интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Умножитель напряжения. Умножителей напряжения схемы


мир электроники - Умножитель напряжения

Электронные устройства

  материалы в категории

умножитель ун9/27Ну многие, наверняка, слышали такое слово: умножитель. Некоторые даже знают как он выглядел в старых телевизорах... Да чего там знают: даже и меняли сами когда-то...

А вот как работает умножитель напряжения сейчас мы и разберемся.

Ну в общем-то по самому названию "умножитель напряжения" и так понятно что так  называют устройство, на выходе которого можно получить напряжение, в любое число раз превышающее напряжение на его входе.

Кстати: выпускаемые промышленность умножители так и маркировались: указывался  коэффициент умножения и выходное напряжение. Например УН9/27 обозначает: умножение в 9 раз, на выходе 27 кВольт.

Еще один момент: умножить можно лишь переменное напряжение, но на выходе мы получим уже постоянное. Другими словами, умножитель - это устройство, преобразующее переменное напряжение в постоянное, превышающее амплитуду входного переменного напряжения. К числу достоинств можно отнести небольшие габариты и массу, стабильность работы. К недостаткам же относятся низкий ток нагрузки, небольшой КПД и, как следствие, небольшая мощность. Умножители напряжения чаще применяют в устройствах, где не требуется значительный ток в нагрузке, но важно высокое напряжение. Самый яркий пример- применение умножителя в кинескопных телевизорах: с его помощью получают напряжение для аквадага кинескопа (25 кВ) и напряжение для фокусировки кинескопа (около 8 кВ).

Итак, начнем с простого: удвоитель напряжения. Схема на рисунке ниже:

удвоитель напряжения

В отрицательный полупериод входного напряжения конденсатор С1 заряжается до амплитудного значения входного напряжения - Um. Во время положительного полупериода начинает заряжаться С2 до значения UC2 = Um + UC1 = 2Um, т. е. на выходе получается удвоенное значение амплитуды входного напряжения. Все очень просто.

Если прилепить еще один диод с конденсатором, то получится утроитель напряжения:

умножитель напряжения схемаВ положительный полупериод С1 заряжается через VD1 до значения Um. В следующий полупериод С2 заряжается через VD2 до значения, равного сумме напряжений на конденсаторе С1 и Um, т. е. UC2 = UC1 + Um = 2Um.В следующий (третий) положительный полупериод, когда прошла повторная зарядка С1 через диод VD1, диод VD2 закрывается, кондер С2 разряжается через диод VD3 на С3, зарядив последний до 2Um, т. е. до удвоенного амплитудного значения. По окончанию заряда С1 нагрузка окажется под суммарным напряжением кондеров С1 и С3. Поскольку на С3 удвоенное значение напряжения, на нагрузке выделяется напряжение Uвых = UC1 + UC3 = 3Um.

Ну и так далее: добавляя по диоду с конденсатором получаем следующий коэффициент умножения.

Внимание: до амплитудного значения напряжения заряжается только первый конденсатор. На каждом последующем напряжение больше на величину входного. Другими словами, необходимо обеспечить защиту схемы от электрического пробоя, т. е. использовать диоды и конденсаторы на соответствующее напряжение.

radio-uchebnik.ru

Умножитель напряжения

Умножители напряжения сейчас используются во многих видах аппаратуры. Это устройство, с помощью которого можно преобразовать переменное напряжение в постоянное высоковольтное. В большинстве случаев умножители используются в телевизионных устройствах, в медицинском оборудовании и т. д. Он сделан из диодов и конденсаторов, чтобы получить напряжение больше киловольта, необходимо применять специальные для этого высоковольтные диоды и неполярные конденсаторы.

Схема умножителя напряжения

Умножители напряжения делятся на два основных типа, этопараллельные и последовательные. Умножители напряжения способны увеличивать переменное напряжение на входе в несколько десятков раз, на выходе умножителя появляются высоковольтные импульсы постоянного тока. Умножитель низковольтного напряжения (это когда меньше киловольта на выходе) может быть изготовлен из конденсаторов постоянного тока. Самый важный недостаток умножителя напряжения, это совсем небольшая сила тока на выходе, а если в умножитель напряжения установить много секций конденсаторов, то тогда последние секции хорошо заряжаться не будут и на выходе может оказаться меньше ожидаемого.

Умножитель напряжения (он же генератор Кокрофта-Уолтона) был назван в честь двух физиков, они в 1932 году создали самый первый умножитель напряжения. Вообще в первую очередь этот генератор был изготовлен для исследований в ядерной физике, за это изобретатели в 1951 году оказались обладателями нобелевской премии. Некоторые считаю, что его первым создал швейцарский учёный — физик Генриха Грейнахера. На вход напряжение идёт с выхода высокочастотного трансформатора и увеличивается до необходимой величины в генераторе Кокрофта-Уолтона.

Они используются в лазерном оборудовании и в подсветке на больших экранах. Радиолюбителями умножитель напряжения может понадобиться в высоковольтных устройствах, допустим на люстре Чижского, «самопальных» шокерах, для ионизации воздуха и в счётчике Гейгера. Крошечные умножители напряжения служат ещё для питания микросхем. Умножитель напряжеения хорош тем, что от него нет шума, тепло от него не исходит, но при этом мощность на выходе очень мала.

Вообще конечно штука довольно интересная. Теперь вам понятно, что это такое и принцип работы.

payaem.ru

Russian HamRadio - Принципы построения и работы схем умножения напряжения.

В последнее время радиолюбители все чаще и чаще интересуются схемами питания построенным по принципу умножения напряжения. Причин этому можно назвать много, одни из самых главных – появление на рынке малогабаритных конденсаторов большой емкости и резкое удорожание медного провода, использовавшегося при намотке трансформаторов. Немаловажно и то, что схемы с умножением напряжения позволяют значительно снизить вес и габариты аппаратуры. Однако многие попытки выбора радиолюбителями таких схем заканчиваются неудачей, поскольку не соблюдаются несколько непременных условий для достаточно надежной и качественной работы таких, казалось бы, простых схем. Для того чтобы понять, как правильно выбрать схему и элементы умножителя, рассмотрим принципы работы таких устройств.

Схемы умножителей напряжения разделяются на симметричные и несимметричные. Для начала рассмотрим принцип работы и построения несимметричных схем. Несимметричные схемы умножителей подразделяются на два типа: Схемы умножителей первого рода и схемы умножителей второго рода.

Схема умножения первого рода представлена на рисунке.

В полупериод напряжения, когда в точке “А” имеется отрицательный потенциал относительно точки “F” конденсатор С1 будет заряжаться по цепи “F” -VD1 –“B” - С1 –“A” до амплитудного значения напряжения на входе схемы (в точках “А” –“F”).

Одновременно с зарядом С1 будет также заряжаться конденсатор С3 по цепи “F” –VD1 –“B” – VD2 – “C” - VD3 –“D” – C3 – “A” также до амплитудного значения напряжения на входе схемы.

Также будут заряжаться и другие конденсаторы схемы умножения, которые могут быть и которые подключены одним выводом к точке “А”.

Обратим внимание на то, что все эти конденсаторы заряжаются по цепочке последовательно соединенных диодов.

Через диод VD1 течет ток заряда конденсаторов всех ступеней умножения, через диоды VD2, VD3 и далее – ток заряда всех остальных конденсаторов, подключенных одним выводом к точке “А”, кроме первого.

Таким образом, через диоды в первоначальный момент проходят значительные токи заряда емкостей. Это необходимо учесть при выборе элементов для схемы умножения. Конденсаторы С2 и все которые могут быть в других ступенях и подключаются одним выводом к точке “F” в этот полупериод не заряжаются, поскольку оказываются шунтированными парами диодов VD1-VD2, VD3-VD4 и далее VD(N)-VD(N+1).

С началом другого полупериода положительный потенциал будет в точке “А”. Поскольку конденсатор С1 уже заряжен до такого же потенциала, как максимальный Uo, то он оказываются включенным последовательно с источником питания и будут разряжаться по цепи “В” - VD2 –“С” - С2 –“F” – Источник – “А”. Поскольку конденсатор С2 был разряжен, то теперь он зарядится почти до удвоенного амплитудного напряжения Uo. “Почти” потому, что С1 за этот небольшой промежуток времени отдаст часть своего заряда конденсатору С2.

Если емкость конденсатора С1 намного больше емкости конденсатора С2, то С2 зарядится до удвоенного амплитудного значения напряжения Uo. Если емкости этих конденсаторов равны, то все равно, через несколько периодов напряжение на конденсаторе С2 достигнет удвоенного Uo. Аналогично, по цепи “D” –VD(N) – “E” - C(N) – “F” – Источник – “А” произойдет заряд конденсатора С

(N) до удвоенного напряжения Uo.

В следующий полупериод напряжения конденсатор С2, заряженный до удвоенного напряжения Uo, будет включен последовательно и по цепи “С” – VD3 –“D”- C3 – “А” – Источник – “F” зарядит конденсатор С3 почти до утроенного напряжения Uo. А конденсатор С1 будет подзаряжен до напряжения Uo.

В следующий полупериод конденсатор С2 будет заряжен так же как уже было описано, до удвоенного напряжения, а конденсатор С

(N) будет заряжен по цепи D – VD(N) – E – C(N) –F – Источник – А – С3. Причем за счет утроенного напряжения на конденсаторе С3 и напряжения на входе конденсатор С (N) зарядится до учетверенного Uo. Если наращивать ступени умножения и дальше, их работа ничем не будет отличаться от работы первых ступеней умножения. Следует отметить, что в один из полупериодов будут заряжаться конденсаторы, подключенные одним выводом к точке “А”, а в другой – конденсаторы, подключенные одним выводом к точке “F”, поэтому частота пульсаций на выходе схемы умножения первого рода равна частоте питающего напряжения.

Минимально допустимую величину конденсатора на выходе схемы умножения С (N) можно посчитать, исходя из заданного уровня пульсаций выпрямленного напряжения. Для начала определим сопротивление нагрузки:

Rн (Ком) = Uвых (В) / Iн (mA)

Для питания анодной цепи усилителя мощности на 3-х ГУ-50 зададим: напряжение на выходе умножителя 1200 Вольт при токе 400 мА.

Подставляя данные в формулу, получим сопротивление нагрузки выпрямителя Rн = 3 Ком.

(Далее все практические расчеты будут сделаны именно для усилителя этого типа.)

Теперь определим емкость конденсатора на выходе схемы умножения.

С(n) = 5,7 / Kп* Rн (мкф)

Для усилителей мощности КВ радиостанций, работающих в телеграфном режиме, коэффициент пульсаций выбирается в пределах 0,5 – 3,0 % Для передатчиков ,работающих в SSB коэффициент пульсаций должен быть значительно ниже. Выберем Кп = 0, 1% , тогда: С(n) = 19 мкф (выберем 20 мкф)

Для того чтобы получить как можно более пологую статическую характеристику важно соблюдать определенные пропорции в емкостях конденсаторов, которые обеспечат равенство энергий, накапливаемых каждым конденсатором при работе на реальную нагрузку. Наилучшие результаты дает ряд емкостей, для которого:

С(N) = M * С(n)

Где: C(N) –емкость конкретного конденсатора, С(n) – емкость конденсатора на выходе схемы, М – коэффициент увеличения емкости, определяемый по таблице:

Номер конденсатора по схеме

Кратность умножения напряжения

Конкретный номинал для усилителя на 3- х лампах ГУ- 50 при

Uвых =1200В Iвых = 0,4А

5

4

3

2

С1

25

16

9

4

320 Х 300 В

С2

6,25

4

2,25

1

80 Х 600 В

С3

2,78

1,78

1

-

35,6 Х 900 В

С4

1,56

1

-

-

20 Х 1200 В

С5

1

-

-

-

-

Несимметричная схема умножения второго рода.

Принцип работы этого умножителя аналогичен работе умножителя первого рода.

Основное отличие заключается в том, что в этой схеме все конденсаторы за исключением С1 заряжаются только до удвоенного напряжения Uo. Конденсатор С1 заряжается только до Uo.

Таким образом, рабочее напряжение конденсаторов и диодов в умножителе напряжения второго рода может быть значительно ниже, чем в умножителе первого рода. “Пусковой” ток через диоды в этой схеме тоже меньше, поскольку определяется емкостью только одного конденсатора С1.

Диоды могут быть выбраны с током

Iпр. = 2,1 * Iн = 2,1 * 0,4 = 0, 82 А

Необходимая емкость конденсаторов в этой схеме определяется по формуле:

С (мкф) = 2,85 * N / Кп*Rн = 2,85* 4 / 3*0,1 = 38 мкф

Несмотря на увеличение каждой емкости в два раза, общая емкость конденсаторов в такой схеме будет меньше, при тех же пульсациях.

Необходимо только увеличить емкость конденсатора С1 в 4 раза по сравнению с остальными. Хотя в большинстве случаев достаточно и двух-трехкратное увеличение емкости конденсатора С1.

О включении нагрузки в такой схеме: При четном количестве ступеней умножения (например 2,4,6,8 и т.д.) напряжение на нагрузку снимается с конденсаторов с четными номерами (точки “С” “Е” и т.д.) Если необходимо получить нечетное количество ступеней умножения (3,5,7 и т.д.) Нагрузка подключается к конденсаторам с нечетными номерами (точки “А”, “D” и т.д.

 

Симметричные схемы умножителей напряжения.

 

Симметричная схема умножения напряжения получается, если применить две несимметричных схемы, у одной из которых необходимо сменить полярность электролитических конденсаторов и изменить проводимость диодов.

 

Симметричные схемы обладают теми же свойствами, но лучшими характеристиками.

 

Немаловажное достоинство симметричных схем – удвоенная частота пульсаций выпрямленного напряжения.

 

 

Практические схемы умножителей напряжения:

Схемы самые обычные, слева схема симметричного удвоителя, справа –схема несимметричного удвоителя. Как видно эту схему удвоения можно отнести и к 1-му роду и ко 2-му роду одновременно.

Внизу схема умножения напряжения первого рода, вверху - схемы умножения второго рода. Схемы с нечетной кратностью умножения не могут быть полностью симметричными.

Слева (вверху и внизу) схемы умножения первого рода, справа вверху – схема умножения второго рода. Справа внизу – схема симметричного умножителя на 4.

Умножитель на 6 представляет собой схему умножения второго рода, умножитель на 8 – два последовательно включенных умножителя на 4 первого рода. Если вам нужно получить степень умножения 5 или 7 можно подключить нагрузку к верхнему диоду с левой стороны.

Разнообразие схем удвоителей очень велико. Зная основные принципы их построения, можно строить умножители различной кратности умножения.

Всего вам доброго!

73! Н.Филенко (UA9XBI)

qrx.narod.ru

Сайт:: Паятель - Коллекция схем умножителей напряжения

Умножитель напряжения -  схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 В постоянного тока из 100 В переменного тока источника, а с помощью умножителя на четыре — 400 В постоянного. Это если не учитывать падение напряжения на диодах (0,7В на каждом). 

В реальных схемах любая нагрузка будет уменьшать полученное напряжение. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна числу звеньев.

А теперь, к Вашему вниманию -  "экспонаты" коллекции:

  • Удвоитель напряжения Латура-Делона-Гренашера

Особенности: хорошая нагрузочная способность.

  • Несимметричный умножитель напряжения (Кокрофта-Уолтона)

Особенности: универсальность, низкая нагрузочная способность.

Генераторы Кокрофта-Уолтона применяются во многих областях техники, в частности, в лазерных системах, в источниках высокого напряжения, в системах рентгеновского излучения, подсветке жидкокристаллических экранов, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо одновременно высокое напряжение и постоянный ток.

  • Утроитель, 1-й вариант

Особенности: хорошая нагрузочная способность.

  • Утроитель, 2-й вариант

Особенности: хорошая нагрузочная способность.

  • Утроитель, 3-й вариант

Особенности: хорошая нагрузочная способность.

  • Умножитель на 4, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

  • Умножитель на 4, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

  • Умножитель на 4, 3-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

  • Умножитель на 5, 1-й вариант

Особенности: хорошая нагрузочная способность.

  • Умножитель на 6, 1-й вариант

Особенности: хорошая нагрузочная способность.

  • Умножитель на 6, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

  • Умножитель на 8, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

  • Умножитель на 8, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

  • Умножитель напряжения Шенкеля – Вилларда

Особенности: симметричная схема, превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене.

  • Умножитель со ступенчатой нагрузочной способностью

Особенности: нагрузочная характеристика имеет две области - область низкой мощности – в диапазоне выходных напряжений от 2U до U и область повышенной мощности – при выходном напряжении ниже U.

  • Выпрямитель с вольтодобавкой

Особенности: наличие дополнительного маломощного выхода с удвоенным напряжением питания.

  • Умножитель из диодных мостов

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

Источники:

http://electros.wallst.ru/index.html

http://ru.wikipedia.org/wiki/Генератор_Кокрофта-Уолтона

payalo.at.ua


Каталог товаров
    .