Простой импульсный блок питания своими руками На следующий день поехал хоз-маг и купил пару подопытных. Один такой стоит 40 грн. Тот что сверху BUKO.Снизу копия Ташибры, только имя сменилось.Между собой они немного различаются. У ташибры например 5 витков у вторичной обмотке, а у BUKO 8 витков. У последнего еще немного плата побольше, с дырками под установку доп. деталей.Но доработка обоих блоков идентична!Во время доработок нужно быть предельно осторожным, т.к. на транзисторах присутствует сетевое напряжение. И если вы случайно закоротите выход, и транзисторы сделают новогодний салют я не виноват, все вы делаете на свой страх и риск! Рассмотрим схему: Все блоки от 50 до 150 ватт идентичны, отличаются только только мощностью деталей. В чем состоит доработка? 1) Необходимо добавить электролит после сетевого диодного моста. Чем больше - тем лучше. Я поставил 100 мкф на 400 вольт.2) Необходимо поменять обратную связь по току на связь по напряжению. Зачем? А затем что бп запускается только с нагрузкой, а без нагрузки он не запуститься.3) Перемотать трансформатор (при необходимости).4) Установить на выходе диодный мост (например КД213, импортные шоттки приветствуются) и конденсатор. В синему кружку катушка обратной связи по току. Необходимо выпаять ее 1 конец, и на плате ее замкнуть. Сделали КЗ на плате? Значить идем дальше!Потом берем кусок витой пары на силовой трансформатор мотаем 2 витка и на трансформатор связи мотаем 3 витка. На концы припаиваем к резистору 2.4-2.7 ом 5-10W. Подключаем лампочку на выход и ОБЯЗАТЕЛЬНО лампочку на 150 ватт в разрыв сетевого провода. Включаем - лампочка не засветилась, убираем ее, снова включаем и видим что лампочка на выходе светиться. А если не засветилась то нужно провод в трансформатор звязи завести с другой стороны. Посветила лампочка теперь выключаем. НО перед тем как что то делать обязательно разрядите сетевой конденсатор резистором на 470 ом!!Я собирал БП для стерео УНЧ на TDA7294. Соответственно мне нужно перемотать его на напряжение 2Х30 вольт.На трансформаторе 5 витков. 12V/5вит.=2,8 вит/вольт. 30V/2,8V=11витков. Тоесть нам надо намотать 2 катушки по 11 витков.Выпаиваем трансформатор из платы, снимаем 2 витка из транса, и соответственно сматываем вторичную обмотку. Потом я намотал катушки обычным многожильным проводом. Сразу одну катушку, потом вторую. И соединяем начала обмоток или концы и получаем средний отвод.То есть таким образом мы можем намотать катушку на необходимое напряжение! Частота блока питания с ОС по напряжению 30 кгц. Потом я собрал диодный мост из КД213, поставил электролиты и обязательно надо керамику!!!Как соединять катушки, и какие возможные вариации можно посмотреть на схеме из соседней статьи. Запомните - при замыканию выхода бп горит! Я сам спалил один раз. Сгорели, диоды, транзисторы и резисторы в базе! Заменил их и бп благополучно начал работать!Ну и теперь пару фотографий готового БП для УНЧ. Красным обозначено место закорачивания ОС по току.Вот еще есть вариация для шуруповерта. Трансформатор тут я не перематывал. Просто его поднял вертикально, и сбоку прилепил диодный мост. Все это дело установил у коробку из аккумулятора. И сзади поставил кнопку для выключения. Резистор припаян на плату в свободный пятачок. Желательно применять резисторы на 10W т.к. он греется во время работы! Таким образом мы получаем отличный ИБП за копейки, который можно применить куда угодно!!! radiostroi.ru Автор конструкции (Сергей Кузнецов его сайт — classd.fromru.com) разрабатывал этот самодельный сетевой источник питаниядля запитки мощного УМЗЧ (Усилителя Мощности Звуковой Частоты). Преимущества импульсных сетевых источников питания перед обычными трансформаторными источника питания очевидны: Однако, изготовление импульсного сетевого источника питания требует гораздо больше усилий и познаний, по сравнению с изготовлением обычного низкочастотного 50 Герцового блока питания. Низкочастотный блок питания состоит из сетевого трансформатора, диодного моста и сглаживающих конденсаторов фильтра, импульсный же имеет гораздо более сложную структуру. Основной минус импульсных сетевых блоков питания — наличие высокочастотных помех, с которыми придется побороться, в случае неправильной трассировки печатной платы, либо при неправильном выборе компонентной базы. При включении ИБП, как правило, в розетке наблюдается сильная искра. Это обуславливается большим пиковым током запуска блока питания, в виду заряда конденсаторов входного фильтра. Для исключения таких всплесков тока, разработчики проектируют различные системы «мягкого старта» которые в первой фазе работы заряжают малым током конденсаторы фильтра, а при окончании заряда организуют подачу уже полного напряжения сети на ИБП. В данном случае применен упрощенный вариант такой системы, представляющий собой последовательно соединенный резистор и термистор, ограничивающие ток заряда конденсаторов. В основе схемы лежит шим-контроллер IR2153 в стандартной схеме включения. Полевые транзисторы IRFI840GLC можно заменить на IRFIBC30G, другие транзисторы автор ставить не рекомендует, так как это повлечет необходимость уменьшения номиналов R2, R3 и соответственно к росту выделяемого тепла. Напряжение на шим-контроллере должно быть не ниже 10 Вольт. Желательна работа микросхемы от напряжения 11-14 Вольт. Компоненты L1 C13 R8 улучшают режим функционирования транзисторов. Дроссели, стоящие по выходу источника питания 10мкг намотаны проводом 1мм на ферритовых гантелях с магнитной проницаемостью 600НН. Можно мотать на стержнях от старых приёмников, хватит витков 10-15. Конденсаторы в источнике питания необходимо применять низкоимпендансные, с целью снижения ВЧ шумов. Смотрите также: самодельное зарядное устройство для нетбука Asus EEEPC Вы также можете прислать любые свои самодельные кострукции , и я с удовольствием их размещу на этом сайте с указанием Вашего авторства! samodelkainfo{собачка}yandex.ru Живу в Мире самоделок, размещаю статьи которые присылают читатели. Иногда пишу на темы: полезные самоделки для дома и самоделки для радиолюбителей. samodelka.info В продолжительной поездке на личном автомобиле или отдыхая «дикарем» на природе, неплохо иметь с собой домашние электрооборудование, например, фен, электрическую бритву, фото или видеокамеру. Но из-за отсутствия розеток невозможно обеспечить питание приборов от обычной сети. Единственным источником энергии в этом случае могут быть только автомобильные аккумуляторы, но их постоянного напряжения в 12 вольт не хватит для домашних устройств, работающих от переменного тока 220 вольт. Налицо полная несовместимость по сразу двум основным параметрам. Но не стоит отчаиваться, выход из такой ситуации есть – это использование небольшого импульсного преобразователя тока. Он поможет превратить «воду в вино», то есть 12 вольт напряжения аккумулятора, в ток, требуемый для работы всех приборов − 220 вольт. Принцип его работы заключается в конвертировании переменного напряжения из электросети, имеющее частоту 50 Гц в аналогичное прямоугольного типа. Затем оно подвергается трансформации для достижения определенных значений, выпрямляется и отфильтровывается. Такой транзистор повышенной мощности, исполняющий одновременно роль импульсного трансформатора и ключа, преобразует напряжение тока. По схеме они бывают двух типов: управляемые извне, внедрены в большинстве электроприборов и автогенераторы импульсного типа. Также такие трансформаторы выпускаются разных размеров и мощностей в зависимости от специфики применения, но габариты в них не главное так, как эффективность таких устройств повышается по мере нарастания частоты, увеличение которой позволяет серьезно уменьшить размер и вес стального сердечника. Они, как правило, работают в частотном диапазоне от 18 до 50 кГц. Область применения импульсных преобразователей питания для бытового использования постоянно ширится. Они сегодня используются для обеспечения энергией всех приборов бытовой и вычислительной техники, а также в устройствах бесперебойного питания и зарядных устройствах для АКБ разного назначения, питания низковольтных осветительных систем и других нужд. Часто приобретение такого устройства заводской сборки не очень оправдано, по соображениям экономии или с точки зрения специфики технических параметров требуемого агрегата. В этом случае собственноручное сооружение импульсного преобразователя может быть лучшим вариантом. Такой подход, как правило, более рационален благодаря широкому выбору недорогих комплектующих. Покупая ИБП, необходимо соотнести все его достоинства и недостатки с конкретными требованиями к эксплуатации в каждом частном случае и если он им удовлетворяет можно смело приобретать агрегат. Преимущества импульсных блоков питания: Недостатки импульсных блоков питания: Основой большинства преобразователей тока импульсного типа является блок-схема простейшего импульсного трансформатора, включающая в себя несколько блоков: Необходимые инструменты: Ремонт ИБП, как правило, заключается в замене, неисправных, погоревших деталей на новые. Но сложность даже не в самом монтаже новой детали, а именно в поиске неисправной. Для этого производят следующие операции: househill.ru Данный самодельный двухполярный импульсный блок питания можно применить для питания различных радиоэлектронных устройств, в частности 15 ваттного усилителя звука на TDA2030. Технические параметры импульсного блока питания: В первую очередь происходит выпрямление переменного напряжения электросети диодным мостом VD1, пульсация которого сглаживается емкостями C1-C4. Для уменьшения тока заряда, протекающего через эти конденсаторы в момент включения импульсного блока питания, в схему добавлено сопротивление R1. Далее выпрямленное напряжение идет на полумостовой инвертор (преобразователь напряжения), собранный на транзисторах VT1-VT2. Нагрузкой данного преобразователя служит I обмотка трансформатора T1, он же также служит гальванической развязкой с электросетью. Емкости C3, С4 играют роль ВЧ фильтра. Частота преобразования происходит на частоте 27 кГц. Напряжение, полученное с третьей обмотки трансформатора T1 идет на первичную обмотку T2, посредством данной обратной связи обеспечивается автоколебательный режим функционирования преобразователя. Для уменьшения напряжения на первичной обмотке добавлено сопротивление R4. Данным сопротивлением в какой-то мере определяется частота работы преобразователя. Для выполнения стабильного пуска импульсного блока питания и его надежного функционирования собран модуль пуска - генератор на биполярном транзисторе VT3, который работает в лавинном режиме. В момент подачи питания сквозь сопротивление R6 происходит заряд емкости С9. В случае если на нем напряжение поднимается до 50-70 В, транзистор VT3 мгновенно отпирается и данный конденсатор разряжается. Появившийся в результате разряда импульс тока отпирает VT2 и запускает преобразователь импульсного блока питания. Каждый транзисторы VT1 и VT2 необходимо разместить на радиаторе с площадью 55 см. Тоже самое нужно проделать и с диодами VD2-VD5. Т1 : Два кольца марки М2000НМ, К31х18,5х7 Т2 : Кольцо марки М2000НМ, К10х6х5 Для стабильного запуска III обмотка Т1 должна быть намотана на месте, не занятом обмоткой II. Обмотки необходимо надежно изолировать друг от друга стеклотканью или любым другим подходящим изоляционным материалом. Диоды КД213А можно заменить на КД213Б. Транзисторы КТ812А возможно поменять на КТ809А, КТ704В, КТ812Б, КТ704А. Конденсаторы C1, C2 на напряжение не менее 160В. Исправно построенный импульсный блок питания как правило в настройке не нуждается, но в определенных случаях возможно будет подобрать транзистор VT3. Для контроля его работоспособности на некоторое время отсоединяют контакт эмиттера и подключают его к минусовому контакту сетевого выпрямителя. При исправном транзисторе при помощи осциллографа на емкости С9 можно наблюдать пилообразный электросигнал амплитудой около 20...50 В и частотой несколько герц. Если этого нет, транзистор следует заменить. Смотрите так же схему простого самодельного лабораторного блока питания. www.joyta.ru Блок питания преобразует напряжение к такому, которое нужно конкретному прибору. Традиционный путь: сначала снизить напряжение, потом его выпрямить и стабилизировать. Но можно идти другим путем, и для умного электроприбора сделать умный блок питания (БП). То есть импульсный. Для понижения и выпрямления напряжения сети до 12 В традиционным способом идет передача энергии последовательно. Понадобятся блоки, изображенные на структурной схеме. Силовой трансформатор на входе снижает напряжение с 220 вольт до 15, с запасом, чтобы потом в дальнейших схемах оно, неизбежно при выпрямлении и сглаживании теряя величину, опустилось как раз до нужных 12 вольт. Выпрямитель делается в виде моста из низковольтных диодов, в результате работы которого получается знакопостоянное пульсирующее напряжение. Делается так, что два полупериода попеременно идут то через одну пару диодов, то через другую, и на выходе напряжение начинает «дергаться» только в одну строну. Схема сглаживания содержит накапливающий заряды инерционный элемент — конденсатор большой емкости. Он заряжается от импульса и медленно поддерживает напряжение своим неторопливым разрядом до поступления следующего импульса. Это называется сглаживание, но еще делается и дополнительная стабилизация выходного напряжения, чтобы на него меньше влияла величина нагрузки. Плюс такой схемы в том, что трансформатор на входе сразу «отвязывает» все дальнейшие схемы от высокого входного напряжения. Только за это приходится платить физически большим силовым трансформатором. В нашем случае трансформатор, питающий более-менее подходящую мощность прибора, например, в 300 ватт (старый телевизор), должен весить около 4 кг. Ну, понятно, поставил его, такой блок питания, на пол, и стоит, каши не просит. Но как быть для небольших устройств? Неужели катить его с собой на тележке? Кроме того, большая масса железа, работающая на маленькую нагрузку, порождает низкий КПД — около 50%. Ну и цена, пропорциональная массе прибора, заставляет придумывать нечто более миниатюрное во всех отношениях. В импульсных блоках питания, прежде всего, избавились от громоздкого понижающего трансформатора. Напряжение сразу выпрямляется, и уже им запитывается генератор импульсов, напряжение которого и можно потом понизить до любого желаемого уровня. Причем, габариты понижающих трансформаторов при этом напрямую зависят от частоты, выдаваемой генератором, — чем выше частота, тем меньше трансформатор. И уж потом такое питание, снова его выпрямив, используют в устройстве. Видно, что традиционный блок питания переместился на нижний этаж; кроме того, имеется обратная связь, дополнительно настраивающая инвертор (генератор импульсов) Силовой трансформатор здесь импульсный, работает после генератора импульсов. Он высокочастотный, так как частота генератора порядка 20–100 кГц. В качестве материала сердечника используется не обычное трансформаторное железо, а ферримагнетки, материалы на основе структурированных окислов железа, которые лучше выполняют свою функцию на высоких частотах. Обмотки такого трансформатора имеют полярность, это играет роль при подключении начала и конца обмоток. Такие блоки питания вполне реально изготовить совершенно маленькими, что можно увидеть на блоках питания энергосберегающих ламп — они умещаются в цоколь лампы. Кстати, и использовать блок питания (балласт) такой лампы можно по другому назначению. Вернее, по своему назначению, но в другом устройстве, когда лампа — сверхнадежная и экономичная — все-таки перегорит. Выходной выпрямитель после трансформатора делается на основе диодов Шоттки, имеющих меньшую, чем у обычных диодов, внутреннюю емкость, следовательно, лучше работающих на высокой частоте. Схема обратной связи калибрует импульсы генератора сигналом рассогласования, который заставляет вырабатывать импульсы тем большей длительности, чем больше отличается выходное напряжение от нужного номинала. Этим на выход передается большая мощность, и напряжение выравнивается. Обратноходовый блок управления инвертором создает гальваническую привязку выходной цепи к цепи входного напряжения. Чтобы от этого избавиться, используют оптроны — приборы оптической передачи, преобразователи электросигнал–свет–электросигнал. Сейчас современные электронные потребительские устройства все выпускаются с импульсными блоками питания. Поэтому и самому сделать его из частей от других импульсных источников питания (ИИП) легко, а уж взять готовый блок или зарядное и слегка переделать под свое напряжение — и того проще. Импульсный БП, то есть инверторный блок питания, характеризуется только выходным напряжением и номинальной мощностью. Входы у них у всех обычные — 220 В. Для устройств связи, модемов, например, часто встречается импульсный блок питания на 24 В. Ноутбуки чаще всего берут 19 В. Все ИБП, имеющие выход типа USB, вырабатывают 5 В. Для всего остального прочего, например, светодиодных линеек, чаще всего требуется знакомое и любимое нами по автомобильным аккумуляторам напряжение в 12 В. Импульсный источник питания можно взять готовый, перенастроив его под требуемое напряжение выхода, А можно собрать и самому на плате, воспользовавшись простейшей схемой. Элементы легко приобретаются в магазинах компонентов схемотехники. Два прибора здесь можно считать настроечными и подобрать им номиналы: сопротивление R2 и конденсатор C5 Кроме сборки элементов на плате, пользуясь данным описанием, можно сделать и импульсный трансформатор своими руками. Так как прямоугольные импульсы «не фэн-шуйны» — имеют резкие взлеты и спады напряжения (передние и задние фронты импульсов), это порождает высокочастотные помехи, способные пройти сквозь схемы с малым емкостным сопротивлением. На силовую часть различных устройств они обычно не влияют, но в умных схемах могут оказаться ощутимой нежелательной помехой. Часто для питания компьютеров используют сетевые фильтры, пилоты, которые содержат такую функцию — подавление высокочастотных помех. Но импульсные БП сами могут являться источником таких шумовых сигналов, поэтому в нем необходимо применять дополнительную фильтрацию таких помех на выходе. Импульсные блоки питания критичны к номиналам нагрузки, питаемая ими мощность не должна отличаться слишком сильно ни в сторону превышения, ни в сторону занижения. Регулировка обратной связью делается для того, чтобы в цифровых устройствах, которые такой БП снабжает напряжением, во время работы обычные для них колебания мощности, происходящие от включения/выключения каких-то блоков, регистров, и т. д. не ухудшали нормальную работу. Эти колебания происходят вокруг некоторого среднего значения мощности и не должны систематически отклоняться туда или сюда. В реальных БП делается специальная защита от работы в недонагруженном или перенагруженном состоянии. domelectrik.ru Простой импульсный блок питания своими руками На следующий день поехал хоз-маг и купил пару подопытных. Один такой стоит 40 грн. Тот что сверху BUKO.Снизу копия Ташибры, только имя сменилось.Между собой они немного различаются. У ташибры например 5 витков у вторичной обмотке, а у BUKO 8 витков. У последнего еще немного плата побольше, с дырками под установку доп. деталей.Но доработка обоих блоков идентична!Во время доработок нужно быть предельно осторожным, т.к. на транзисторах присутствует сетевое напряжение. И если вы случайно закоротите выход, и транзисторы сделают новогодний салют я не виноват, все вы делаете на свой страх и риск! Рассмотрим схему: Все блоки от 50 до 150 ватт идентичны, отличаются только только мощностью деталей. В чем состоит доработка? 1) Необходимо добавить электролит после сетевого диодного моста. Чем больше - тем лучше. Я поставил 100 мкф на 400 вольт.2) Необходимо поменять обратную связь по току на связь по напряжению. Зачем? А затем что бп запускается только с нагрузкой, а без нагрузки он не запуститься.3) Перемотать трансформатор (при необходимости).4) Установить на выходе диодный мост (например КД213, импортные шоттки приветствуются) и конденсатор. В синему кружку катушка обратной связи по току. Необходимо выпаять ее 1 конец, и на плате ее замкнуть. Сделали КЗ на плате? Значить идем дальше!Потом берем кусок витой пары на силовой трансформатор мотаем 2 витка и на трансформатор связи мотаем 3 витка. На концы припаиваем к резистору 2.4-2.7 ом 5-10W. Подключаем лампочку на выход и ОБЯЗАТЕЛЬНО лампочку на 150 ватт в разрыв сетевого провода. Включаем - лампочка не засветилась, убираем ее, снова включаем и видим что лампочка на выходе светиться. А если не засветилась то нужно провод в трансформатор звязи завести с другой стороны. Посветила лампочка теперь выключаем. НО перед тем как что то делать обязательно разрядите сетевой конденсатор резистором на 470 ом!!Я собирал БП для стерео УНЧ на TDA7294. Соответственно мне нужно перемотать его на напряжение 2Х30 вольт.На трансформаторе 5 витков. 12V/5вит.=2,8 вит/вольт. 30V/2,8V=11витков. Тоесть нам надо намотать 2 катушки по 11 витков.Выпаиваем трансформатор из платы, снимаем 2 витка из транса, и соответственно сматываем вторичную обмотку. Потом я намотал катушки обычным многожильным проводом. Сразу одну катушку, потом вторую. И соединяем начала обмоток или концы и получаем средний отвод.То есть таким образом мы можем намотать катушку на необходимое напряжение! Частота блока питания с ОС по напряжению 30 кгц. Потом я собрал диодный мост из КД213, поставил электролиты и обязательно надо керамику!!!Как соединять катушки, и какие возможные вариации можно посмотреть на схеме из соседней статьи. Запомните - при замыканию выхода бп горит! Я сам спалил один раз. Сгорели, диоды, транзисторы и резисторы в базе! Заменил их и бп благополучно начал работать!Ну и теперь пару фотографий готового БП для УНЧ. Красным обозначено место закорачивания ОС по току.Вот еще есть вариация для шуруповерта. Трансформатор тут я не перематывал. Просто его поднял вертикально, и сбоку прилепил диодный мост. Все это дело установил у коробку из аккумулятора. И сзади поставил кнопку для выключения. Резистор припаян на плату в свободный пятачок. Желательно применять резисторы на 10W т.к. он греется во время работы! Таким образом мы получаем отличный ИБП за копейки, который можно применить куда угодно!!! radiostroi.ru Автор: ЖИЗДЮК Роман СергеевичГород: Энгельс, Саратовская область Как отремонтировать и доработать импульсный блок питания китайского производства на 12 вольт Хочу поделиться опытом ремонта и доработки импульсных (как модно сейчас – инверторных) китайских блоков питания на 12 вольт. Я думаю, она будет полезна в связи с применением всё большего количества светодиодного освещения и, как следствие, потребности в блоках питания к светодиодам (лентам). Может быть кто то просто ищет схему на данный БП. Хочу начать с того, что ко мне в руки попали несколько сгоревших и кем-то уже «поремонтированных» блоков питания 220/12 В. Все блоки были однотипными – HF55W-S-12, поэтому, забив в поисковике название, я надеялся найти схему . Но кроме фотографий внешнего вида, параметров и цен на них , ничего не нашел. Поэтому пришлось схему рисовать самому с платы. Схема рисовалась не для изучения принципа работы БП, а исключительно в ремонтных целях. Поэтому сетевой выпрямитель не нарисован, так-же я не распиливал импульсный трансформатор и не знаю в каком месте сделан отвод (начало-конец) на 2 обмотке трансформатора. Так же не надо считать опечаткой С14 -62 Ома, – на плате маркировка и разметка под электролитический конденсатор (+ показан на схеме), но везде на его месте стояли резисторы номиналом 62 Ома. В результате, при нагрузке 21 Вт и при работе в течении 5 мин, выходной транзистор и выпрямительный диод (без радиатора) нагреваются градусов до 40 (чуть тёплые). В первоначальном варианте, через минуту работы без радиатора, до них нельзя было дотронуться. Следующим шагом к повышению надёжности блоков сделанных по этой схеме – это замена электролитического конденсатора С12 (склонного к высыханию электролита со временем) на обычный неполярный -неэлектролитический. Таким же номиналом 0,47 мкФ и напряжением не ниже 50 В. С такими характеристиками БП , теперь можно смело подключать светодиодные ленты, не боясь что КПД блока питания ухудшит эффект экономичности светодиодного освещения. radio-stv.ruКак сделать своими руками импульсные блоки питания. Схемы самодельные импульсные блоки питания
Простой импульсный блок питания своими руками
Всем привет! Как то захотел я собрать усилитель на TDA7294. И друг продал за копейки корпус. Такой черный, красивый, а в нем когда то жил спутниковый ресивер 95-х годов. И как на зло ТС-180 не помещался, не хватило по высоте буквально 5 мм. Начал смотреть в сторону тороидального трансформатора. Но увидел цену, и как то сразу перехотелось. И тут же в глаз пал компьютерный БП, думал перемотать, но снова же куча регулировок, защит по току, брррр. Начал гуглить схемы импульсных блоков питания, большая плата, куча деталей, лень вообще что то делать стало. Но случайно на форуме нашел тему о переделке электронных трансформаторах Ташибра. Почитал так, вроде ничего сложного.
Самодельный импульсный сетевой источник питания
Cамодельный импульсный источника питания своими руками.
Трансформатор был рассчитан при помощи программы Transformer 2. Индукцию нужно выбирать как можно меньше, лучше не более 0.25. Частоту в районе 40-80к. Автор не рекомендует применение колец отечественного производства, в виду не идентичности параметров феррита и значительных потерь в трансформаторе. Печатная плата проектировалась под трансформатор типоразмера 30х19х20. При наладке источника питания запрещено соединять землю осциллографа в точку соединения транзисторов. Первый запуск блока питания желательно произвести при последовательно подключенной с источником лампе на 220в мощностью 25-40W, при этом нельзя сильно нагружать ИБП. Печатную плату блока в формате LAY можно скачать сдесь или сдесь
Самоделкин
Новые самоделки автора Самоделкин (Смотреть все)
Импульсные блоки питания своими руками
ИБП
Описание
Принцип работы
Область применения
Преимущества и недостатки
Схема
Как сделать своими руками
Пошаговое руководство
Регулируемый/однотактный/двухтактный/двухполярный блок своими руками
Ремонт ИБП
Советы/рекомендации
Экономичный двухполярный импульсный блок питания своими руками
Описание работы импульсного блока питания
Параметры трансформаторов импульсного блока питания
схема и как сделать своими руками?
Устройство обычного БП
Упрощенная схема традиционного блока питания. Аналоговая схема, так как напряжениеменяет постепенно амплитуду и форму
Силовой понижающий трансформатор
Импульсные источники питания
Структурная схема импульсного блока питания
Пример простого импульсного блок питания
Блоки питания и зарядные устройства
ИБП от ЖК монитора
Принципиальная схема импульсного блока питания
Обозначения и номиналы элементов к схеме
Недостатки импульсных БП и пути их устранения
Простой импульсный блок питания своими руками
Всем привет! Как то захотел я собрать усилитель на TDA7294. И друг продал за копейки корпус. Такой черный, красивый, а в нем когда то жил спутниковый ресивер 95-х годов. И как на зло ТС-180 не помещался, не хватило по высоте буквально 5 мм. Начал смотреть в сторону тороидального трансформатора. Но увидел цену, и как то сразу перехотелось. И тут же в глаз пал компьютерный БП, думал перемотать, но снова же куча регулировок, защит по току, брррр. Начал гуглить схемы импульсных блоков питания, большая плата, куча деталей, лень вообще что то делать стало. Но случайно на форуме нашел тему о переделке электронных трансформаторах Ташибра. Почитал так, вроде ничего сложного.
Импульсный блок питания: ремонт и доработка
При ремонте подобных устройств их нужно подключать через лампочку (лампа накаливания 100-200 Вт, последовательно с нагрузкой), что-бы в случае КЗ в нагрузке, не вышел из строя выходной транзистор и не погорели дорожки на плате. Да и вашим домочадцам спокойнее, если вдруг внезапно не погаснет свет в квартире. Основной неисправностью является пробой Q1 (FJP5027 – 3 А ,800 В, 15 мГц) и как следствие – обрыв резисторов R9, R8 и выход из строя Q2 (2SC2655 50 В\2 А 100 мГц). На схеме они выделены цветом. Q1 можно заменить любым подходящим по току и напряжению транзистором. Я ставил BUT11, BU508. Если мощность нагрузки не будет превышать 20 Вт можно ставить даже J1003, которые можно найти на плате от перегоревшей энергосберегающей лампы. В одном блоке совсем отсутствовал VD-01 (диод шоттки STPR1020CT -140 В\2х10 А) я поставил вместо него MBR2545CT (45 В\30 А), что характерно, он вообще не греется на нагрузке 1,8 А (использовалась лампа автомобильная 21 Вт\12 В). А родной диод за минуту работы (без радиатора) разогревается так, что рукой невозможно дотронуться. Проверил потребляемый устройством (с лампой 21 Вт) ток с родным диодом и с MBR2545CT – ток (потребляемый из сети, у меня напряжение 230 В) понизился с 0,115 А до 0,11 А. Мощность снизилась на 1,15 Вт, я считаю, что именно столько рассеивалось на родном диоде. Заменить Q2 было нечем, под рукой нашелся транзистор С945. Пришлось “умощнить” его схемой с транзистором КТ837 (рис 2) . Ток остался под контролем и при сравнении тока с родной схемой на 2SC2655, получилось ещё снижение потребляемой мощности c той же нагрузкой на 1 Вт.
Поделиться с друзьями: