интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

4.3. Эквивалентные преобразования электрических цепей. Резисторы способы соединения схемы замещения


4.3. Эквивалентные преобразования электрических цепей

Электрические цепи считают простыми, если они содержат только последовательное или только параллельное соединение элементов.

Участок цепи, содержащий и параллельное, и последовательное соединение элементов называют сложным или участком со смешанным соединением элементов.

Преобразования электрических цепей считают эквивалентными, если при их выполнении напряжения и токи на интересующих нас участках не изменяются.

При преобразовании сложных электрических цепей пользуются последовательным методом, то есть последовательно преобразуют участки цепи, имеющие простое соединение элементов.

4.3.1. Эквивалентное преобразование схемы при последовательном соединении элементов

Рассмотрим комплексную схему замещения электрической цепи, состоящей из последовательного соединения отдельных элементов (рис. 4.6). Данная цепь представляет собой контур, у которого через все элементы протекает общий для всех элементов ток. Эквивалентно преобразуем схему к одному элементу, но так чтобы напряжение и ток на выводах схемы сохранили свои значения. Это возможно, когда сопротивление исходной цепи и эквивалентной цепи одинаковы. На основании закона Ома и второго закона Кирхгофа в комплексной форме можно записать уравнение электрического равновесия

Напряжение и ток для обеих схем одинаковы, когда

.

Вывод. При эквивалентном преобразовании, при последовательном соединении элементов их комплексные сопротивления складываются.

1) Эквивалентное преобразование сопротивлений

Рассмотрим электрическую цепь схема, которой приведена на рис.4.7. Эквивалентно преобразуем сопротивления R1и R2 к одному сопротивлению Rэкв.

Учитывая, что ZR=R, и соотношение полученное выше, получим Rэкв=R1+R2.

2) Эквивалентное преобразование емкостей.

Рассмотрим электрическую цепь схема, которой приведена на рис.4.8. Эквивалентно преобразуем емкости С1и С2 к одной эквивалентной емкости Сэкв.

Учитывая, что ZС=1/(jωC), и соотношение полученное выше, получим

.

3) Эквивалентное преобразование индуктивностей

Рассмотрим электрическую цепь схема, которой приведена на рис.4.9 . Эквивалентно преобразуем индуктивностиL1и L2 к одной эквивалентной индуктивности Lэкв.

Учитывая, что ZL=jωL, и соотношение полученное выше, получим Lэкв=L1+L2.

4.3.2. Эквивалентное преобразование схемы при параллельном соединении элементов

Рассмотрим комплексную схему замещения электрической цепи, состоящей из параллельного соединения отдельных элементов (рис. 4.10). Данная цепь содержит два узла, между которыми включены все элементы. Общим для всех элементов является напряжение на них. Эквивалентно преобразуем схему к одному элементу, но так чтобы напряжение и ток на выводах схемы сохранили свои значения. Это возможно, когда сопротивление исходной цепи и эквивалентной цепи одинаковы. На основании закона Ома и первого закона Кирхгофа в комплексной форме можно записать уравнение электрического равновесия

I=I1+I2+…+In, или (U/Zэкв) = (U/Z1) + (U/Z2) + …(U/Zn) .

Отсюдаследует, что

(1/Zэкв) = (1/Z1) + (1/Z2) + … +(1/Zn), или Zэкв = 1/[(1/Z1) + (1/Z2) + … +(1/Zn)].

Учитывая, (1/Z) = Y – комплексная проводимость элемента, можно записать, что

Yэкв = Y1 + Y2 + … + Yn.

Вывод. При эквивалентном преобразовании, при параллельном соединении элементов их комплексные проводимости складываются.

studfiles.net

1.4. Способы соединения сопротивлений и расчет эквивалентного сопротивления электрической цепи

Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

Электрическая цепь с последовательным соединением элементов

Рис. 1.4

Рис. 1.5

Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).

На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

U = U1 + U2 + U3 или IRэкв = IR1 + IR2 + IR3,

откуда следует

(1.5)

Rэкв = R1 + R2 + R3.

Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв (рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома

,

и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 1.4).

Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.

Электрическая цепь с параллельным соединением элементов

Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).

Рис. 1.6

В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

I = I1 + I2 + I3, т.е. ,

откуда следует, что

(1.6)

.

В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением

(1.7)

.

Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

gэкв = g1 + g2 + g3.

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)

U = IRэкв = I1R1 = I2R2 = I3R3.

Отсюда следует, что

,

т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.

Электрическая цепь со смешанным соединением элементов

Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.

Рис. 1.7

Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:

.

В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):

Рис. 1.8

На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:

.

Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):

Рис. 1.9

На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно

.

Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.

Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:

.

Рис. 1.10

Рис. 1.11

В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.

Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

Рис. 1.12

Рис. 1.13

В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

(1.8)

; ; .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

(1.9)

; ; .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

.

studfiles.net

Виды соединения электрических элементов

Последовательное соединение – такое соединение элементов, при котором в них протекает один и тот же ток. На рис. 1.10 только два резистора соединены последовательно, это резисторы R3 и R4.

Параллельное соединение – такое соединение элементов, к которым прикладывается одно и то же напряжение. На рис. 1.10 только два резистора соединены параллельно, это резисторы R8 и R9.

Соединение звездой – такое соединение, когда из узла выходит три и более ветви с элементами. Звезда может состоять из трех и более лучей, содержащих элементы. На рис. 1.10 соединение звездой образуют такие, например, элементы: R5–R6–R7, R1–R2–R5 и т. д.

Рис. 1.10. Схема типовых видов соединения элементов

Соединение треугольником – такое соединение, при котором три ветви образуют замкнутый контур. Например, на схеме рис. 1.10 треугольником соединены резисторы R6–R7–R8.

Эквивалентные преобразования подразумевают замену двух и более элементов цепи одним таким элементом, при котором электрические режимы всех оставшихся других элементов не изменяются, т. е. токи и напряжения на этих элементах остаются прежними.

Последовательно соединенные резисторы можно заменить одним резистором, сопротивление которого равно сумме сопротивлений этих резисторов. Так, для схемы, изображенной на рис. 1.11, а имеем:

Рис. 1.11. Эквивалентные преобразования при последовательном (а) и при параллельном (б) соединении элементов

Если последовательно соединены n различных резисторов, то их эквивалентное сопротивление равно:

.

В частном случае, если n последовательно соединенных резисторов имеют одно и то же значение сопротивления R, то их эквивалентное сопротивление в n раз больше этой величины сопротивления и равно:

Rэкв = nR.

Очевидно, что величина эквивалентного сопротивления больше наибольшего из последовательно соединённых резисторов.

Параллельно соединенные резисторы можно заменить одним резистором, проводимость которого равна сумме проводимостей каждого из резисторов.

Под проводимостью резистора понимается величина, обратная сопротивлению резистора и обозначается через Y:

.

Для схемы, приведенной на рис. 1.11, б имеем:.

Выражаем проводимости через сопротивления:

.

Решая это выражение относительно Rэкв находим:

.

Для n параллельно соединенных резисторов имеем выражения:

; .

Отметим несколько особенностей для параллельно соединенных резисторов. Как видно, при параллельном соединении резисторов эквивалентная проводимость больше проводимости резистора, имеющего наибольшее значение проводимости среди всех резисторов. Очевидно, что этот резистор имеет наименьшую величину сопротивления из всех резисторов. Следовательно, эквивалентное сопротивление параллельно соединенных резисторов меньше наименьшего сопротивления из всех резисторов. Это позволяет сделать вывод, что параллельное подключение резистора к какой–либо цепи уменьшает общее (эквивалентное) сопротивление этой цепи.

Если параллельно соединены n резисторов с одинаковым сопротивлением R, то их эквивалентное сопротивление равно:

;

Значит, эквивалентное сопротивление такой цепи в n раз меньше каждого из резисторов.

Соединение звездой и треугольником. Отдельные схемы не возможно эквивалентно преобразовать и найти их полное сопротивление относительно входных выводов, если не осуществить переход от соединения электрических элементов звездой к соединению их треугольником или на оборот. При замене звезды (рис. 1.12, а) на эквивалентный треугольник (рис. 1.12, б) сопротивления треугольника связаны с сопротивлениями звезды следующими соотношениями:

При замене треугольника на эквивалентную звезду сопротивление звезды выражается через сопротивление треугольника следующими соотношениями:

; ;.

На рис. 1.13 показана последовательность эквивалентного преобразования цепи для определения эквивалентного сопротивления всей цепи относительно точек а–б. Обычно преобразование начинается с объединения последовательно или параллельно соединенных элементов. В исходной схеме (рис. 1.13, а) таких соединений нет. В этом случае необходимо выполнить преобразование звезды в треугольник или треугольника в звезду. В исходной схеме звезду из резисторов R2–R5–R3 заменяем треугольником (рис. 1.13, б) из резисторов R1,3, R2,5, R3,2, величины которых находятся из выше приведенных формул. Теперь видно, что резисторы R4 и R2,5, а также резисторы R6 и R3,2 соединены между собой параллельно и объединяются соответственно в резисторы R'4, R'6 (рис. 1.13, в). Затем объединяются последовательно соединенные резисторы R'4 и R'6 с параллельно с ними соединенным резистором R1,3. Их эквивалентом является резистор R'2 (рис. 1.13, г). Суммируя R1 и R'2, находим Rэкв для всей цепи (рис. 1.13, д).

studfiles.net

1.3. Активные элементы схемы замещения

1.

Электрическая цепь - это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.          Электротехника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях. Электрическая цепь - это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.     Все электротехнические устройства по  назначению,  принципу действия  и конструктивному оформлению можно разделить на три большие группы.

  1. Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

  2. Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электромеханизмы и т.д.).

  3. Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

    Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I.  Электрический ток, величина и направление которого не остаются постоянными, называется переменным током

 Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.      Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными - электрические цепи, не содержащие источников энергии.

       Электрическую цепь называют линейной, если ни один параметр цепи не зависит от величины или направления тока, или напряжения.        Электрическая цепь является нелинейной, если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

       Электрическая схема - это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств.

Схема замещения - это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

1.2. Пассивные элементы схемы замещения

      Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.       В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую.        Сопротивление проводника определяется по формулеВеличина, обратная сопротивлению, называется проводимостью.

       Сопротивление измеряется в омах (Ом), а проводимость - в сименсах (См).

  Сопротивление в схеме замещения изображается следующим образом:

       Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле       Индуктивность катушки, измеряемая в генри [Гн], определяется по формуле где W - число витков катушки;              Ф - магнитный поток катушки, возбуждаемый током i.

       На рисунке показано изображение индуктивности в схеме замещения. Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле.       Емкость конденсатора, измеряемая в фарадах (Ф), определяется по формуле:где q - заряд на обкладках конденсатора;             Uс - напряжение на конденсаторе.       На рисунке показано изображение емкости в схеме замещения.

       Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС - это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

Ток     

(1.2)

(1.3)

   

2. Основные законы электрических цепей

       Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях (первый закон Кирхгофа) и баланса напряжений на замкнутых участках цепи (второй закон Кирхгофа).

В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:                 или

       Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре   Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.        Получим

       Из этого уравнения выведем формулу для тока

       В общем виде: ,        где ΣR - сумма сопротивлений ветви;               ΣE - алгебраическая сумма ЭДС.        ЭДС в формуле записывается со знаком "плюс", если направление ее совпадает с направлением тока и со знаком "минус", если не совпадает.

3. Эквивалентные преобразования схем

          Эквивалентным называется преобразование, при котором напряжения и токи в частях схемы, не подвергшихся преобразованию, не меняются.

Параллельное соединение элементов электрических цепей

       На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.

       Токи в параллельных ветвях определяются по формулам:

        где - проводимости 1-й, 2-й и n-й ветвей.

        В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.

        где

        Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.         Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости

       Пусть электрическая схема содержит три параллельно включенных сопротивления.        Эквивалентная проводимость

       Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента

Токи в параллельных ветвях

       Аналогично

       Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.

4. Эквивалентные преобразования схем

          Эквивалентным называется преобразование, при котором напряжения и токи в частях схемы, не подвергшихся преобразованию, не меняются.

Последовательное соединение элементов электрических цепей

       На рис. 2.1 изображена электрическая цепь с последовательно соединенными сопротивлениями.

       Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают.         Падения напряжений на сопротивлениях определяются по формулам

        В соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи.где- эквивалентное сопротивление.

        Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов.

studfiles.net

Соединения сопротивлений

Соединения сопротивлений

Соединения сопротивлений и их законы.

Каковы схемы соединения сопротивлений?

Различают последовательное, параллельное и смешанное соединения сопротивлений.

Сопротивление при последовательном соединении

На картинке представлено последовательное соединение сопротивлений.

Ток через оба сопротивления одинаков. Напряжения на сопротивлениях разные. По закону сохранения энергии:

U = U1 + U2 = IR1 + IR2

т.е. на участках цепи напряжение прямо пропорционально сопротивлению.

Данную цепь можно упростить для расчетов.

Для этого два сопротивления заменим одним эквивалентным сопротивлентем Rэв.

Для случая последовательного соединения сопротивлений эквивалентное сопротивление равно:

Rэв = R1 + R2

Сопротивление при параллельном соединении

На картинке представлено параллельное соединение сопротивлений.

Ток через все сопротивления разный. Напряжения на сопротивлениях одинаковы.

Ток для узла b:

I = I1 + I2 + I3

По закону Ома для участка цепи:

U = IR

Напряжения на всех сопротивлениях одинаковы и равны Uab = U отсюда и по закону Ома подставим значения токов:

I = U/R1 + U/R2 + U/R3

Данную цепь можно упростить для расчетов.

Для этого три сопротивления заменим одним эквивалентным сопротивлентем Rэв.

Для случая параллельного соединения сопротивлений эквивалентное сопротивление равно:

U/Rэв = U/R1 + U/R2 + U/R31/Rэв = 1/R1 + 1/R2 + 1/R3

Если перейти от сопротивлений к соответствующим проводимостям, то получим:

gэв = g1 + g2 + g3

Смешанное соединение сопротивлений

На картинке представлено смешанное соединение сопротивлений.

Для расчетов цепи со смешанным сопротивлением применим методы расчетов последовательных и параллельных соединений сопротивлений.

Напряжения найдём из формулы:

U = U0 + Uab = IR0 + IRэв

здесь Rэв - это эквивалентное сопротивление участка ab:

1/Rэв = 1/R1 + 1/R2 + 1/R3

Токи в параллельных ветвях:

I1 = Uab/R1I2 = Uab/R2I3 = Uab/R3

www.sbp-program.ru

СХЕМЫ ЗАМЕЩЕНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Стр 1 из 4Следующая ⇒

СХЕМЫ ЗАМЕЩЕНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях. I На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в Цепи. Схемы замещения элементов электрических цепей В. Элементы цепи, в которых электрическая энергия преобразуется в теплоту, характеризуются сопротивлением R или Роводимостью G и называются пассивными. Элементы электрической цепи, в которых преобразование ?¦еРгии осуществляется при наличии электродвижущей силы, ^бактеризуются в большинстве случаев постоянными вели-та"ами ЭДС Е и внутреннего сопротивления г (рис. 3.13, а). ? Н,е Элементы цепи называются активными. 3 Расчетных схемах источник энергии можно представить м.'¦ без внутреннего сопротивления, если это сопротивление Г- ° по сравнению с сопротивлением приемника (рис. 3.13, б). При г = О внутреннее падение напряжения Uo = 0, поэто напряжение на зажимах источника при любом токе равн ЭДС: U=E= const. Такой источник энергии с неизменнь¦ напряжением на его зажимах, не зависящим от внешнег сопротивления, называется источником ЭДС. В некоторых случаях источник электрической энергии расчетной схеме заменяют другой (эквивалентной) схемо (рис. 3.14, а), где вместо ЭДС Е источник характеризуется ег током короткого замыкания Л, а вместо внутреннего с противления в расчет вводится внутренняя проводимость g= 1/ Возможность такой замены можно доказать, раздел* равенство (3.16) на г: U/r=E/r-I, где U/r = Io — некоторый ток, равный отношению напряжени на зажимах источника к внутреннему сопротивлению; E/r = h ток короткого замыкания источника; I=U/R — ток приемник

ЗАКОН ОМА

Данный закон очень удобно применять для ветви электрической цепи. Позволяет определить ток ветви при известном напряжении между узлами, к которым данная ветвь подключена. Также позволяет буквально в одно действие рассчитать одноконтурную электрическую цепь.

При применении закона Ома предварительно следует выбрать направление тока в ветви. Выбор направления можно осуществить произвольно. Если при расчете будет получено отрицательное значение, то это значит, что реальное направление тока противоположно выбранному.Для ветви, состоящей только из резисторов и подключенной к узлам электрической цепиa и b (см. рис.) закон Ома имеет вид:Соотношение (1.15) написано в предположении, что выбрано направление тока в ветви от узла a к узлу b. Если мы выберем обратное направление, то числитель будет иметь вид: (Ub-Ua). Теперь становится понятно, что если в соотношении (1.15) возникнет ситуация, когда Ub>Ua то получим отрицательное значение тока ветви. Как уже упоминалось выше, это значит, что реальное направление тока противоположно выбранному. Примером практического применения данного частного случая закона Ома при расчетах электрических цепей является соотношение (1.18) для электрической цепи, изображенной на рисунке.

Для ветви содержащей резисторы и источники электрической энергии закон Ома принимает следующий вид:Соотношение (1.16) написано в предположении, что предварительно выбрано напавление тока от узла a к узлу b. При расчете алгебраической суммы ЭДС ветви следует знак "+" присваивать тем ЭДС, чье направление совпадает с направлением выбранного тока ветви (направление ЭДС определяется направлением стрелки в обозначении источника электрической энергии). Если направления не совпадают, то ЭДС берется со знаком "-". На рисунке есть примеры применения данного варианта закона Ома - соотношения (1.17) и (1.19)

Если необходимо рассчитать одноконтурную электрическую цепь с произвольным количеством источников электрической энергии и резисторов, то следует применять соотношение (1.16), имея ввиду что Ua=Ub.

ЗАКОНЫ КИРХГОФА

Первый закон Кирхгофа

Данный закон применим к любому узлу электрической цепи.

Первый закон Кирхгофа - алгебраическая сумма всех токов, сходящихся в узле равна нулю.Токи, наравленные к узлу, условно принимаются положительными, а направленные от него - отрицательными (или наоборот). На рисунке ниже изображен пример применения первого закона Кирхгофа для узла, в котором сходится 5 ветвей.Более понятна для понимания другая формулировка первого закона Кирхгофа: сумма токов, направленных к узлу электрической цепи равна сумме токов, направленных от него.

Второй закон Кирхгофа

Данный закон применим к любому замкнутому контуру электрической цепи.

Второй закон Кирхгофа - в любом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений в отдельных сопротивлениях.Для применения данного закона на практике, сначала необходимо выбрать замкнутый контур электрической цепи. Далее в нем произвольно выбирают направление обхода (по часовой стрелке, или наоборот). При записи левой части равенства ЭДС, направления которых совпадают с выбранным направлением обхода, принимаются положительными, в обратном случае - отрицательными. При записи правой части равенства положительными считают падения напряжения в тех сопротивлениях, в которых выбранное положительное направление тока совпадает с направлением обхода. В противном случае, падению напряжения следует присвоить знак "минус".

На рисунке ниже наглядно представлены примеры составления равенств для нескольких контуров электрической цепи.

 

ЭКВИВАЛЕНТНЫЕ ПРЕОБРАЗОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

И МЕТОДЫ ИХ РАСЧЕТА

Последовательное соединение - это совокупность связанных элементов электрической цепи, не имеющая узлов.

В последовательное соединение в общем случае может входить любое количество резисторов и источников ЭДС (рис. 1), но не может входить более одного источника тока, т.к. это противоречило бы свойству каждого из источников создавать в цепи ток не зависящий от внешних элементов.

Падение напряжения между точками a и b рис. 1 можно представить разностью потенциалов этих точек Uab = j a - j b . Формально в эту разность можно включить произвольное число значений потенциалов (например, потенциалов точек соединения элементов) с противоположными знаками, а затем попарно объединить их -

Uab = j a - j b = j a -j с +j с -j d +j d -...-j i +j i -j k +j k-... -j q +j q - j b = = (j a -j с)+(j с-j d)+(j d -...-j i)+(j i -j k)+(j k-... -j q)+(j q - j b) = = Uac+ Ucd+ Ude+...+ Uik+ Ukl+ Ulm+...+ Uqb = = Ir1+ Ir2+ Ir3+...+ Irm+E1+ E2+...-En = = I(r1+ r2+ r3+...+ rm)+( E1+ E2+...-En) = IR + E (1)

Таким образом, любое последовательное соединение можно преобразовать к последовательному соединению одного эквивалентного резистора и одного источника ЭДС. Причем, сопротивление эквивалентного резистора равно сумме всех сопротивлений входящих в соединение, а ЭДС эквивалентного источника равна алгебраической сумме ЭДС источников входящих в соединение.

Параллельное соединение элементов - это совокупность элементов электрической цепи, объединенных двумя узлами и не имеющих связей с другими узлами.

В параллельное соединение элементов в общем случае могут входить резисторы иисточники тока (рис. 2), но не может входить более одного источника ЭДС, т.к. это противоречило бы их свойству создавать на выходе разность потенциалов не зависящую от внешней цепи.

I = Ug1+Ug2+...+Ugn -J1+J2+...+Jm=

=U(g1+g2+...+gn) -(J1+J2+...+Jm)=UG+J

Преобразование треугольника сопротивлений в эквивалентную звездуВстречаются схемы, в которых отсутствуют сопротивления, включенные последовательно или параллельно, например, мостовая схема, изображенная на рис. 2.4. Определить эквивалентное сопротивление этой схемы относительно ветви с источником ЭДС описанными выше методами нельзя. Если треугольник сопротивлений R1-R2-R3, включенных между узлами 1-2-3 заменить трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы 1-2-3, эквивалентное сопротивление полученной схемы легко определяется.

Рис. 2.4 Сопротивление луча эквивалентной звезды сопротивлений равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений всех сторон треугольника.В соответствии с указанным правилом, сопротивления лучей звезды определяются по формулам:

Эквивалентное соединение полученной схемы определяется по формуле

Сопротивления R0 и Rλ1 включены последовательно, а ветви с сопротивлениями Rλ1 + R4 и Rλ3 + R5 соединены параллельно.

Преобразование звезды сопротивленийв эквивалентный треугольник

Иногда для упрощения схемы полезно преобразовать звезду сопротивлений в эквивалентный треугольник.Рассмотрим схему на рис. 2.5. Заменим звезду сопротивлений R1-R2-R3 эквивалентным треугольником сопротивлений RΔ1-RΔ2-RΔ3, включенных между узлами 1-2-3.

Преобразование звезды сопротивленийв эквивалентный треугольник

Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося (противолежащего) луча. Сопротивления сторон треугольника определяются по формулам:

Эквивалентное сопротивление преобразованной схемы равно

6. МЕТОД НЕПОСРЕДСТВЕННОГО ПРИМЕНЕНИЯ ЗАКОНОВ КИРХГОФА

На рис. 4.1 изображена схема разветвленной электрической цепи. Известны величины сопротивлений и ЭДС, необходимо определить токи.В схеме имеются четыре узла, можно составить четыре уравнения по первому закону Кирхгофа.

Рис. 4.1

Укажем произвольно направления токов. Запишем уравнения::

(4.1)

 

Сложим эти уравнения. Получим тождество 0 = 0. Система уравнений (4.1) является зависимой.Если в схеме имеется n узлов, количество независимых уравнений, которые можно составить по первому закону Кирхгофа, равно n - 1.Для схемы на рис. 4.1 число независимых уравнений равно трем.

(4.2)

Недостающее количество уравнений составляют по второму закону Кирхгофа. Уравнения по второму закону составляют для независимых контуров. Независимым является контур, в который входит хотя бы одна новая ветвь, не вошедшая в другие контуры.Выберем три независимых контура и укажем направления обхода контуров. Запишем три уравнения по второму закону Кирхгофа.

(4.3)

Решив совместно системы уравнений (4.2) и (4.3), определим токи в схеме.Ток в ветви может иметь отрицательное значение. Это означает, что действительное направление тока противоположно выбранному нами.

МЕТОД КОНТУРНЫХ ТОКОВ

Метод контурных токов дает возможность упростить расчет электрических цепей по сравнению с методом законов Кирхгофа за счет уменьшения числа уравнений, которые приходится решать совместно до величины: (l-k+1-m) и основан на применении второго закона Кирхгофа. Напомним, что: k - количество узлов электрической цепи, l - ветвей иm - идеальных источников тока. Метод основывается на том свойстве, что ток в любой ветви может быть представлен как алгебраическая сумма контурных токов, протекающих по этой ветви. Уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам электрической цепи.

Расчет сложных электрических цепей методом контурных токов производят в следующей последовательности:

1. Вычерчиваем принципиальную схему и все ее элементы.

2. На схеме выбирают и обозначают контурные токи, таким образом, чтобы по любой ветви проходил хотя бы один выбранный контурный ток (исключая ветви с идеальними источниками тока). Контуры можно выбирать произвольно, лишь бы их число было равно (l-k+1-m), и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие.

3. Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против). Обозначаем эти токи. Для нумерации контурных токов используют сдвоенные арабские цифры (или римские).

4. Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов ветвей можно использовать одиночные арабские цифры.

5. По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. Уравнения составлят в следующем виде:

 

6. Решаем любым методом полученную систему относительно контурных токов и определяем их.

7. Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви. При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.

8.

МЕТОД УЗЛОВЫХ НАПРЯЖЕНИЙ

Метод узловых напряжений состоит в определении напряжений между узлами сложной электрической цепи путем решения уравнений, составленных по первому закону Кирхгофа, куда в качестве неизвестных входят напряжения между узлами цепи. Этот метод позволяет уменьшить количество уравнений системы до величины: (k-1), где k - количество узлов сложной электрической цепи. Данный метод целесообразно использовать, когда l>2(k - 1), где l - количество ветвей сложной электрической цепи.

Узловыми напряжениями называют напряжения между каждым из (k-1) узлов и одним произвольно выбранным опорным узлом. Потенциал опорного узла принимается равным нулю. На схеме такой узел обычно отображают как заземленный.

Сущность метода заключается в том, что вначале решением системы уравнений определяют потенциалы всех узлов схемы по отношению к опорному узлу. Далее находят токи всех ветвей схемы с помощью закона Ома по формуле (1.16).

Расчет сложных электрических цепей методом узловых напряжений производят в следующей последовательности:

1.Вычерчиваем принципиальную схему и все ее элементы.

2.На схеме произвольно выбирают и обозначают опорный узел. В качестве опорного желательно выбирать узел, в котором сходится максимальное количество ветвей.

3.Произвольно задаемся направлением токов всех ветвей и обозначаем их на схеме.

4.Для определения потенциалов остальных (k-1) узлов по отношению к опорному узлу составляем следующую систему уравнений:

5.Решаем любым методом полученную систему относительно узловых напряжений и определяем их.

6.Далее для каждой ветви в отдельности применяем закон Ома (1.16) и находим все токи в электрической цепи.

Рассмотрим применение метода узловых напряжений для расчета электрических цепей более подробно на примере схемы, взятой из предыдущего раздела.

МЕТОД ДВУХ УЗЛОВ

Для сложных электрических цепей с двумя узлами система уравнений (1.24) вырождается в одно уравнение, из которого можно напрямую определить величину узлового напряжения:

 

 

Метод наложения.

Метод наложения — метод расчёта электрических цепей, основанный на предположении, что ток в каждой из ветвей сложной электрической цепи при всех включённых источниках электрической энергии, равен алгебраической сумме токов в этой же ветви, полученных при включении каждого из генераторов по очереди и отключении остальных генераторов.

Ток в любой ветви можно рассчитать как алгебраическую сумму токов, вызываемых в ней каждым источником электрической энергии в отдельности. При этом следует иметь ввиду, что когда ведут расчет токов, вызванных одним из источников электрической энергии, то остальные источники ЭДС в схеме замещают короткозамкнутыми участками, а источники тока разомкнутыми участками.

Данный метод позволяет существенно упростить расчеты сложных электрических цепей, содержащих небольшое количество источников электрической энергии.

Расчет сложных электрических цепей методом наложения производят в следующей последовательности:

1)Вычерчиваем принципиальную схему и все ее элементы.

2)Произвольно задаемся направлением токов всех ветвей и обозначаем их.

3)Определяем количество источников электрической энергии на схеме.

4)Для каждого источника электрической энергии вычерчиваем отдельную дополнительную схему, на которой выбранный источник отображаем без изменений (по сравнению с исходной схемой),а остальные источники замещаем (источники ЭДС на короткозамкнутый участок, источник тока на разомкнутый участок электрической цепи).

5)Для каждой из вновь вычерченной схемы обозначаем токи ветвей таким образом, чтобы не путать их с реальными токами ветвей исходной схемы (например если на исходной схеме ток ветви обозначен как I1, то на дополнительных схемах обозначаем его I1', I1'', I1''' и т.д.).

6)Рассчитываем каждую дополнительную схему в отдельности по методике расчета простых электрических цепей.

7)Определяем токи ветвей исходной схемы путем алгебраического суммирования токов ветвей всех дополнительных схем. Если направление тока на дополнительной схеме совпадает с направлением, указанным на основной схеме, ему присваивают знак "+", в противном случае присваивают знак "-".

Например, токи в схеме на рис. 1.10, а находятся как алгебраические суммы частичных токов, определяемых из схем 1.10, б и в.

При расчете подобных схем очень удобным оказывается следующий прием. Пусть требуется определить токи в параллельных ветвях при известном суммарном токе (рис. 1.11).

Из полученной формулы вытекает правило: ток в одной из двух параллельных ветвей равен произведению общего тока на сопротивление соседней ветви, деленному на сумму сопротивлений параллельных ветвей.

Применение этого правила избавляет от необходимости определять напряжения Uab` и Uab`` в схемах на рис. 1.10, б и 1.10, в. Так, после определения тока I1`, токи I2` и I3` можно найти по формулам:

Резонанс напряжений.

В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи представляет собой активное сопротивление. Такое состояние цепи имеет место при определенном соотношении ее параметров r, L, С, когда резонансная частота цепи равна частоте приложенного к ней напряжения.

Резонанс вэлектрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля индуктивности и наоборот.

При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных ее участках. В цепи, где r, L, С соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, С соединены параллельно,— резонанс токов.

Рассмотрим явление резонанса напряжений на примере цепи рис. 2.11, а.

 

 

Как отмечалось, при резонансе ток и напряжение совпадают по фазе, т. е. угол φ = 0. и полное сопротивление цепи равно ее активному сопротивлению.

z = √r2 + (xL - xС)2 = r.

Это равенство, очевидно, будет иметь место, если xL = хС , т. е. реактивное сопротивление цепи равно нулю:

x = xL — xС = 0.

Выразив xL и xС соответственно через L, С и f, получим

откуда

где f — частота напряжения, подведенного к контуру; fрез — резонансная частота.

Таким образом, при xL = xС в цепи возникает резонанс напряжений, так как резонансная частота равна частоте напряжения, подведенного к цепи.

Из выражения закона Ома для последовательной цепи

I = U .
√r2 + (xL - xС)2

 

вытекает, что ток в цепи при резонансе равен напряжению, деленному на активное сопротивление:

I = U/r.

Ток в цепи может оказаться значительно больше тока, который был бы при отсутствии резонанса. При резонансе напряжение на индуктивности равно напряжению на емкости:

IxL = IxС = UL = UC.

При больших значениях xL и хC относительно r эти напряжения могут во много раз превышать напряжение сети. Резонанс в цепи при последовательном соединении потребителей носит название резонанса напряжений.

Напряжение на активном сопротивлении при резонансе равно напряжению, приложенному к цепи:

Ur = Ir = U.

На рис. 2.14, а изображена векторная диаграмма цепи рис. 2.11, а при резонансе напряжений Диаграмма подтверждает тот факт, что ток совпадает по фазе с напряжением сети и что напряжение на активном сопротивлении равно напряжению сети. Реактивная мощность при резонансе равна нулю:

Q = QL - QC = ULI - UCI = 0.

так как UL = UC.

Полная мощность равна активной мощности;

S = √P2 + Q2 = P,

так как реактивная мощность равна нулю. Коэффициент мощности равен единице:

cos φ = P/S = r/z = 1.

Поскольку резонанс напряжений возникает, когда индуктивное сопротивление последовательной цепи равно емкостному, а их значения определяются соответственно индуктивностью, емкостью цепи и частотой сети,

xL = 2πfL, xС = .
2πfС

Резонанс может быть получен или путем подбора параметров цепи при заданной частоте сети, или путем подбора частоты сети при заданных параметрах цепи.

На рис. 2.14, б изображены графики мгновенных значений тока i, напряжения и сети и напряжений иL , иC , иr на отдельных участках, а также активной р = iur и реактивной pL= iиL , pС = iиС мощностей за период для цепи рис. 2.11. а при резонансе напряжений. С помощью этих графиков можно проследить энергетическне процессы, происходящие в цепи при резонансе напряжений.

Активная мощность р все время положительна, она поступает из сети к активному сопротивлению и выделяется в нем в виде тепла. Мощности pL и рС знакопеременные, и, как видно из графика, их средние значения равны нулю.

В момент времени t = 0 (точка I на рис. 2.14, б) ток в цепи i = 0 и энергия магнитного поля WL = 0. Напряжение на емкости равно амплитудному значению UтС, конденсатор заряжен и энергия его электрического поля

В первую четверть периода, в интервале времени между точками 1 и 2, напряжение на емкости и, следовательно, энергия электрического поля убывают. Ток в цепи и энергия магнитного поля возрастают.

В конце первой четверти периода (точка 2) иС = 0, WС = 0. i = Im, WL = I2mL/2.

Таким образом, в первую четверть периода энергия электрического поля переходит в энергию магнитного поля.

Так как площади pС(t) и pL(t) , выражающие запас энергии соответственно в электрическом и магнитном полях, одинаковы, вся энергия электрического поля конденсатора переходит в энергию магнитного поля индуктивности. Во вторую четверть периода, в интервале между точками 2 и 3, энергия магнитного поля переходит в энергию электрического поля.

Аналогичные процессы происходят и в последующие четверти периода.

Таким образом, при резонансе реактивная энергия циркулирует внутри контура от индуктивности к емкости и обратно. Обмена реактивной энергией между источниками и цепью не происходит. Ток в проводниках, соединяющих источник с цепью, обусловлен только активной мощностью.

Для анализа цепей иногда используют частотный метод, позволяющий выяснить зависимость параметров цепи и других величин oт частоты.

На рис 2.15 изображены графики зависимости Ur, UC , UL , I, хC , хL , от частоты при неизменном напряжении сети.

При f = 0 сопротивления xL = 2πfL = 0,хC = 1/2πfC = ∞, ток I = 0, напряжения Ur = Ir = 0, UL = IxL= 0, UC = U. При f = fpез хL = хC , I = U/r, UL = UC, Ur = U. При f→ ∞ xL→∞, хC→ 0, Ur → 0, UC → 0, UL → U.

В интервале частот от f = 0 до f = fpез нагрузка имеет активно-емкостный характер, ток опережает по фазе напряжение сети. В интервале частот f = fpез до f→ ∞ нагрузка носит активно-индуктивный характер, ток отстает по фазе от напряжения сети.

Наибольшее значение напряжения на емкости получается при частоте, несколько меньшей резонансной, на индуктивности - при частоте, несколько большей резонансной.

Явления резонанса широко используются в радиоэлектронных устройствах и в заводских промышленных установках.

 

 

РЕЗОНАНС ТОКОВ

Резонанс токов может возникнуть в параллельной цепи (см. рис. 2.17, а), одна из ветвей которой содержит L и r, а другая Си r.

Резонансом токов называется такое состояние цепи, когда общий ток совпадает по фазе с напряжением, реактивная мощность равна нулю и цепь потребляет только активную мощность. На рис. 2.17, г изображена векторная диаграмма цепи рис. 2.17, а при резонансе токов.

Как видно из векторной диаграммы, общий ток цепи совпадает по фазе с напряжением, если реактивные составляющие токов ветвей с индуктивностью и емкостью равны по модулю:

I1р = I2р.

Общий реактивный ток цепи, равный разности реактивных токов ветвей, в этом случае равен нулю:

I1р - I2р = 0.

Общий ток цепи имеет только активную составляющую, равную сумме активных составляющих токов ветвей:

Iа = I1а + I2а .

Выразив реактивные токи через напряжения и реактивные проводимости, получим

UbL = UbС,

откуда

bL = bС.

Итак, при резонансе токов реактивная проводимость ветви с индуктивностью равна реактивной проводимости ветви с емкостью.

Выразив bL и bС через сопротивления соответствующей ветви, можно определить резонансную частоту контура:

xL = xC = 2πfL =

 

,
r12+ xL2 x22 + xC2 r12 + (2πfL)2

 

откуда

fрез = L/C - r12 .
2π√LC L/C - r22

В идеальном случае, когда r1 = r2 = 0,

При резонансе токов коэффициент мощности равен единице:

cos φ = 1.

Полная мощность равна активной мощности:

S = P.

Реактивная мощность равна нулю:

Q = QL - QC = 0.

Энергетические процессы в цепи при резонансе токов аналогичны процессам, происходящим при резонансе напряжений, которые были подробно рассмотрены в § 2.12.

Реактивная энергия действует внутри цепи: в одну часть периода энергия магнитного поля индуктивности переходит в энергию электрического поля емкости, в следующую часть периода энергия электрического поля емкости переходит в энергию магнитного поля индуктивности. Обмена реактивной энергией между потребителями цепи и источником питания не происходит. Ток в проводах, соединяющих цепь с источником, обусловлен только активной мощностью.

Для резонанса токов характерно, что общий ток при определенном сочетании параметров цепи может быть значительно меньше токов в каждой ветви. Например, в идеальной цепи, когда r1 = r2 = 0 (см. рис. 2.18, а), общий ток равен нулю, а токи ветвей с емкостью и индуктивностью существуют, они равны по модулю и сдвинуты по фазе на 180°. Резонанс в цепи при параллельном соединении потребителей называется резонансом токов.

Резонанс токов может быть получен путем подбора параметров цепи при заданной частоте источника питания или путем подбора частоты источника питания при заданных параметpax цепи.

Представляет интерес влияние частоты источника питания на значения токов в цепи, например в цепи, изображенной на рис. 2.19, а.

Ток в ветви с индуктивностью обратно пропорционален частоте:

IL = U/2πfL,

а ток в ветви с емкостью прямо пропорционален частоте:

IС =U2πfC.

Ток в ветви с активным сопротивлением не зависит от частоты 1:

Ir = U/r.

Вектор общего тока в цепи равен геометрической сумме векторов токов ветвей:

Ī =Īr + ĪL+ĪС,

1 Если пренебречь влиянием вытеснения тока к поверхности проводника.

а значение тока

I = √Ir2+ (IL - IC)2.

При f = 0

IL = ∞; IC = 0; Ir = U/r; I = ∞.

При f = fрез

IL = IC; I = Ir = U/r.

При f → ∞

IL → 0; IC → ∞; Ir = U/r; I → ∞.

Графики зависимости Ir, IL, IС и I от частоты изображены на рис. 2.19, б.

Большинство промышленных потребителей переменного тока имеют активноиндуктивный характер; некоторые из них работают с низким коэффициентом мощности и, следовательно, потребляют значительную реактивную мощность. К таким потребителям относятся асинхронные двигатели, особенно работающие с неполной нагрузкой, установки электрической сварки, высокочастотной закалки и т. д.

Для уменьшения реактивной мощности и повышения коэффициента мощности параллельно потребителю включают батарею конденсаторов.

Реактивная мощность конденсаторной батареи уменьшает общую реактивную мощность установки, так как

Q = QL - QC ,

и тем самым увеличивает коэффициент мощности.

Повышение коэффициента мощности приводит к уменьшению тока в проводах, соединяющих потребитель с источником энергии, и полной мощности источника.

 

Взаимная индуктивность

Любая катушка индуктивности L1 (рис. 2.24) создает вокруг себя некоторое магнитное поле, если по ней пропустить ток i1. Если в магнитное поле катушки L1 поместить катушку L2 , то в ней будет наводиться ЭДС взаимоиндукции: . И наоборот, если поместить в магнитное поле катушки L2 катушку L1, то в ней также будет наводиться ЭДС взаимоиндукции: . Потокосцепление взаимоиндукции () пропорционально току:

.

Коэффициент М12 называют взаимной индуктивностью.

То же можно проделать и со второй катушкой, тогда получим:

Магнитная связь между первой и второй катушками одинакова: М21 = М12;

Коэффициент М называют магнитной связью и измеряют в генри (Гн).

 

Гармонический анализ.

На этом этапе выполняется разложение несинусоидальных функций источников ЭДС e(t) и источников тока j(t) в гармонический ряд Фурье:

Для проведения анализа структуры функций e(t) и j(t) количество гармоник в их разложении определяют значительно больше, чем необходимо для расчета схемы.

Аналитический расчет.

Производится аналитический расчет схемы последовательно для каждой гармоники в отдельности. Для постоянной составляющей расчет производится как для резистивной цепи постоянного тока, при этом участки с катушками L закорачиваются, а ветви с конденсаторами C размыкается. Расчет схемы для отдельных гармоник производится как для цепи синусоидального тока, т.е. в комплексной форме, при этом определяются не действующие значения, а комплексные амплитуды токов и напряжений (Im, Um). Расчет для каждой гармоники выполняется по одному и тому же алгоритму, при этом учитывается зависимость реактивных сопротивлений элементов от частоты и, следовательно, от номера гармоники: XLk=kωL=kXL1, XCk=1/(kωC)=XC1/k.

Количество гармоник, для которых выполняется расчет схемы, устанавливается исходя из конкретных условий задачи.

Синтез решения.

На заключительной стадии расчета определяются искомые величины согласно условию задачи.

Читайте также:

lektsia.com

1.4. Параллельное соединения сопротивлений.

При параллельном соединении сопротивлений все они находятся под одним и тем же напряжением, т.е. напряжение между точками А и В, С и D, Е и F равно напряжению U на зажимах цепи (рис 1.5.)

Общий ток I распределяется по ветвям обратно пропорционально сопротивлениям:

I1 = I2 = I3=

Рис. 1.5. Параллельное соединение сопротивлений.

К цепи с параллельным соединением сопротивлений применим первый закон Кирхгофа: алгебраическая сумма токов, сходящихся в любом узле электрической цепи равна нулю, т.е. ∑I=0

Первый закон Кирхгофа можно сформулировать так: сумма токов, притекающих к узлу, равна сумме токов уходящих от узла. Применительно к рассматриваемой схеме для узла А имеем

I = I1 + I2 + I3

Или (1.7)

где Rэ – эквивалентное сопротивление цепи.

Сокращая все члены уравнения (1.7) на U, получим:

(1.8)

Из уравнения(1.8) получаем выражение для расчета эквивалентного (общего) сопротивления параллельной цепи, состоящей из трех ветвей

Rэ= (1.9)

Для цепи из двух ветвей эквивалентное сопротивление рассчитывается по выражению

Rэ =

Можно показать, что чем больше сопротивлений включаются параллельно друг другу, тем меньше будет величина эквивалентного (общего) сопротивления цепи. Так в случае, если R1 = R2 = R3 = R из выражения (1.9) имеем:

Rэ =

Величина, обратная сопротивлению, называется электрической проводимостью и измеряется в сименсах:

g = [См] (1.10)

Из выражения (1.8) с учетом (1.10) получаем gэ = g1+ g2+ g3

Таким образом, при параллельном соединении сопротивлений общая проводимость цепи равна сумме проводимостей всех её элементов. Закон Ома для параллельной цепи принимает вид: I=U gэ

К достоинствам параллельного соединения сопротивлений относится возможность обеспечения независимой и автономной работы как генераторов, так и электроприемников. Поэтому на практике разводка электропитания производится таким образом, чтобы все электроприборы подключались к сети параллельно.

1.5. Смешанное соединение сопротивлений.

Рассмотрим электрическую цепь со смешанным соединением сопротивлений (рис. 1.6.)

Рис. 1.6. Смешанное соединений сопротивлений.

Для расчета параметров такой цепи упростим схему, заменив группы параллельно соединенных резисторов их эквивалентными сопротивлениями.

Для участка ab: Rab=Для участка cd: Rcd=

В результате получаем эквивалентную схему замещения представленную на рис. 1.7.

Рис. 1.7. Эквивалентная схема замещения смешанного соединения сопротивлений.

Эквивалентное сопротивление всей цепи равно: Rэ = R1 + Rab + R4+ Rcd

Ток в неразветвленных участках цепи равен: I =

Теперь легко найти напряжения и токи на всех участках цепи:

Uab=IRab; Ucd = IRcd

I1=I; I2=; I3 = ; I4=I; I5 =; I6 =

studfiles.net


Каталог товаров
    .