

Схема данного блока питания.
Как я выше писал, это самый простой блок питания из четырех, он не имеет большинства узлов, свойственных большим БП, сделано это в угоду уменьшения размеров.
В данном блоке питания нет привычной цепи обратной связи с оптроном, на таких маленьких мощностях это вполне оправдано. Но на самом деле измерение выходного напряжения есть, хоть и косвенное. Измерение происходит на обмотке питания микросхемы.
Микросхема может работать в двух режимах — стабилизатора напряжения и стабилизатора тока.

Блоки питания, маленькие и очень маленькие

Под вторым номером идет немного более мощный блок питания.
Ссылка на товар в магазине, цена $2.72.
Если первый был на одно из самых распространенных напряжений, то этот имеет на выходе гораздо более редкое напряжение в 24 Вольта. Хотя судя по маркировке, есть версия и на 12 Вольт.
Заявленные характеристики:
Входное напряжение — 110 ~ 370V DC, 85 ~ 264V AC
Выходное напряжение — 24V (существует версия 12 В 400мА и 3.3В 500мА)
Выходной ток — 200mA
Мощность нагрузки — 4,8W
КПД — 85%
Уровень пульсаций — не более 100мВ
Размеры платы — 41 х 15 х 17мм

Блоки питания, маленькие и очень маленькие

Что интересно, трансформатор на этой плате стоит меньше по габаритам чем на предыдущей, но мощность заявлена заметно больше.
ШИМ контроллер со встроенным высоковольтным транзистором, наименование — THX208, заявленная в даташите мощность 4 Ватта при входном диапазоне 85 ~ 264V. Негусто, так как заявленная мощность БП — 4.8 Ватта.
Входной фильтр и предохранитель отсутствуют, вместо предохранителя стоит перемычка размера 0805. Выходной фильтр также не наблюдается.
Входной конденсатор 4.7мкФ (реально 4.2), выходной 220мкФ (реально 242). Входной совсем впритык, выходной соответствует выходному току.

Блоки питания, маленькие и очень маленькие

Все резисторы применены точные, по крайней мере имеют соответствующую маркировку. Это радует, так как применение обычных резисторов обычно чревато уходом выходного напряжения по мере прогрева платы.

Блоки питания, маленькие и очень маленькие

В данном варианте уже присутствует обратная связь с применением оптрона и нормальная цепь измерения выходного напряжения с применением стабилитрона TL431.

Блоки питания, маленькие и очень маленькие

Третий товарищ смог меня удивить уже на этапе внешнего осмотра, но об этом чуть позже.
Ссылка на товар в магазине, цена $3.05.
Этот БП имеет довольно распространенное напряжение в 5 Вольт. в принципе я 5 Вольт БП и выбирал для обзора именно потому, что они могут быть довольно востребованными, так как сейчас это напряжение используется во многих местах.

Заявленные характеристики.
Входное напряжение — AC 85V — 265V
Выходное напряжение — 5V
Выходной ток — 1000mA
Мощность нагрузки — 5W
КПД — 85%
Точность поддержания выходного напряжения ±0.1V
Уровень пульсаций — не более 150мВ
Размеры платы — 52 х 24 х 18мм

Блоки питания, маленькие и очень маленькие

У этого блока питания отсутствует предохранитель (вместо него перемычка 0 Ом), но уже есть входной и выходной фильтр и резистор ограничивающий пусковой ток.
В блоке питания применен ШИМ контроллер AP8012, который имеет встроенный высоковольтный транзистор. мощность данного ШИМ контроллера составляет 5 Ватт (для данного размера микросхемы и диапазона входного напряжения). Также впритык, но тесты покажут кто есть кто.
На этой плате уже присутствует помехоподавляющий конденсатор, причем Y1 класса, как и положено.
БП пришел с небольшим повреждением, на дросселе отломился кусочек пластмассы, так как он был в пакете, то скорее всего «постаралась» почта.

Блоки питания, маленькие и очень маленькие

Но удивило меня другое. Я обозревал кучу разных блоков питания, но варистор по входу вижу в них впервые (может во второй раз, не уверен), да еще в таком мелком БП. В мощных и более дорогих БП нет, а здесь поставили, предохранитель бы ему еще 🙁
Входной конденсатор емкостью 4.7мкФ (реально 4.2), выходные 2шт 1000мкФ 10В (реально 2х 1095). Присутствует выходной помехоподавляющий дроссель.

Блоки питания, маленькие и очень маленькие

Печатная плата. Как и в прошлых блоках питания, здесь производитель также применил точные резисторы, радует 🙂
Пайка в целом нормальная, плата чистая.

Блоки питания, маленькие и очень маленькие

В схеме нет ничего нового, классика как она есть, фильтр, ШИМ контролер, TL431 на выходе.

Блоки питания, маленькие и очень маленькие

Ну и четвертый БП.
Ссылка на товар в магазине, цена $4.17.
Этот блок питания немного выбивается из общей картины, так как имеет мощность и габариты заметно больше чем у предыдущих, но меня неоднократно спрашивали про БП с такими характеристиками, поэтому я решил добавить к обзору и его.

Для начала характеристики:
Входное напряжение — AC 85V — 265V
Выходное напряжение — 5V
Выходной ток — 2000mA (кратковременный 2500мА)
Мощность нагрузки — 10W (макс 11 Ватт)
КПД — 85%
Точность поддержания выходного напряжения ±0,1V
Размеры платы — 60 х 31 х 20мм

Блоки питания, маленькие и очень маленькие

Первая плата из обозреваемых, на которой присутствует полноценный предохранитель.
Также установлен входной и выходной помехоподавляющие дроссели и термистор для ограничения пускового тока.

Блоки питания, маленькие и очень маленькие

На этой плате установлен уже более мощный диод, также присутствует помехоподавляющий конденсатор Y1 класса (маркировка на фото не попала).
Входной конденсатор емкостью 15мкФ (реально 15.2) и выходные суммарной емкостью 2000мкФ (реально 2110). Емкость соответствует требуемой.
В этом БП уже применили маломощный ШИМ контроллер с внешним полевым транзистором, это обусловлено отчасти тем, что мощность Бп все таки больше чем у предыдущих.

Блоки питания, маленькие и очень маленькие

Как и в предыдущих БП, резисторы применены точные, но почему то в районе выходного разъема присутствуют следы пайки, хотя в целом плата чистая и аккуратная.

Блоки питания, маленькие и очень маленькие

Что интересно, в выходной цепи есть место под дополнительный резистор, включенный параллельно нижнему резистору делителя обратной связи. Устанавливая резистор на это место можно поднять выходное напряжение.
ШИМ контроллер я не опознал, но скорее всего это 63D12, ближайший аналог FAN6862

Блоки питания, маленькие и очень маленькие

Схема очень похожа на один из блоков питания, который я обозревал ранее, почти 1 в 1, отличие только в номиналах некоторых элементов.

Блоки питания, маленькие и очень маленькие

Так, внешне осмотрели, теперь пора бы перейти и к тестам.
В этот раз я буду использовать простенькую электронную нагрузку, так как не вижу смысла в применении мощной, тем более что она довольно сильно шумит, а тесты предполагали быть долгими.
Тестировать БП я буду в том же порядке, что и описывал выше, но методика тестирования будет немного отличаться от то, что я использовал в предыдущих обзорах.
Так как БП маленькие, то методика была такая:
Проверка в режиме ХХ (а точнее при токе в 20мА), после этого 15 минут тест с нагрузкой в 50%, измерение температур, тест с нагрузкой 100%, измерение температур.
Дальше повышение нагрузки пока не наступит одно из ограничений (перегрузка, перегрев или выход БП из строя).
Все результаты потом будут сведены в одну таблицу.

 Тесты

Тесты закончены. Теперь табличка с результатами тестирования, но для начала список причин прекращения теста соответственно номеру БП
1. БП ушел в защиту при токе 250мА с отключением выхода.
2. БП снизил выходное напряжение ниже предела допуска
3. Тест прекращен из-за высокой температуры ШИМ контроллера.
4. Тест прекращен из-за высокой температуры выходного диода.

Блоки питания, маленькие и очень маленькие

Теперь можно делать какие то выводы.
Первый БП.
Конструкция совсем простая, отсутствует предохранитель и фильтры, но БП который имеет трехкратную перегрузочную и такую высокую стабильность выходного напряжения уже достоин уважения. Предохранитель можно добавить, хотя с тем что БП явно разрабатывался для работы в составе какого нибудь устройства, то чаще он уже присутствует на основной плате.

Второй БП,
БП вписался в заявленные параметры, но не имеет запаса по мощности, при нагрузке в 1.3 раза больше заявленной БП уходит в защиту, хотя запас по нагреву есть и большой. Также плохо что нет предохранителя 🙁

Третий БП.
В штатном режиме работает отлично, уровень пульсаций самый низкий из протестированных БП, но не рекомендую использовать при токе более 1 Ампера (собственно больше никто и не обещал). из минусов — отсутствие предохранителя и хуже стабилизация выходного напряжения.

Четвертый БП.
Неплохая стабильность выходного напряжения, пульсации есть, но в пределах допустимого. Есть выходной и выходной фильтр, но выходной дроссель слабоват для БП такой мощности. Если в плане нагрева дроссель работает нормально, то из-за небольшой индуктивности Бп имеет заметный уровень пульсаций на выходе.

Общее по всем БП.
Все БП прошли тесты, одни лучше, другие хуже, но заявленным характеристикам соответствуют.
Удивили характеристики самого первого БП, при заявленной мощности в 1 Ватт выдать без проблем 3 Ватта.