интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Дискретная математика / Основные / Переключательные схемы. Переключательные схемы


Переключательные схемы

Переключательные схемы

В компьютерах и других автоматических устройствах широко применяются электрические схемы, содержащие сотни и тысячи переключательных элементов: реле, выключателей и т.п. Разработка таких схем весьма трудоёмкое дело. Оказалось, что здесь с успехом может быть использован аппарат алгебры логики.

Переключательная схема — это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Будем считать, что два переключателя Х и связаны таким образом, что когдаХ замкнут, то разомкнут, и наоборот. Следовательно, если переключателю Х поставлена в соответствие логическая переменнаях, то переключателю должна соответствовать переменная.

Всей переключательной схеме также можно поставить в соответствие логическую переменную, равную единице, если схема проводит ток, и равную нулю — если не проводит. Эта переменная является функцией от переменных, соответствующих всем переключателям схемы, и называется функцией проводимости.

Найдем функции проводимости F некоторых переключательных схем:

a)  

Схема не содержит переключателей и проводит ток всегда, следовательно F=1;

б)  

Схема содержит один постоянно разомкнутый контакт, следовательно F=0;

в)  

Схема проводит ток, когда переключатель х замкнут, и не проводит, когда х разомкнут, следовательно, F(x) = x;

г)  

Схема проводит ток, когда переключатель х разомкнут, и не проводит, когда х замкнут, следовательно, F(x) = ;

д)  

Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x) = x . y;

е)  

Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, F(x)=x v y;

ж)  

Схема состоит из двух параллельных ветвей и описывается функцией .

Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале).

Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.

СИНТЕЗ СХЕМЫ по заданным условиям ее работы сводится к следующим трём этапам:

  1. составлению функции проводимости по таблице истинности, отражающей эти условия;

  2. упрощению этой функции;

  3. построению соответствующей схемы.

АНАЛИЗ СХЕМЫ сводится к

  1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.

  2. получению упрощённой формулы.

Примеры.

1. Построим схему, содержащую 4 переключателя x, y, z и t, такую, чтобы она проводила ток тогда и только тогда, когда замкнут контакт переключателя t и какой-нибудь из остальных трёх контактов.

Решение. В этом случае можно обойтись без построения таблицы истинности. Очевидно, что функция проводимости имеет вид F(x, y, z, t) = t . (x v y v z), а схема выглядит так:

2. Построим схему с пятью переключателями, которая проводит ток в том и только в том случае, когда замкнуты ровно четыре из этих переключателей.

Схема имеет вид:

3. Найдем функцию проводимости схемы:

Решение. Имеется четыре возможных пути прохождения тока при замкнутых переключателях a, b, c, d, e : через переключатели a, b; через переключатели a, e, d; через переключатели c, d и через переключатели c, e, b. Функция проводимости F(a, b, c, d, e) = a . b   v   a . e . d   v   c . d   v   c . e . b.

4. Упростим переключательные схемы:

а)  

Решение:   

Упрощенная схема:

б)  

.

Здесь первое логическое слагаемое является отрицанием второго логического слагаемого, а дизъюнкция переменной с ее инверсией равна 1.

Упрощенная схема :

в)  

Упрощенная схема:

г)  

Упрощенная схема:

д)  

(по закону склеивания)

Упрощенная схема:

е)  

Решение:

Упрощенная схема:

5.18. Найдите функции проводимости следующих переключательных схем:

5.19. Проверьте равносильность следующих переключательных схем:

5.20. Постройте переключательные схемы с заданными функциями проводимости:

5.21. Упростите функции проводимости и постройте переключательные схемы, соответствующие упрощенным функциям:

а)

б)

в)

г)

д)

е)

ж)

з)

и)

5.22. Упростите следующие переключательные схемы:

6

studfiles.net

Урок 14. Переключательные схемы

Что такое переключательная схема?

В компьютерах и других автоматических устройствах широко применяются электрические схемы, содержащие сотни и тысячи переключательных элементов: реле, выключателей и т.п. Разработка таких схем весьма трудоёмкое дело. Оказалось, что здесь с успехом может быть использован аппарат алгебры логики.

I Переключательная схема — это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Будем считать, что два переключателя Х и связаны таким образом, что когда Х замкнут, то разомкнут, и наоборот. Следовательно, если переключателю Х поставлена в соответствие логическая переменная х, то переключателю должна соответствовать переменная .

Всей переключательной схеме также можно поставить в соответствие логическую переменную, равную единице, если схема проводит ток, и равную нулю — если не проводит. Эта переменная является функцией от переменных, соответствующих всем переключателям схемы, и называется функцией проводимости.

Найдем функции проводимости F некоторых переключательных схем:

a)

Схема не содержит переключателей и проводит ток всегда, следовательно F=1;

б)

Схема содержит один постоянно разомкнутый контакт, следовательно F=0;

в)

Схема проводит ток, когда переключатель х замкнут, и не проводит, когда х разомкнут, следовательно, F(x) = x;

г)

Схема проводит ток, когда переключатель х разомкнут, и не проводит, когда х замкнут, следовательно, F(x) = ;

д)

Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x) = x . y;

е)

 

 

Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, F(x)=x v y;

ж)

 

Схема состоит из двух параллельных ветвей и описывается функцией:

 

N Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале).

N Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные Ю.И. Журавлев, С.В. Яблонский и др.

При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.

СИНТЕЗ СХЕМЫ по заданным условиям ее работы сводится к следующим трём этапам:

1. составлению функции проводимости по таблице истинности, отражающей эти условия;

2. упрощению этой функции;

3. построению соответствующей схемы.

АНАЛИЗ СХЕМЫ сводится к:

1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.

2. получению упрощённой формулы.

Упражнение 1. Построим схему, содержащую 4 переключателя x, y, z и t, такую, чтобы она проводила ток тогда и только тогда, когда замкнут контакт переключателя t и какой-нибудь из остальных трёх контактов.

Решение. В этом случае можно обойтись без построения таблицы истинности. Очевидно, что функция проводимости имеет вид F(x, y, z, t) = t . (x v y v z), а схема выглядит так:

Упражнение 2. Построим схему с пятью переключателями, которая проводит ток в том и только в том случае, когда замкнуты ровно четыре из этих переключателей.

Схема имеет вид:

Упражнение 3. Найдем функцию проводимости схемы:

Решение. Имеется четыре возможных пути прохождения тока при замкнутых переключателях a, b, c, d, e : через переключатели a, b; через переключатели a, e, d; через переключатели c, d и через переключатели c, e, b. Функция проводимости F(a, b, c, d, e) = a . b v a . e . d v c . d v c . e . b.

Урок 15. Сумматор и триггер

Полусумматор. Сумматор.

Логические схемы используются в вычислительной технике:

1. Для реализации выполнения математических операций;

2. Для хранения информации.

Как это он делает? Рассмотрим на уроке.

Итак, как процессор выполняет математические операции?

Прежде всего, обратите внимание на следующие моменты:

· Каким образом должна быть представлена информация, чтобы с ней мог работать компьютер? (В двоичном коде, т.е. в виде 0 и 1)

· Чтобы компьютер мог выполнять математические операции с числами, в какой системе счисления они должны быть представлены? (В двоичной)

· Почему? (Потому что двоичную систему счисления наиболее просто реализовать в технических устройствах)

· Какие сигналы подаются на входы логических вентилей? (0 и 1)

Вывод:таким образом и в двоичной системе счисления и в алгебре логики информация представлена в виде двоичных кодов.

И второй момент. Для того чтобы максимально упростить работу компьютера, все математические операции (вычитание, деление, умножение и т.д.) сводятся к сложению.

Вспомним таблицу сложения двоичных чисел. Запишем ее в несколько иной форме:

Обратите внимание на дополнительный столбец. Его мы ввели потому, что при сложении происходит перенос в старший разряд. Обозначим его P и закончим заполнение таблицы:

Проанализируем полученный результат.

· Таблице истинности какой логической функции аналогичен столбец P? (Логическое умножение)

· Таблице истинности какой логической функции аналогичен столбец S? (Логическое сложение, кроме случая, когда на входы подаются две единицы )

Логическое выражение, по которому можно определить сумму S, записывается следующим образом: S = (A V B) & .

Построим к этому логическому выражению логическую схему:

 
 

 

 

Проследим за изменением сигнала при прохождении через схему:

 

 

С какого элемента можно снимать сигнал Р, если мы выяснили, что результат Р соответствует логическому умножению? (С первого вентиля, реализующего операцию конъюнкции)

 

 

Полученная нами схема выполняет сложение двоичных одноразрядных чисел и называется полусумматором, так как не учитывает перенос из младшего разряда в старший (выход Р).

Для учета переноса из младшего разряда необходимы два полусумматора.

Более «умным» является устройство, которое при сложении учитывает перенос из младшего разряда. Называется оно полный одноразрядный сумматор.

N Сумматор – это логическая электронная схема, выполняющая сложение двоичных чисел. Сумматор является главной частью процессора.

Рассмотрим принцип работы одноразрядного двоичного сумматора.

Одноразрядный сумматор должен иметь три входа: A, B –слагаемые и Р0 – перенос из предыдущего разряда и выходы: S – сумма и Р – перенос.

Нарисуем одноразрядный сумматор в виде единого функционального узла:

 

 
 

 

 

Построим таблицу сложения:

Логические выражения для Р и S будут иметь следующий вид:

S = (A V B V P0) & V(A & B & P0).

P = (A & B) V (A & P0) V (B & P0).

Но процессор, как правило, складывает многоразрядные двоичные числа. Например, 1012+1102=10112. Для того чтобы вычислить сумму n-разрядных двоичных чисел, необходимо использовать многоразрядный сумматор, в котором на каждый разряд ставится одноразрядный сумматор и выход-перенос сумматора младшего разряда подключается к входу сумматора старшего разряда.

 

 

Упражнение 1.Проследите на схеме за изменением сигнала на примере сложения 1012+1102=10112.

Триггер

Триггер (trigger – защелка, спусковой крючок) – это устройство, позволяющее запоминать, хранить и считывать информацию.

Каждый триггер хранит 1 бит информации, т.е. он может находиться в одном из двух устойчивых состояний – логический «0» или логическая «1».

Триггер способен почти мгновенно переходить из одного электрического состояния в другое и наоборот.

 

 

Логическая схема триггера выглядит следующим образом:

 
 

 

 

Входы триггера расшифровываются следующим образом – S (от английского Set –установка) и R (Reset – сброс). Они используются для установки триггера в единичное состояние и сброса в нулевое. В связи с этим такой триггер называется RS-триггер.

Выход Q называется прямым, а противоположный – инверсный. Сигналы на прямом и инверсном выходах, конечно же, должны быть противоположны.

Рассмотрим, как работает эта схема.

Пусть для определенности на вход S подан единичный сигнал, а R=0. Тогда независимо от состояния другого входа, который подсоединен к выходу Q (иначе говоря, вне зависимости от предыдущего состояния триггера), верхний по схеме элемент ИЛИ-НЕ получит на выходе 0 (результат ИЛИ, естественно, равен 1, но его инверсия – 0). Этот нулевой сигнал передается на вход другого логического элемента, где на втором входе R тоже установлен 0. В итоге после выполнения логических операций ИЛИ-НЕ над двумя входными нулями этот элемент получает на выходе 1, которую возвращает первому элементу на соответствующий вход. Последнее обстоятельство очень важно: теперь, когда на этом входе установилась 1, состояние другого входа (S) больше не играет роли. Иными словами, если даже теперь убрать входной сигнал S, внутреннее распределение уровней сохранится без изменения. Поскольку согласно нашим рассуждениям Q=1, триггер перешел в единичное состояние, и пока не придут новые сигналы, сохраняет его. Итак, при подаче сигнала на вход S триггер переходит в устойчивое единичное состояние.

При противоположной комбинации сигналов R=1 и S=0 вследствие полной симметрии схемы все происходит совершенно аналогично, но теперь на выходе Q уже получается 0. Иными словами, при подаче сигнала на вход R-триггер сбрасывается в устойчивое нулевое состояние.

Особо отметим, что окончание действия сигнала в обоих случаях приводит к тому, что R=0 и S=0. Мы видели, что при этом триггер сохраняет на выходе Q тот сигнал, который был установлен входным импульсом (S или R). Отсюда такой режим часто называют режимом хранения информации. Итак, при отсутствии входных сигналов триггер сохраняет последнее занесенное в него значение сколь угодно долго.

Оставшийся режим S=1 и R=1, когда сигнал подается на оба входа одновременно, считается запрещенным, поскольку в этом случае после снятия входных сигналов (особенно одновременного!) результат непредсказуем.

В ходе объяснения заполняется таблица:

Вход S Вход R Выход Q Выход Режим триггера
Установка 1
Установка 0
Последние значения Хранение информации
Запрещено!

Итак, мы выяснили, как работает триггер.

Без преувеличения триггер является одним из существенных узлов при проектировании ЭВМ. Так как триггер может хранить только 1 бит информации, то несколько триггеров объединяют вместе.

Полученное устройство называется регистром. Регистры содержатся во всех вычислительных узлах компьютера – начиная с центрального процессора, памяти и заканчивая периферийными устройствами, и позволяют также обрабатывать информацию. В регистре может быть 8, 16, 32 или 64 триггера.



infopedia.su

Переключательные схемы — Мегаобучалка

В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае – ток проходит, во втором – нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.

Вентили, триггеры и сумматоры

Вентиль представляет собой логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации. Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.

Триггеры и сумматоры – это относительно сложные устройства, состоящие из более простых элементов – вентилей.

Триггер способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях. В основном триггеры используется в регистрах процессора.

Сумматоры широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов.

Законы алгебры логики

Для логических величин обычно используются три операции:

1. Конъюнкция – логическое умножение (И) – and, &, ∧.

2. Дизъюнкция – логическое сложение (ИЛИ) – or, |, v.

3. Логическое отрицание (НЕ) – not,.

Логические выражения можно преобразовывать в соответствии с законами алгебры логики:

1. Законы рефлексивностиa ∨ a = aa ∧ a = a

2. Законы коммутативностиa ∨ b = b ∨ aa ∧ b = b ∧ a

3. Законы ассоциативности(a ∧ b) ∧ c = a ∧ (b ∧ c)(a ∨ b) ∨ c = a ∨ (b ∨ c)

4. Законы дистрибутивностиa ∧ (b ∨ c) = a ∧ b ∨ a ∧ ca ∨ b ∧ c = (a ∨ b) ∧ (a ∨ c)

5. Закон двойного отрицания ( a) = a

6. Законы де Моргана(a ∧ b) = a ∨ b(a ∨ b) = a ∧ b

7. Законы поглощенияa ∨ a ∧ b = aa ∧ (a ∨ b) = a

Логические элементы. Вентили

В основе построения компьютеров, а точнее аппаратного обеспечения, лежат так называемые вентили. Они представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы. Одни схемы подходят для осуществления арифметических операций, а на основе других строят различную память ЭВМ.

Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот. Т.е. получаем вентиль НЕ.

Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕ и И-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит (выдает высокое или низкое напряжение) от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.

Выходной сигнал вентиля можно выражать как функцию от входных.

Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.

Сумматор и полусумматор

Арифметико-логическое устройство процессора (АЛУ) обязательно содержит в своем составе такие элементы как сумматоры. Эти схемы позволяют складывать двоичные числа.

Как происходит сложение? Допустим, требуется сложить двоичные числа 1001 и 0011. Сначала складываем младшие разряды (последние цифры): 1+1=10. Т.е. в младшем разряде будет 0, а единица – это перенос в старший разряд. Далее: 0 + 1 + 1(от переноса) = 10, т.е. в данном разряде снова запишется 0, а единица уйдет в старший разряд. На третьем шаге: 0 + 0 + 1(от переноса) = 1. В итоге сумма равна 1100.

Полусумматор

Теперь не будем обращать внимание на перенос из предыдущего разряда и рассмотрим только, как формируется сумма текущего разряда. Если были даны две единицы или два нуля, то сумма текущего разряда равна 0. Если одно из двух слагаемых равно единице, то сумма равна единицы. Получить такие результаты можно при использовании вентиля ИСКЛЮЧАЮЩЕГО ИЛИ.

Перенос единицы в следующий разряд происходит, если два слагаемых равны единице. И это реализуемо вентилем И.

Тогда сложение в пределах одного разряда (без учета возможной пришедшей единицы из младшего разряда) можно реализовать изображенной ниже схемой, которая называется полусумматором. У полусумматора два входа (для слагаемых) и два выхода (для суммы и переноса). На схеме изображен полусумматор, состоящий из вентилей ИСКЛЮЧАЮЩЕЕ ИЛИ и И.

Сумматор

В отличие от полусумматора сумматор учитывает перенос из предыдущего разряда, поэтому имеет не два, а три входа.

Чтобы учесть перенос приходится схему усложнять. По-сути она получается, состоящей из двух полусумматоров.

Рассмотрим один из случаев. Требуется сложить 0 и 1, а также 1 из переноса. Сначала определяем сумму текущего разряда. Судя по левой схеме ИСКЛЮЧАЮЩЕЕ ИЛИ, куда входят a и b, на выходе получаем единицу. В следующее ИСКЛЮЧАЮЩЕЕ ИЛИ уже входят две единицы. Следовательно, сумма будет равна 0.

Теперь смотрим, что происходит с переносом. В один вентиль И входят 0 и 1 (a и b). Получаем 0. Во второй вентиль (правее) заходят две единицы, что дает 1. Проход через вентиль ИЛИ нуля от первого И и единицы от второго И дает нам 1.

Проверим работу схемы простым сложением 0 + 1 + 1 = 10. Т.е. 0 остается в текущем разряде, и единица переходит в старший. Следовательно, логическая схема работает верно.

Работу данной схемы при всех возможных входных значениях можно описать следующей таблицей истинности.

megaobuchalka.ru

6.3. Переключательные схемы.

В современных компьютерных технологиях булева алгебра является математической моделью цифровых логических схем. В алгебре логике рассматриваю коммутационные и переключательные схемы. Мы остановимся на переключательных схемах.

Определение 6.3. Переключательная схема– это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подается и с которых принимается электрический сигнал.

На рисунках показаны переключательные схемы последовательного и параллельного соединения переключателейии проводов, соединяющих полюсаи.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Будем считать, что два переключателя исвязаны таким образом, что когдазамкнут, торазомкнут и наоборот.

Сопоставим переключателю переменную, которая принимает значение 1 в случае, когда переключательзамкнут, и значение 0 в случае, когда переключательразомкнут. Переключателюсоответствует переменная, которая принимает значение 1 в случае, когда переключательзамкнут, и значение 0 в обратном случае. Тогда сеть на рис. 1 пропускает ток, еслии , то есть, если функция. Сеть на рис. 2 пропускает ток, еслиили , то есть, если функция.

Всей переключательной схеме можно поставить в соответствие некоторую функцию, принимающую значение 1, если устройство проводит ток, и – значение 0, если не проводит. Эта функция зависит от переменных, соответствующих всем переключателям и называется функцией проводимости. Функцию проводимости записывают в виде формулы с использованием булевых переменных, логических операций и скобок левой и правой.

Рассмотрим одну из задач прикладного характера, которую можно решить средствами булевой алгебры.

Пример 6.5. По данной функции проводимости

построить переключательную схему с помощью трёх переключателей ,,. Определить, при каких положениях переключателей ток в сети отсутствует.

Решение. Формулесоответствует переключательная схема вида:

Формуле соответствует переключательная схема:

Из рисунков следует, что данной функции соответствует схема

Определим, при каких положениях переключателей ток в сети на последнем рисунке отсутствует. В таблицу запишем все возможные наборы значений переменных ,и, и найдем для них соответствующие значения функции проводимости.

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

0

0

0

1

1

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

1

1

1

1

1

0

0

1

1

0

0

0

1

1

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

1

1

0

1

0

1

0

1

0

0

0

1

0

1

1

1

1

1

1

Вывод. Из последнего столбца таблицы следует, что ток в сети отсутствует в трех случаях:

  1. все переключатели замкнуты;

  2. переключатели изамкнуты, а переключательразомкнут;

  3. переключатель замкнут, а переключателииразомкнуты.

studfiles.net

Переключательные схемы

В компьютерах широко применяются электрические схемы, содержащие сотни и тысячи переключательных элементов: реле, выключателей и т.п. При разработке таких схем используется аппарат алгебры логики.

Переключательная схема – это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов, на которые подается, и выходов, с которых снимается, электрический сигнал.

Каждый переключатель имеет два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Будем считать, что два переключателя Х и связаны таким образом, что когда Х замкнут, то разомкнут, и наоборот. Следовательно, если переключателю Хпоставлена в соответствие логическая переменная х, то переключателю должна соответствовать переменная .

Всей переключательной схеме можно поставить в соответствие логическую переменную, равную единице, если схема проводит ток, и равную нулю – если не проводит. Эта переменная является функцией от переменных, соответствующих всем переключателям схемы, и называется функцией проводимости.

Найдем функции проводимости F некоторых переключательных схем:

Схема не содержит переключателей и проводит ток всегда, следовательно F=1;

Схема содержит один постоянно разомкнутый контакт, следовательно F=0;

Схема проводит ток, когда переключатель X замкнут, и не проводит, когда X разомкнут, следовательно, F(x) = x;

Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x,y) = x . y;

Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, 

Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале). Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

  1. Логические схемы

Схема И - Конъюнкция

Схема И реализует конъюнкцию двух или более логических значений. Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль. Связь между выходом z этой схемы и входами x и y описывается соотношением: (читается как "x и y"). Операция конъюнкции на структурных схемах обозначается знаком "&" (читается как "амперсэнд"), являющимся сокращенной записью английского слова and.

Схема ИЛИ - Дизъюнкция

Схема ИЛИ реализует дизъюнкцию двух или более логических значений. Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица. Знак "1" на схеме — от устаревшего обозначения дизъюнкции как ">=1" (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами x и y описывается соотношением: (читается как "x или y").

studfiles.net

Что такое переключательная схема?

В компьютерах и других автоматических устройствах широко применяются электрические схемы, содержащие сотни и тысячи переключательных элементов: реле, выключателей и т.п. Разработка таких схем весьма трудоёмкое дело. Оказалось, что здесь с успехом может быть использован аппарат алгебры логики.

Переключательная схема — это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Будем считать, что два переключателя Х и связаны таким образом, что когда Х замкнут, то разомкнут, и наоборот. Следовательно, если переключателю Х поставлена в соответствие логическая переменная х, то переключателю должна соответствовать переменная .

Всей переключательной схеме также можно поставить в соответствие логическую переменную, равную единице, если схема проводит ток, и равную нулю — если не проводит. Эта переменная является функцией от переменных, соответствующих всем переключателям схемы, и называется функцией проводимости.

Найдем функции проводимости F некоторых переключательных схем:

a)

Схема не содержит переключателей и проводит ток всегда, следовательно F=1;

б)

Схема содержит один постоянно разомкнутый контакт, следовательно F=0;

в)

Схема проводит ток, когда переключатель х замкнут, и не проводит, когда х разомкнут, следовательно, F(x) = x;

г)

Схема проводит ток, когда переключатель х разомкнут, и не проводит, когда х замкнут, следовательно, F(x) = ;

д)

Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x) = x . y;

е)

Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, F(x)=x v y;

ж)

Схема состоит из двух параллельных ветвей и описывается функцией .

Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале). Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные Ю.И. Журавлев, С.В. Яблонский и др.

При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.

СИНТЕЗ СХЕМЫ по заданным условиям ее работысводится к следующим трём этапам:

1. составлению функции проводимости по таблице истинности, отражающей эти условия;

2. упрощению этой функции;

3. построению соответствующей схемы.

АНАЛИЗ СХЕМЫ сводится к

1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.

2. получению упрощённой формулы.

Примеры.

1. Построим схему, содержащую 4 переключателя x, y, z и t, такую, чтобы она проводила ток тогда и только тогда, когда замкнут контакт переключателя t и какой-нибудь из остальных трёх контактов.

Решение. В этом случае можно обойтись без построения таблицы истинности. Очевидно, что функция проводимости имеет вид F(x, y, z, t) = t . (x v y v z), а схема выглядит так:

2. Построим схему с пятью переключателями, которая проводит ток в том и только в том случае, когда замкнуты ровно четыре из этих переключателей.

Схема имеет вид:

3. Найдем функцию проводимости схемы:

Решение. Имеется четыре возможных пути прохождения тока при замкнутых переключателях a, b, c, d, e : через переключатели a, b; через переключатели a, e, d; через переключатели c, d и через переключатели c, e, b. Функция проводимости F(a, b, c, d, e) = a . b v a . e . d v c . d v c . e . b.

4. Упростим переключательные схемы:

а)

Решение:

Упрощенная схема:

б)

.

Здесь первое логическое слагаемое является отрицанием второго логического слагаемого , а дизъюнкция переменной с ее инверсией равна 1.

Упрощенная схема :

в)

Упрощенная схема:

г)

Упрощенная схема:

д)

(по закону склеивания)

Упрощенная схема:

е)

Решение:

Упрощенная схема:

Похожие статьи:

poznayka.org

5.4. Понятие о переключательных схемах и технической реализации переключательных функций

Исторически первое практическое применение теория переключательных функций нашла в так называемых переключательных схемах (ПС, контактных схемах). Такие схемы построены на механических переключателях и реле (дистанционных переключателях), содержащих контакты двух типов: замыкающие, обозначаемые: .

и размыкающие, обозначаемые: .

При этом параллельное соединение контактов соответствует дизъюнкции, а последовательное – конъюнкции.

Например, переключательная схема, реализующая импликацию х1®х2 имеет вид рис. 29.

Такая схема приводит ток, если х2 замкнут (сработал), или х1 замкнут (не сработал).

Рис. 29. Переключательная схема, реализующая импликацию х1®х2

Переключательная реализация функции имеет вид рис. 30.

Рис. 30. Переключательная реализация

Предполагается, что контакты срабатывают, когда подается напряжение на обмотки соответствующих реле, не изображенных на рис. 29-30 или нажимаются соответствующие кнопки, включаются соответствующие тумблеры и т.д.

Иногда с целью упрощения переключательные схемы изображают в виде только символов контактов (рис. 31).

Рис. 31. Упрощенная переключательная схема эквиваленции х1«х2

Таким образом, каждой такой последовательно-параллельной схеме можно поставить в соответствие некоторую логическую функцию (формулу логики).

Переключательная схема – схема из замыкающих, размыкающих и переключающих контактов показана на рис. 32.

Рис. 32. Переключательная схема

Последовательно-параллельная контактная схема соответствует конкретной ПФ.

Упрощенная ПС изображается в символах переменных (рис. 33).

Рис. 33. Упрощенная переключательная схема

Применяя равносильные преобразования ПФ, которые рассматриваются далее, можно упрощать ПС, уменьшая число контактов.

Возможна реализация ПФ схемами из функциональных элементов, программно. Техническая реализация базисных логических функций может быть основана на использовании различных физических явлений, например, базисы И-НЕ, ИЛИ-НЕ – явлений в полупроводниках, импликация – магнитных явлений.

В ряде случаев используются пневматическая реализация (струйные элементы), гидравлическая реализация, оптическая реализация.

Переключательные (логические) элементы изображают в виде прямоугольников, в которых инверсные входы и выходы изображают в виде кружков, а символы логических операций указывают в верхней части прямоугольника. Это условное графическое обозначение логических элементов (рис. 34).

Рис. 34. Условное графическое обозначение логических элементов

по стандарту РФ

Путем соединения логических элементов получают схему, реализующую требуемую логическую функцию в виде суперпозиции базисных функций, каждая из которых реализуется определенным логическим элементом.

В электронных приборах конъюнкция и дизъюнкция реализуются соответственно последовательным и параллельным соединением ключевых полупроводниковых элементов, отрицание – включением нагрузки в коллекторную цепь транзистора [9]. Так, переключательная функция реализуется, как показано на рис. 35.

Рис. 35. Реализация ПФ транзисторной схемой

Здесь кружки – это транзисторы, то есть элементарные бесконтактные переключатели (ключи), прямоугольники – это резисторы. На один из полюсов схемы подается напряжение питания, на другой «ноль вольт».

Реализация импликации может быть основана на использовании магнитных процессов. Представление функции в виде суперпозиции операций® выглядит следующим образом:

Переключательные схемы и схемы из функциональных элементов реализуют так называемые конечные автоматы, о которых речь будет идти в дальнейшем.

studfiles.net


Каталог товаров
    .