Чтобы обеспечить бесконтактную коммуникацию различных устройств без использования электромагнитов применяют твердотельное реле. Об особенностях, принципе действия и схеме подключения данного устройства поговорим далее. Твердотельное реле - это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями. Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы. Структура твердотельного реле включает наличие: Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку. В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы. Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки. Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор. Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего. Твердотельное реле схема состоит из: Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз. Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током - транзистор. Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения. Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи. Твердотельное реле часто заменяет обычные контактеры из-за большого количества преимуществ перед ними. Рассмотрим основные достоинства твердотельного реле: 1. Небольшое потребление энергии - из-за отсутствия электромагнитного разнесения, электромагнитное реле потребляет много электроэнергии, так как в твердотельном реле используется полупроводник, количество электроэнергии для его работы меньше на 90%. 2. Твердотельное реле малогабаритное устройство, это качество позволяет его легко транспортировать и устанавливать. 3. Данное устройство характеризуется высоким уровнем быстродействия и не требует ожидания для запуска. 4. Низкая шумопроизводительность - еще одно преимущество твердотельного реле перед контактерами. 5. Такие приборы отличаются более длительным сроком эксплуатации и не требуют дополнительного технического обслуживания. 6. Имеют большую сферу использования и подходят для разных приборов. 7. Твердотельное реле позволяет включать цепь не допуская помех электромагнитного характера. 8. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства. 9. Твердотельное реле позволяет осуществить более миллиарда срабатываний. 10. Наличие надежной изоляции между цепями входа и коммутации повышает производительность прибора. 11. Реле отличается наличием компактной герметичной конструкции и стойкой вибрацией перед ударами. Сфера использования твердотельного реле достаточно широкая. Их используют в том случае, если возникает необходимость в коммутации индуктивной нагрузки. Рассмотрим основные области применения данного устройства: Есть несколько разновидностей твердотельного реле, которые отличаются особенностями контролирующего и коммутируемого напряжения: 1. Твердотельные реле постоянного тока - используется при действии постоянного электричества в диапазоне от 3 до 32-х Вт. Характеризуется высокими удельными характеристиками, светодиодной индикацией, высокой надежностью. Большинство моделей имеют широкий диапазон рабочих температур от -30 до +70 градусов. 2. Твердотельные реле переменного тока отличается низким уровнем электромагнитных помех, отсутствием шума во время работы, низким потреблением электроэнергии и высокой скоростью работы. Рабочий интервал составляет 90-250 Вт. 3. Твердотельные реле с ручным управление, позволяют настраивать тип работы. В соотношении с типом нагрузки выделяют: Однофазное реле позволяет коммутировать электричество в диапазоне 10-120 А, или в диапазоне 100-500 А. Фазовое управление осуществляется при помощи аналогового сигнала и переменного резистора. Трехфазные реле применяют для коммутации тока сразу на трех фазах одновременно. Они имеют рабочий интервал от 10 до 120 А. Среди трехфазных реле выделяют устройства реверсивного типа, которые отличаются маркировкой и бесконтактной коммукацией. Их функция состоит в надежной коммутации каждой цепи отдельно. Специальные устройства способны надежно защищать реле от ложных включений. Они используются во время запуска и работы асинхронного двигателя, который производит их реверс. При выборе данного устройства необходимо соблюдать большой запас мощности тока, который безопасно и эффективно эксплуатирует устройство. Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия. Трехфазные реле отличаются более длительным сроком эксплуатации, чем однофазные. Коммукация происходит в следствие перехода тока через ноль и светодиодную индикацию. В соотношении с методом коммукации выделяют: В соотношении с конструкцией твердотельные реле бывают: Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью. Твердотельное реле цена определяется такими характеристиками: Во время покупки твердотельного реле, следует учесть один очень важный момент. Данные устройства должны работать с запасом мощности, который превышает мощность устройства в несколько раз. Если не придерживаться этого правила, при небольшом повышении мощности, прибор мгновенно выйдет из строя. Рекомендуется использование специальных предохранителей, которые помогут избежать поломки реле. Есть несколько разновидностей предохранителей: Такие устройства имеют достаточно высокую стоимость, которая приравнивается к стоимости самого реле, но они обеспечивают высокоэффективную защиту устройства от поломки. Существуют другие предохранители, которые относятся к классу В, С и D. Они отличаются меньшим спектром защиты и более дешевой стоимостью. Во время эксплуатации твердотельного реле, следует учесть, что данный прибор очень быстро нагревается. Если корпус устройства очень сильно нагрелся, то оно не способно коммутировать ток в обычном режиме, количество тока очень сильно снижается. Если температура нагрева достигнет 65 градусов, то прибор сгорит. Поэтому во время использования реле обязательно требуется установка охлаждающего радиатора. И запас тока должен быть в три, четыре раза выше. Если производится регулировка двигателей асинхронного типа, то запас тока увеличивается в восемь-десять раз. Рекомендации по самостоятельному подключению твердотельного реле: 1. Соединения не требуют использования пайки, а осуществляются винтовым способом. 2. Чтобы избежать повреждения прибора нельзя допускать попадания в него пыли или элементов металлического происхождения. 3. Не разрешается прилагать недопустимые внешние воздействия на корпус устройства. 4. Не размещайте твердотельное реле рядом с легко воспламеняющимися предметами, а также не прикасайтесь к прибору, в то время когда он работает, чтобы избежать получения ожогов. 5. Перед включением реле следует убедиться в правильной коммутации соединений. 6. В случае нагрева корпусы выше 60 градусов, рекомендуется установка реле на радиатор охлаждения. 7. Чтобы избежать повреждения прибора нельзя допускать возникновения короткого замыкания на выходе. strport.ru Токовое электромеханическое реле Что такое реле тока? Такой вопрос часто возникает у студентов и электриков самоучек. Ответ на него достаточно прост, но в учебниках и многих статьях в интернете он содержит огромное количество формул и отсылок к разнообразным законам. В нашей статье мы постараемся объяснить, что это такое, и как оно работает буквально на пальцах. Для начала давайте разберем принцип реле тока и его устройство. На данный момент существуют электромагнитные, индукционные и электронные реле. Мы будем разбирать устройство наиболее распространенных электромагнитных реле. Тем более, что они дают возможность наиболее наглядно понять их принцип работы. Устройство электромагнитного реле тока Принцип действия электромагнитного токового реле Существуют токовые реле разных типов исполнения Регулировка тока возврата токового реле Оно зависит от конструкции, а также может настраиваться индивидуального для каждого реле за счет натяжения или ослабления пружины. Это вполне можно сделать своими руками. Реле тока и напряжения, являются основными элементами практически всех основных защит. Поэтому, давайте более детально разберемся с их сферой применения и схемой подключения. И в первую очередь, давайте разберемся, а зачем собственно говоря нужно это токовое реле? Для ответа на этот вопрос нам следует немного погрузиться в теорию. Но мы постараемся сделать это максимально поверхностно и доступно. Релейная схема защит электродвигателя Схема защиты от перегруза Обратите внимание! Защита от перегруза должна быть отстроена от времени пуска двигателя. Как известно, при пуске пусковой ток может доходить до десятикратного номинального (обычно пяти- или шестикратное). Поэтому, для исключения ложного срабатывания защиты от перегруза, время срабатывания реле времени должно быть больше времени разворота двигателя. Токовая отсечка Токовые реле с выдержкой времени Токовые защиты, встроенные в выключатель Но это уже более специфические защиты, которые требуют более глубоко понимания процессов. Поэтому в нашей статье мы не будем их рассматривать. Разобрав устройство и назначение реле тока, можно перейти к вопросу их подключения. Существует два основных варианта – непосредственно или через трансформатор тока. Давайте рассмотрим каждый из этих вариантов: Непосредственное подключение токового реле Токовое реле Обратите внимание! Если вам необходим предел срабатывания в 0,1 – 100А, то в принципе вы можете вовсе не подключать вторую обмотку. Трансформатор тока 6 – 10кВ Трансформатор тока 110кВ и выше Схема подключения реле тока через трансформатор тока Внимание! Но тут следует помнить, что трансформаторы тока и вся вторичная коммутация работают в режиме близком к короткому замыканию. Поэтому разкорачивание таких цепей чревато повреждением трансформатора тока, а также серьезными последствиями для человека. Поэтому прежде чем выполнять какие-либо переключения в токовых цепях их следует закоротить перемычкой. Или же производить переключения на электрооборудовании, выведенном в ремонт. Реле тока и электрическая схема его подключения имеет множество нюансов. Если вдаваться в каждый, то получится полноценный учебник. Наша же цель была дать вам общие представления о данном реле максимально доступным языком. Поэтому некоторые вопросы в нашей статье раскрыты не полностью или же упрощенно. Более детально по каждому аспекту следует разбираться, исходя из существующих условий. elektrik-a.su Понять для чего нужно реле из определения трудно, поэтому разжуем на простых словах:Реле предназначено для коммутации больших токов нагрузки. Другими словами является переключателем, а еще проще - принцип работы реле - малым током (например сигналом кнопки) включать цепи с большим током. А используют реле, когда исполнительное устройство (стартер, генератор, вентилятор, обогрев зеркал, клаксон и т.д.) потребляет больший ток (до 30-40 ампер).
21. Схемы включения реле направления мощности. Реле схемы включения
Твердотельное реле: схема, принцип работы, подключение
Оглавление:
Твердотельное реле - принцип работы
Преимущества и сфера использования твердотельного реле
Разновидности твердотельных реле
Выбор и покупка твердотельного реле
Особенности подключения твердотельного реле
Принцип действия реле тока: устройство и назначение
Устройство реле тока
Назначение и способы подключения токового реле
Назначение токового реле
Схемы подключения токовых реле
Вывод
Назначение и принцип работы реле
Для чего нужна установка реле в автомобиле ? Начнем с определения:
Многие автолюбители любят в свободное время заниматься своей машиной, дорабатывать ее или увлекаются тюнингом. Не редко такие занятия связаны с электрикой и тут следует быть внимательным, и при необходимости использовать реле. Автомобильное реле играет важную роль, но для чего оно нужно и каких типов бывает знают не все.
Что такое реле и для чего оно нужно
Реле — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.Типы реле могут различаться по управляющему сигналу и по исполнению, не будем останавливаться на этом, тем более все это есть на той же википедии. Отметим лишь, что наибольшее распространение получили электрические (электромагнитные) реле.Истории наших читателей
"Гребаный таз!!!"
Осипов Михаил, ВАЗ 2112, стаж вождения 11 лет.
Всем привет! Меня зовут Михаил, сейчас расскажу историю о том, как я вчера облажался. Еду домой с работы, подразогнался так нормально, уже практически доехал, как вдруг машину тряхнуло и двигатель погас. Как сейчас помню, открыл капот и побледнел от ужаса... как оказалось порвался ремень ГРМ. Ребята это П*3ДЕЦ... Нужен кап ремонт движка, денег нет, а работаю я таксистом, да-да я тот самый таксист, который приезжает к вам на развалюхе. Начал звонить по друзьям, чтобы одолжить денег на ремонт, но как это обычно бывает, именно в этот момент деньги у всех закончились, вот такие у меня друзья((
Ситуация казалось безвыходной, и выйти из нее мне помогла... не поверите, моя девушка. Нет, денег у нее тоже не было, но она посоветовала банк, который выдает до 15000 руб прямо на карту без всяких справок, документов и т.д. На ремонт движка мне не хватало около 8 тысяч. В общем оставил заявку на их сайте, и буквально через 15 мин деньги были у меня на карте сбера. Процент в этом банке совсем небольшой, относительно других, да и сам банк проверенный, в отличии других шарашкиных контор, которые разводят людей на бабки. Мало ли что, вдруг кому срочно понадобятся деньги, оставлю тут ссылку на этот банк. Машину отдал в ремонт, через пару дней будет как новенькая. Мне неделю потаксовать, чтобы вернуть долг, а вам советую вовремя менять ремень ГРМ, чтобы не попадать в такие ситуации как я.
Перейти на сайт банка>>
НАПРИМЕР: Для того чтобы с маленькой кнопочки завести двигатель, необходимо, чтобы включился стартер, который потребляет от 80 до 300 ампер. Если не использовать реле, тогда кнопка не выдержит большого тока и расплавится, также как и не предназначенная для больших токов проводка. Поэтому, делают подключение через реле (между кнопочкой и стартером устанавливают реле), которое по импульсу малого тока кнопки внутри себя замыкает мощные контакты, тем самым включая стартер. Как это происходит ?Устройство реле
Электромагнитное реле состоит из:- электромагнита (представляет собой электрический провод, намотанный на катушку с сердечником из магнитного материала).
- якоря (пластина из магнитного материала, через толкатель управляющая контактами).
- переключателя (могут быть замыкающими, размыкающими, переключающими).
Характеристики и производители реле
Характеристики реле- Диапазон электропитания: 8...16В.
- Номинальное напряжение: 12В.
- Ток управления: не более 0,2А.
- Напряжение срабатывания: не менее 8,0В.
- Напряжение отпускания: 1,5...5,0В.
- Максимальный ток в силовой цепи: 30А.
- Активное сопротивление обмотки: 80±10 Ом
- 90.3747-10 в пластмассовом корпусе без фланца крепления;
- 90.3747-в пластмассовом корпусе с фланцем крепления;
- 113.3747-в металлическом корпусе с фланцем крепления;
- 113.3747-10-в металлическом корпусе без фланца крепления;
- 111.3747-в металлическом корпусе с фланцем крепления;
- 111.3747-10-в металлическом корпусе без фланца крепления.
Контакты и принцип работы реле
Контакты реле:- Контакты 85 и 86 - это катушка.
- Контакт 30 - общий контакт, всегда присутствует в реле. Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а.
- Контакт 87А - нормально-замкнутый контакт.
- Контакт 87 - нормально-разомкнутый контакт.
Некоторые виды реле
- реле с пятью контактами (5ти контактное реле). Если на обмотку подан сигнал, то 30 контакт отключается от 87а и подключается к 87.
- реле с четырьмя контактами (4х контактное реле). Контакт 87а или 87 может отсутствовать, тогда реле будет работать только на включение или выключение (замыкание или размыкание) силовой цепи.
Пример схемы реле
Рассмотрим принцип работы реле на простом примере со схемой.Цель: Блокировка двигателя.- Один контакт питания катушки (пусть 85) соединяем с проводом, на котором появляется «минус» (например, провод сигнализации, на котором минус появляется при постановке в охрану).
- На другой контакт катушки (пусть 86) подаём +12В при включении зажигания.
- Контакты 30 и 87А подцепляем в разрыв блокируемой цепи (в качестве нее может быть что угодно, лишь бы машина не заводилась при разорванной цепи, например, цепь стартера, зажигания, бензонасоса и т.д.).
Особенности и срок службы реле
Особенности релеЕсли на корпусе реле изображен значок диода, значит при его включении необходимо соблюдать полярность на контактах управления.Срок службы релеЕсли реле долго эксплуатировалось при коммутации силовых цепей в предельных режимах, то искра проскакивающая при замыкании или размыкании контактов создает нагар между контактами и из-за этого возможно исполнительное устройство не будет работать или будет работать не корректно. Плохой контакт выделяет на себе тепло. При этом в силовых цепях может повышаться потребляемый ток (при плохом контакте ток электродвигателя или лампочки становится импульсно-пусковым), что влечет разогрев мест плохого контакта в коммутируемых цепях и как следствие оплавление пластмассовых деталей крепления контактов. При оплавлении деталей крепления, контакты смещаются и добавляется процесс искрения, что еще больше разогревает место контакта.
Реле ВАЗ десятого семейства располагается в различных местах, например в монтажном блоке, на стартере и т.д. Штатные схемы ВАЗ 2110 можно найти тут. В комментариях можно выкладывать полезные схемы с использованием реле.
Наши читатели рекомендуют!Для того, чтобы избавиться от постоянных штрафов с камер, многие наши читатели успешно используют Специальную Нано Пленку на номера. Легальный и 100% надежный способ защиты от штрафов. Ознокомившись и внимательно изучив данный метод мы решили предложить его и Вам.
Наши читатели рекомендуют!Для того, чтобы избавиться от постоянных штрафов с камер, многие наши читатели успешно используют Специальную Нано Пленку на номера. Легальный и 100% надежный способ защиты от штрафов. Ознокомившись и внимательно изучив данный метод мы решили предложить его и Вам.
Как часто в Вашей машине выходит из строя реле? |
xn--2111-43da1a8c.xn--p1ai
Схемы включения реле и пускателей
Программа КИП и А
Здесь представлены и рассматриваются типовые схемы включения реле / пускателей в устройствах КИП и А.
Схемы достаточно тривиальны и широко распространены, но тем не менее могут представлять интерес для начинающих работников КИП и А.
Внимание! Так как все схемы работают под напряжением 220 Вольт, опробование и наладка должна производиться квалифицированным персоналом с соответствующей группой допуска по электробезопасности.
Простая схема управления реле / пускателем
Простая схема управления (включение / выключение) трехфазным электродвигателем приведена на рисунке 1.
Рисунок 1. Простая схема управления реле / пускателем
K1 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами. SB1 – кнопка «Пуск» с 1 нормально разомкнутым контактом SB2 – кнопка «Стоп» с 1 нормально замкнутым контактом K1.1 – нормально разомкнутый контакт реле K1 K1.2...K1.4 – контакты реле K1 для коммутации силовых цепей
Принцип действия
При нажатии кнопки «Пуск» (SB1), напряжение ~220 Вольт между фазой и нулевым проводом подается через нормально замкнутый контакт SB2 кнопки «Стоп» на катушку реле / пускателя K1.
Реле срабатывает и замыкает как три силовых контакта, подключая электродвигатель к трехфазной цепи, так и контакт самоподхвата K1.1, удерживающий реле во включенном состоянии.
При нажатии кнопки «Стоп» (SB2), питание катушки реле K1 прекращается, и оно переходит в исходное состояние разрывая как контакты силовой цепи, так и контакт самоподхвата K1.1.
Хотя на схеме показан процесс включения трехфазного электродвигателя, эта схема является классической и пригодна для различных целей, где используются две кнопки «Пуск» и «Стоп», с соответствующими изменениями в силовой части схемы.
Схема управления реверсивным электродвигателем
Еще одна широко используемая схема включения реле / пускателей для управления реверсивным электродвигателем приведена на рисунке 2.
Рисунок 2. Схема управления реверсивным электродвигателем
K1, K2 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами и одним нормально замкнутым. SB1, SB2 – кнопки «Вперед», «Назад» с одним нормально разомкнутым контактом. SB3 – кнопка «Стоп» с 1 нормально замкнутым контактом
Принцип действия
При нажатии кнопки SB1 («Вперед»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K2.2 реле K2 на катушку реле K1.
Оно замыкает свой контакт самоподхвата K1.1, удерживая таким себя во включенном состоянии.
Кроме того, оно размыкает нормально замкнутый контакта K1.2 в цепи кнопки SB2 «Назад», предотвращая этим самым срабатывание реле K2 при нажатии кнопки «Назад». Иначе бы произошло короткое замыкание между фазами «B» и «С».
При нажатии кнопки SB3 («Стоп»), цепь питания катушки реле K1 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.
При нажатии кнопки SB2 («Назад»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K1.2 реле K1 на катушку реле K2. Оно замыкает свой контакт самоподхвата K2.1, удерживая таким себя во включенном состоянии.
Кроме того, оно размыкает нормально замкнутый контакта K2.2 в цепи кнопки SB2 «Вперед», предотвращая этим самым срабатывание реле K1 при нажатии кнопки «Вперед».
Силовые цепи питания электродвигателя собраны так, что при срабатывании реле K2, фазы «B» и «С» меняются местами и электродвигатель вращается в обратную сторону.
При нажатии кнопки SB3 («Стоп»), цепь питания катушки реле K2 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.
Замечания.
Для повышения надежности схемы, существуют промышленные блоки управления реверсивным электродвигателем, в которых кроме электрического блокирования включения противоположных реле / пускателей, применяются и механические рычаги блокирования одновременного срабатывания двух реле K1 и K2. В редких случаях это может происходить, когда силовые контакты одного из реле подгорели (залипли).
www.axwap.com
Устройство, схема и подключение промежуточного реле. Часть 2
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о промежуточном электромагнитном реле. В первой части статьи мы рассмотрели устройство, принцип работы, электрическую схему реле и обозначение реле на принципиальных электрических схемах, а в этой части рассмотрим основные параметры и схемы включения реле.
5. Основные параметры электромагнитных реле.
Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.
Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.
1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.
Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:
2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.
Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.
3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.
4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.
Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.
5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).
Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.
Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.
6. Подключение промежуточных реле.
Схемы включения промежуточных реле практически ни чем не отличаются от схем включения контакторов и магнитных пускателей. Разница состоит лишь в мощности коммутируемой нагрузки. Если контакты промежуточных реле ограничены коммутационной мощностью контактов, составляющей около 5 А, то магнитные пускатели и контакторы способны коммутировать токи более 50 А и напряжения свыше 1000 В.
Разберем подключение реле на примере простых схем.
6.1. Схема с нормально разомкнутым контактом.
Схема питается от источника постоянного тока GB1 напряжением 12 В и состоит из кнопочного выключателя SB1, катушки реле KL1 и лампы накаливания HL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, напряжение питания на катушке реле KL1 отсутствует. Контакт реле KL1.1, стоящий в цепи питания лампы HL1, разомкнут, и на лампу не поступает напряжение.
При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 замыкается и включает лампу HL1.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.
6.2. Схема с нормально замкнутым контактом.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено, его нормально замкнутый контакт KL1.1 замкнут и напряжение питания 12 В поступает на лампу HL1. Лампа горит.
При замыкании контактов выключателя SB1 напряжение поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 размыкается и разрывает цепь питания лампы HL1. Лампа гаснет.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.
6.3. Схема с нормально замкнутым и нормально разомкнутым контактами.
В этой схеме используются сразу два контакта реле KL1.В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено и его нормально разомкнутый контакт KL1.1 разомкнут, а нормально замкнутый KL1.2 замкнут. При этом лампа HL1 не горит, а лампа HL2 горит.
При замыкании контактов выключателя SB1 реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкается и включает лампу HL1, а контакт KL1.2 размыкается и выключает лампу HL2.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в первоначальное положение.
Рассмотренная схема включения реле не обеспечивает гальваническую развязку между обмоткой реле и нагрузкой, так как они питаются от общего источника напряжения. Т.е. если необходимо коммутировать нагрузку, например, с рабочим переменным напряжением 220 В, то и реле необходимо использовать с обмоткой, рассчитанной на такое же рабочее напряжение. Если же разделить управление обмоткой и нагрузкой, то их можно применять с любым напряжением.
6.4. Схема с гальванической развязкой.
На схеме показаны две цепи – управляющая и исполнительная (силовая):
управляющая цепь питается напряжением 12 В и включает в себя источник постоянного тока GB1, кнопочный выключатель SB1 и катушку реле KL1;
исполнительная цепь, или ее еще называют силовой, питается переменным напряжением 220 В. В нее входят две лампы накаливания HL1 и HL2, рассчитанные на рабочее напряжение 220 В, и два контакта реле KL1.1 и KL1.2, служащие для управления лампами.
При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкаясь включает лампу HL1, а контакт KL1.2 размыкаясь выключает лампу HL2.
6.5. Схема технологической сигнализации.
А теперь рассмотрим схему технологической сигнализации, используемую в системах управления технологическими процессами. Работа такой схемы заключается в контролировании технологических параметров (температура, давление, уровень) и выдаче световой и звуковой информации об отклонении этих параметров за пределы заданных значений.
Для контроля за технологическими параметрами применяют специализированные датчики и приборы, например, сигнализаторы, электроконтактные манометры и т.д., контакты которых задействованы в схеме сигнализации. При выходе параметра за пределы допустимого значения контакт датчика или прибора замыкается или размыкается и этот сигнал запускает сигнализацию в работу.
Рассмотрим упрощенную схему с одним контролируемым параметром.
Схема состоит из двух кнопок SB1 и SB2, двух промежуточных реле KL1 и KL2, сирены HA1, лампы накаливания HL1 и контакта датчика Р1.
При отклонении технологического параметра от заданного значения замыкается контакт датчика Р1 и включаются световая и звуковая сигнализации. Световая сигнализация HL1 включается при срабатывании реле KL2, которое своим нормально разомкнутым контактом KL2.1 подает фазу А1 на лампу. Звуковая сигнализация НА1 включается через замкнутый контакт датчика Р1 и нормально разомкнутый контакт KL1.2. И пока контакт Р1 не разомкнется лампа будет светить, а сирена звенеть.
Чтобы сирена постоянно не звенела, ее отключают нажатием кнопки SB2. При этом фаза А1 через контакт Р1 и контакты кнопки SB2 поступит на катушку реле KL1. Реле сработает и своим нормально разомкнутым контактом KL1.1 встанет на самоподхват, а нормально замкнутым контактом KL1.2 разорвет цепь питания звонка НА1. При возвращении технологического параметра в норму контакт датчика Р1 разомкнется и схема сигнализации вернется в первоначальное состояние.
Для проверки работоспособности сигнализации предусмотрена кнопка SВ1. При ее нажатии фаза А1 через нормально замкнутый контакт KL1.2 поступает на сирену НА1 и сирена начинает звенеть. И одновременно фаза А1 поступает на катушку реле KL2, которое срабатывает и своим контактом KL2.1 включает лампу HL1.
И в дополнение к статье видеоролик о промежуточных реле.
Ну вот в принципе и все, что хотел сказать о промежуточных реле.Удачи!
Литература:
1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.
sesaga.ru
21. Схемы включения реле направления мощности
реле мощности, реагирует на величину и направление (знак) мощности к. з., проходящий через место установки защиты.
Реле мощности имеет две обмотки (тока и напряжения). Через обмотки реле воспринимает изменение той электрической величины, на которую оно реагирует.
Реле направления мощности реагируют на значение и знак мощности, подведенной к их зажимам. Они используются в схемах защит как орган, определяющий по направлению (знаку)
мощности (протекающей по защищаемой линии), где произошло повреждение — на защищаемой линии или на других присоединениях, отходящих от шин подстанции (рис. 2-34, а). В первом случае при к. з. в К1 мощность к. з. Sк1 направлена от шин в линию и реле направления мощности должно замыкать свои контакты, во втором при к, з. в К2 — мощность к. з. Sк2 направлена к шинам, в этом случае реле не должно замыкать контакты.
Реле мощности имеет две обмотки: одна питается напряжением Uр, а другая — током сети Iр (рис. 2-34, б). Взаимодействие токов, проходящих по обмоткам, создает электромагнитный момент, значение и знак которого зависят от напряжения Uр, тока Iри угла сдвига φр между ними.
Реле направления мощности применяются в направленных защитах (см. гл. 7). Они должны обладать высокой чувствительностью, так как при к. з. вблизи места установки защиты напряжения Uр резко снижается, достигая в пределе нуля; при этом мощность, подводимая к реле,, оказывается очень малой и при недостаточной чувствительности реле может не сработать, т. е. может иметь «мертвую» зону.
Чувствительность реле оценивается минимальной мощностью, при которой реле замыкает свои контакты. Эта мощность называется мощностью срабатывания и обозначается Sс.р.
Реле направления мощности выполняются мгновенными, поскольку они могут применяться в защитах, работающих без выдержки времени. Собственное время реле направления мощности должно быть минимальным, что особенно важно для реле, применяемых в схемах быстродействующих защит.
Схемы включения РМН
900 схема включения РНМ (а)
300 схема включения РНМ (б)
22. Назначение и принцип действия дистанционной защиты
Принцип действия дистанционной защиты основан на контроле изменения сопротивления. Например, если защищаемым объектом является линия, то в нормальном режиме параметры напряжения на шинах и тока в линии близки к номинальным: UЛ = UHОРМ, IЛ = IНОРМ, отношениесоответствует нормальному режиму.
При возникновении короткого замыкания напряжение на шинах уменьшается, ток в линии увеличивается, контролируемое сопротивление уменьшается .
В свою очередь, ZK = Z0 LK ,
где Z0 - сопротивление 1 км линии;
LK - длина линии (км).
Следовательно, контролируя изменение сопротивления, можно определить факт возникновения короткого замыкания и оценить удаленность точки короткого замыкания.
Обычно дистанционная защита выполняется в виде трех ступеней, характеристика ее времени срабатывания представлена на рис. Первая ступень предназначена для работы при коротких замыканиях на защищаемой линии ZСЗ < ZЛ, то есть сопротивление срабатывания защиты должно быть меньше сопротивления линии.
Для идеальных трансформаторов тока и трансформаторов напряжения и при отсутствии погрешностей измерительных органов в последнем выражении должен стоять знак равенства, однако наличие погрешностей может привести к ложной работе защиты при коротком замыкании на смежных присоединениях.
Как правило, первая ступень охватывает 85 % длины защищаемой линии. При коротких замыканиях в зоне действия первой ступени защита работает без выдержки времени, t1 = 0.Вторая ступень предназначена для надежной защиты всей линии. Ее зона действия попадает на смежную линию, поэтому для исключения неселективного срабатывания защиты при коротком замыкании на отходящей линии в точке К2 , вводится замедление на срабатывание, t2 = 0.4 – 0.5 сек.
Третья ступень выполняет функции ближнего и дальнего резервирования.
Принцип действия дистанционной защиты основан на контроле сопротивления.
Дистанционная защита удовлетворяет требованиям селективности в сетях любой конфигурации с любым числом источников питания.
Защита отличается сравнительно высоким быстродействием. В типовом исполнении дистанционная защита линий содержит три ступени.
Дистанционная защита в качестве основной защиты линий от междуфазных коротких замыканий находит применение в сетях напряжением 110 - 220 кВ.
studfiles.net
Схемы включения реле сопротивления
Для дистанционной защиты от междуфазных к.з. используются две схемы включения реле сопротивления.
В первой схеме к реле подводятся фазные токи и междуфазные напряжения (к 1‑му реле – ток IA, напряжение UAB; по 2‑му реле – ток IB, напряжение UBC, к 3‑му реле – ток IC, напряжение UCA), однако эта схема имеет недостаток, т.к. реле замеряют при 2‑х фазных к.з. сопротивление в раза большее, чем при 3‑х фазном к.з. в той же точке.
Так, при 3‑х фазном к.з. по всем фазам протекают равные токи: IК=IКА= IКВ= IКС, а создаваемые этими токами падения напряжения в сопротивлении фаз линии до места к.з. равны друг другу: Uф=IКZК Подводимые к реле напряжения при этом и все три реле сопротивления замеряют одинаковые сопротивления:
При 2‑х фазных к.з. в той же точке (например, между фазами В-С) ток к.з. IК=IКВ=IКС проходит по 2‑м поврежденным фазам и по обмоткам 2‑х реле сопротивления. При этом напряжение между повреждёнными фазами UВС равно падению напряжения от тока IКВв сопротивлении фазы В плюс падению напряжения от тока IКС в сопротивлении фазы С:
,
но т.к. при 2‑х фазном к.з. и,
то .
Подводимые к реле напряжение и ток при этом будут Uр=UВС=2IКZК. и IР=ZКС в результате реле сопротивления замерят сопротивление
Таким образом, реле сопротивления, включенные на фазные токи и междуфазные напряжения замеряют при 2х фазных к.з. сопротивление более чем при 3‑х фазном к.з. в раза, что является недостатком первой схемы включения реле сопротивления.
Рассмотренная схема, как правило, применяется при использовании реле сопротивления в качестве пусковых органов дистанционной защиты.
Во второй схеме к реле сопротивления подводятся разность фазных токов и междуфазные напряжения (к 1‑му реле – ток IA-IB и напряжение UAB; ко 2‑му реле – ток IB-IC и напряжение UBC, к 3‑му реле – ток IС-IA и напряжение UCA).
При 3‑х фазном к.з. напряжение, подводимое к реле, будет равно (такое же как и в первой схеме), а ток в релеIР равен разности токов фаз подводимых к реле , поэтому сопротивление, замеряемое реле.
При 2‑х фазных к.з. напряжение, подводимое к реле , ток в реле равен разности токов фаз (например фазВ и С): поэтому.
Таким образом, схема включения реле сопротивления на разность фазных токов и междуфазные напряжения обеспечивает правильный и одинаковый замер сопротивления до места к.з. при любых видах междуфазных к.з. Эта схема применяется для подключения реле сопротивления дистанционных органов.
Выводы:
Для дистанционной защиты от междуфазных к.з. применяются две схемы включения реле сопротивлений: в первой – РС включается на фазные токи и междуфазные напряжения; во второй – на разность фазных токов и междуфазные напряжения.
Вторая схема включения реле сопротивления (на разность фазных токов и междуфазные напряжения) обеспечивает правильный замер сопротивления до места к.з. при любых м.ф. к.з. и поэтому применяется в качестве дистанционных органов.
Упрощённая схема дистанционной защиты.
Дистанционная защита относится к числу сложных защит (рис. 5-9) и состоит из следующих органов:
Пускового органа 1, запускающего защиту при возникновении к.з. (Пусковой орган обычно выполняется при помощи реле полного сопротивления или реле тока).
Дистанционного органа 2, определяющего удалённость к.з. (В ступенчатых защитах выполняется с помощью реле минимального сопротивления).
Органа выдержки времени 3, создающего выдержку времени (выполняется на реле времени).
Органа направления мощности 4, не позволяющего работать защите при направлении мощности к.з. к шинам подстанции (выполняется при помощи реле направления мощности если пусковой и дистанционный органы не обладают направленностью).
Органа блокировки при неисправностях цепей напряжения 5 (выполняются при помощи реле минимального напряжения).
Органа блокировки при качаниях 6 (выполняется при помощи специального устройства выводящего защиту из работы при возникновении качаний в системе).
При к.з. срабатывают пусковые реле 1 и реле направления мощности 4, которые своими контактами подают плюс постоянного оперативного тока к контактам реле дистанционных органов 2 и реле времени третьей зоны ВIII. Если к.з. возникло в первой зоне защиты, то срабатывает реле сопротивления первой зоны ДОI, а если повреждение произошло во второй зоне, то срабатывает реле сопротивления второй зоны ДОII.
При срабатывании ДОI собирается цепь через промежуточное реле РП на отключение выключателя без выдержки времени, а при срабатывании ДОII отключение линии осуществляется с выдержкой времени (через реле времени ВII и далее через промежуточное реле РП).
При к.з. за пределами второй зоны защиты дистанционные органы ДОI и ДОII не работают, однако, когда истечёт выдержка времени срабатывания реле времени ВIII, запущенного пусковым органом ПО, срабатывает промежуточное реле РП, которое своими контактами подаёт импульс на отключение выключателя линии.
Рис.5-9. Упрощённая схема трёхступенчатой дистанционной защиты.
Выводы:
Дистанционная защита имеет следующие органы: пусковой; дистанционный; направления мощности, а также блокировки при неисправностях цепей напряжения и от качаний.
studfiles.net
Поделиться с друзьями: