интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

55. Транзисторы биполярные (устройство, параметры, обозначение, конструкции, применения). Обозначение транзистора на схеме


8. Транзисторы - Условные графические обозначения на электрических схемах - Компоненты - Инструкции

Транзистор (от английских слов tran(sfer) — переносить и (re)sistor — сопротивление) — полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы. Электропроводность эмиттера и коллектора всегда одинаковая (р или n), базы — противоположная (n или р). Иными словами, биполярный транзистор содержит два р-n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

 

Транзисторы Буквенный код транзисторов — латинские буквы VT. На схемах эти полупроводниковые приборы обозначают, как показано на рис. 8.1 [5]. Здесь короткая черточка с линией от середины символизирует базу, две наклонные линии, проведенные к ее краям под углом 60°, — эмиттер и коллектор. Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (см. рис. 8.1, VT1), то это означает, что эмиттер имеет электропроводность типа р, а база— типа n; если же стрелка направлена в противоположную сторону (VT2), электропроводность эмиттера и базы обратная.

  Знать электропроводность эмиттера базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы. Транзистор, база которого имеет электропроводимость типа n, обозначают формулой р-п-р, а транзистор с базой, имеющей электропроводность типа р, обозначают формулой n-р-n. В первом случае на базу и коллектор следует подавать отрицательное по отношению к эмиттеру напряжение, во втором — положительное.    

   Для наглядности условное графическое обозначение дискретного транзистора обычно помещают в кружок, символизирующий его корпус. Иногда металлический корпус соединяют с одним из выводов транзистора. На схемах это показывается точкой в месте пересечения соответствующего вывода с символом корпуса. Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (VT3 на рис. 8.1). В целях повышения информативности схем рядом с позиционным обозначением транзистора допускается указывать его тип.

 

 Линии электрической связи, идущие от эмиттера и коллектора проводят в одном из двух направлений: перпендикулярно или параллельно выводу базы (VT3—VT5). Излом вывода базы допускается лишь на некотором расстоянии от символа корпуса (VT4).

  Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а окружность обозначения корпуса заменяют овалом (рис. 8.1, VT6).

  Стандарт допускает изображать транзисторы и без символа корпуса, например, при изображении бескорпусных транзисторов или когда на схеме необходимо показать транзисторы, входящие в состав сборки транзисторов или интегральной схемы.

 

Транзисторы Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельного прибора, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (В этом случае на поле схемы помещают такую, например, запись: VT1-VT4 К159НТ1), либо используют код аналоговых микросхем (DA) и указывают принадлежность транзисторов в сборке в позиционном обозначении (рис. 8.2, DA1.1, DA1.2). У выводов таких транзисторов, как правило, приводят условную нумерацию, присвоенную выводам корпуса, в котором выполнена матрица.

  Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 8.2 показаны транзисторы структуры п-р-п с тремя и четырьмя эмиттерами).

 

 Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (см. рис. 8.3, VT1, VT2). При повороте УГО положение этого знака должно оставаться неизменным.

  Иначе построено УГО однопереходного транзистора: у него один р-п-переход, но два вывода базы. Символ эмиттера в УГО этого транзистора проводят к середине символа базы (рис. 8.3, VT3, VT4). Об электропроводности последней судят по символу эмиттера (направлению стрелки).

  На символ однопереходного транзистора похоже УГО большой группы транзисторов с p-n-переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью п или р-типа. Сопротивлением канала управляет третий электрод — затвор. Канал изображают так же, как и базу биполярного транзистора, но помещает в середине кружка-корпуса (рис. 8.4, VT1), символы истока и стока присоединяют к нему с одной стороны, затвора — с другой стороны на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора (на рис. 8.4 условное графическое обозначение VT1 символизирует транзистор с каналом п-типа, VT1 — с каналом p-типа).

 

Полевые транзисторы В условном графическом обозначении полевых транзисторов с изолированным затвором (его изображают черточкой, параллельной символу канала с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока. Если стрелка направлена к каналу, то это значит, что изображен транзистор с каналом n-типа, а если в противоположную сторону (см. рис. 8.4, VT3) —  с каналом p-типа. Аналогично поступают при наличии вывода от подложки (VT4), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три коротких штриха (см. рис. 8.4, VT5, VT6). Если подложка соединена с одним из электродов (обычно с истоком), это показывают внутри УГО без точки (VT1, VT8).

  В полевом транзисторе может быть несколько затворов. Изображают их более короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (VT9).

  Линии-выводы полевого транзистора допускается изг[цензура] лишь на некотором расстоянии от символа корпуса (см. рис. 8.4, VT2). В некоторых типах полевых транзисторов корпус может быть соединен с одним из электродов или иметь самостоятельный вывод (например, транзисторы типа КПЗ03).

  Из транзисторов, управляемых внешними факторами, широкое применение находят фототранзисторы. В качестве примера на рис. 8.5 показаны условные графические обозначения фототранзисторов с выводом базы (FT1, VT2) и без него (К73). Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. УГО фототранзистора в этом случае вместе с УГО излучателя (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта — две наклонные стрелки заменяют стрелками, перпендикулярными символу базы.

 

 Оптотранзисторы

 

 Для примера на рис. 8.5 изображена одна из оптопар сдвоенного оптрона (об этом говорит позиционное обозначение U1.1), Аналогично строится У ГО оптрона с составным транзистором (U2).

 

radio-hobby.org

Устройство и маркировка биполярного транзистора

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми приборами и с этой статьи начнем разбираться с транзистором. В этой части мы познакомимся с устройством и маркировкой биполярных транзисторов.

Полупроводниковые транзисторы бывают двух видов: биполярные и полевые.В отличие от полевых транзисторов биполярные получили наиболее широкое применение в радиоэлектронике, а чтобы эти транзисторы как-то отличать друг от друга, биполярные принято называть просто — транзисторами.

1. Устройство и обозначение биполярного транзистора.

Схематично биполярный транзистор можно представить в виде пластины полупроводника с чередующимися областями разной электропроводности, которые образуют два p-n перехода. Причем обе крайние области обладают электропроводностью одного типа, а средняя область электропроводностью другого типа, и где каждая из областей имеет свой контактный вывод.

Если в крайних областях полупроводника преобладает дырочная электропроводность, а в средней области электронная, то такой полупроводниковый прибор называют транзистором структуры p-n-p.

А если в крайних областях преобладает электронная электропроводность, а в средней дырочная, то такой транзистор имеет структуру n-p-n.

А теперь возьмем схематичную часть транзистора и прикроем любую крайнюю область, например, область коллектора, и посмотрим на результат: у нас остались открытыми область базы и эмиттера, то есть получился полупроводник с одним p-n переходом или обычный полупроводниковый диод. О диодах можно почитать здесь.

Если же мы прикроем область эмиттера, то останутся открытыми области базы и коллектора — и также получается диод.

Отсюда возникает вывод, что биполярный транзистор можно представить в виде двух диодов с одной общей областью, включенных навстречу друг другу. При этом общая (средняя) область называется базой, а примыкающие к базе области коллектором и эмиттером. Это и есть три электрода транзистора.

Примыкающие к базе области делают неодинаковыми: одну из областей изготавливают так, чтобы из нее наиболее эффективно происходил ввод (инжекция) носителей заряда в базу, а другую область делают таким-образом, чтобы в нее эффективно осуществлялся вывод (экстракция) носителей заряда из базы.

Отсюда получается:

область транзистора, назначением которой является ввод (инжекция) носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным.

область транзистора, назначением которой является вывод (экстракция) носителей из базы, называется коллектором, и соответствующий p-n переход коллекторным.

То есть получается, что эмиттер вводит электрические заряды в базу, а коллектор их забирает.

Различие в обозначениях транзисторов разных структур на принципиальных схемах заключается лишь в направлении стрелки эмиттера: в p-n-p транзисторах она обращена в сторону базы, а в n-p-n транзисторах – от базы.

2. Технология изготовления биполярных транзисторов.

Технология изготовления транзисторов ни чем не отличается от технологии изготовления диодов. Еще в начальный период развития транзисторной техники биполярные транзисторы делали только из германия методом вплавления примесей, и такие транзисторы называют сплавными.

Берется кристалл германия и в него вплавляются кусочки индия.Атомы индия диффузируют (проникают) в тело кристалла германия, образуя в нем две области p-типа – коллектор и эмиттер. Между этими областями остается очень тонкая (несколько микрон) прослойка полупроводника n-типа, которую именуют базой. А чтобы защитить кристалл от влияния света и механического воздействия его помещают в металлостеклянный, металлокерамический или пластмассовый корпус.

На картинке ниже показано схематическое устройство и конструкция сплавного транзистора, собранного на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу диска – ее наружный проволочный вывод.

Внутренние выводы коллектора и эмиттера приварены к проводникам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Металлический колпак защищает прибор от влияния света и механических повреждений. Так устроены наиболее распространенные маломощные низкочастотные германиевые транзисторы из серии МП37 — МП42.

В обозначении буква «М» говорит, что корпус транзистора холодносварной, буква «П» — это первая буква слова «плоскостной», а цифры означают порядковый заводской номер транзистора. Как правило, после заводского номера ставят буквы А, Б, В, Г и т.д., указывающие на разновидность транзистора в данной серии, например, МП42Б.

С появлением новых технологий научились обрабатывать кристаллы кремния, и уже на его основе были созданы кремниевые транзисторы, получившие наиболее широкое применение в радиотехнике и на сегодняшний день практически полностью вытеснившие германиевые приборы.

Кремниевые транзисторы могут работать при более высоких температурах (до 125ºС), имеют меньшие обратные токи коллектора и эмиттера, а также более высокие пробивные напряжения.

Основным методом изготовления современных транзисторов является планарная технология, а транзисторы, выполненные по этой технологии, называют планарными. У таких транзисторов p-n переходы эмиттер-база и коллектор-база находятся в одной плоскости. Суть метода заключается в диффузии (вплавлении) в пластину исходного кремния примеси, которая может находиться в газообразной, жидкой или твердой фазе.

Как правило, коллектором транзистора, изготовленного по такой технологии, служит пластина исходного кремния, на поверхность которой вплавляют близко друг от друга два шарика примесных элементов. В процессе нагрева до строго определенной температуры происходит диффузия примесных элементов в пластину кремния.

При этом один шарик образует в пластине тонкую базовую область, а другой эмиттерную. В результате в пластине исходного кремния образуются два p-n перехода, образующие транзистор структуры p-n-p. По такой технологии изготавливают наиболее распространенные кремниевые транзисторы.

Также для изготовления транзисторных структур широко используются комбинированные методы: сплавление и диффузия или сочетание различных вариантов диффузии (двусторонняя, двойная односторонняя). Возможный пример такого транзистора: базовая область может быть диффузионная, а коллектор и эмиттер – сплавные.

Использование той или иной технологии при создании полупроводниковых приборов диктуется различными соображениями, связанными с техническими и экономическими показателями, а также их надежностью.

3. Маркировка биполярных транзисторов.

На сегодняшний день маркировка транзисторов, согласно которой их различают и выпускают на производствах, состоит из четырех элементов.Например: ГТ109А, ГТ328, 1Т310В, КТ203Б, КТ817А, 2Т903В.

Первый элемент — буква Г, К, А или цифра 1, 2, 3 – характеризует полупроводниковый материал и температурные условия работы транзистора.

1. Буква Г или цифра 1 присваивается германиевым транзисторам;2. Буква К или цифра 2 присваивается кремниевым транзисторам;3. Буква А или цифра 3 присваивается транзисторам, полупроводниковым материалом которых служит арсенид галлия.

Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах: германий – выше 60ºС, а кремний – выше 85ºС.

Второй элемент – буква Т от начального слова «транзистор».

Третий элемент – трехзначное число от 101 до 999 – указывает порядковый заводской номер разработки и назначение транзистора. Эти параметры даны в справочнике по транзисторам.

Четвертый элемент – буква от А до К – указывает разновидность транзисторов данной серии.

Однако до сих пор еще можно встретить транзисторы, на которых стоит более ранняя система обозначения, например, П27, П213, П401, П416, МП39 и т.д. Такие транзисторы выпускались еще в 60 — 70-х годах до введения современной маркировки полупроводниковых приборов. Пусть эти транзисторы устарели, но они все еще пользуются популярностью и применяются в радиолюбительских схемах.

В рамках этой части статьи мы рассмотрели лишь общие методы изготовления транзисторных структур, чтобы начинающему радиолюбителю было легче понять внутреннее устройство транзистора.

На этом мы закончим, а в следующей части проведем несколько опытов и на их основе сделаем практические выводы о работе биполярного транзистора.Удачи!

Литература:

1. Борисов В.Г — Юный радиолюбитель. 1985г.2. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

sesaga.ru

Условные обозначения полевых транзисторов

В электронике полевым транзистором называется электронный компонент, в котором ток проходящий через канал регулируется электрическим полем, образующимся в результате подачи напряжения между его истоком и затвором. Основным отличием полевого транзистора от транзистора биполярного является то, что выходное и входное сопротивление у него существенно выше.

Плевые транзисторы нередко именуют униполярными, поскольку основным принципом их действия является перемещение при помощи поля носителей зарядов одного и того же типа. Конструктивно эти приборы представляют собой изготовленные из полупроводниковых материалов пластинки одного типа проводимости, на противоположных сторонах которых способом диффузии создается область другого типа проводимости. На их границах образуется обладающий большим сопротивлением p-n-переход.

В полевых транзисторах существуют области полупроводника которые называют каналами. Их поперечное сечение, а вместе с ним и ток носителей заряда изменяются под воздействием электрического поля.

Полевой транзистор принцип работы

Структура полевого транзистора с управляющим p-n-переходом и каналом n-типа

В случае, если между p-областью и n-областью приложить некоторое напряжение Uзи., как показано на рисунке выше, то p-n-переход окажется включенным в обратном направлении, следовательно его толщина увеличится, а толщины канала уменьшается. При этом принято p-область называть затвором полевого транзистора, или же его управляющим электродом. Если к этому каналу подключить еще один источник напряжения Ucи., то через него начнёт протекать ток в направлении от нижнего к верхнему участку n-области. Часть этой области, от которой основные носители зарядов начинают свое движение, называется истоком, а та часть, по направлению к которой они перемещаются – стоком.

Что касается величины тока, который протекает через канал, то определяющим для нее является сопротивление. Оно, в свою очередь, напрямую зависит от толщины канала. Таким образом, если изменяется величина приложенного к каналу напряжения, то вслед за этим происходит изменение величины тока.

В тех случаях, когда для производства этого электронного компонента в качестве основы берут полупроводник p-типа, то получается полевой транзистор, имеющий канал р-типа и управляющий p-n-переход. Канал в нем образуется n-областью.

МДП полевой транзистор

Структура и схема подключения МДП-транзистора с индуцированным каналом

Полевые транзисторы с изолированным затвором

Помимо тех полевых транзисторов, которые имеют в своей конструкции управляющий затвор, имеются и такие, у которых он изолирован. В электронике для обозначения таких транзисторов используют аббревиатуры МОП (металл-оксид-полупроводник) или МДП (металл-диэлектрик-полупроводник). Соответственно, такие приборы называют МОП-транзисторами или МДП-транзисторами.

Для МДП-транзистора характерно то, что в нем между истоком и стоком располагается n-область, представляющая собой подложку. Поэтому образуется два p-n-перехода, которые включены навстречу друг другу. При этом вне зависимости от того, какую именно полярность имеет питающее напряжение, один из этих переходов всегда закрыт, так что в в направлении «исток-сток» ток равен нулю.

Если на затвор подается отрицательное напряжение, то ток в цепи начинает течь. Дело в том, что на расположенные в подложке электроны действует электрическое поле, и они начинают передвигаться вглубь нее.

Существует некоторое пороговое значение напряжения, при котором количество дырок, расположенных у самой поверхности подложки, становится существенно больше, чем электронов. В результате этого происходит так называемая инверсия типа электроповодности: она обретает p-тип. В результате этого между стоком и истоком получается канал, связывающий их. Его толщина зависит от того, какое именно значение имеет приложенное напряжение. Если изменять его, то можно регулировать и толщину канала, поскольку сопротивление участка, располагающегося между истоком и стоком, также будет изменяться.

Обозначения полевых транзисторов на схеме

selectelement.ru

Условное обозначение - транзистор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Условное обозначение - транзистор

Cтраница 1

Условные обозначения транзисторов в их маркировке установлены в следующем виде: первый знак-буква: Г - германиевый; К - кремниевый; второй знак буква Т - транзистор: остальные четыре знака - трехзначное число и буква - шифр, указывающий назначение и модификацию ( разновидность) данного прибора.  [2]

Условное обозначение транзисторов по ГОСТ 5461 - 59 состоит из трех элементов.  [3]

Условное обозначение транзистора показано на рис. 6 - 7 а. На рис. 6 - 7 6 показаны вольт-амперные характеристики участка коллектор-база транзистора типа П-102. Каждая характеристика соответствует определенному значению тока, протекающего по участку эмиттер - база. Из рассмотрения этих характеристик мы еще раз убеждаемся, что величина тока / к, протекающего по участку коллектор-база, практически не зависит от величины напряжения UK, падающего на этом участке, целиком определяется величиной тока эмиттера. Когда ток эмиттера / э равен нулю, по коллекторной цепи протекает небольшой остаточный ток / ко.  [4]

Условное обозначение транзистора показано на рис. 8.44, а, где к - коллектор, э - эмиттер, б - база.  [5]

Условные обозначения транзисторов обоих типов в электрических схемах приведены на рис. 4 - 1, а. Буквы у выводов транзисторов означают: Э - эмиттер, Б - база, К - коллектор. Кружок у транзистора ( на рисунке показан только у транзистора р-п - р) означает, что кристалл помещен в корпус. По ГОСТ допустимы оба обозначения для транзисторов, имеющих корпус.  [6]

Условное обозначение транзистора IGBT, приведенное на рис. 6.2, указывает, что в его составе есть полевая и биполярная части.  [7]

В условных обозначениях транзисторов стрелкой указывается направление тока эмиттера.  [9]

На условном обозначении транзистора стрелка показывает условное направление тока в эмиттере от плюса к минусу.  [10]

Принятые в нашей стране условные обозначения транзисторов содержат сведения об их назначении, физических и конструктивно-технологических свойствах, основных электрических параметрах, применяемом исходном материале.  [11]

На рис. 7.16 иг даны условные обозначения транзисторов. Принцип работы транзисторов обоих типов аналогичен.  [12]

На рис. 4.1 5 показаны условные обозначения транзисторов. Эмиттер изображается в виде стрелки, которая указывает направление тока эмиттерного перехода.  [14]

На рис. 4.1, б показаны условные обозначения транзисторов. Эмиттер изображается в виде стрелки, которая указывает прямое направление тока эмиттерного перехода.  [15]

Страницы:      1    2    3

www.ngpedia.ru

55. Транзисторы биполярные (устройство, параметры, обозначение, конструкции, применения).

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Основная схема структуры биполярного транзистора представлена на рис. 1.

Рис. 1. Простейшая схема устройства транзистора

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — бо́льшая площадь p-n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы. Условное обозначение биполярного транзистора приведено на рис. 2

Рис. 2. Условное обозначение биполярного транзистора

Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n- и p-n-p-транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевых, основными носителями являются и электроны, и дырки (от слова «би» — «два»).

Биполярные транзисторы используются для усиления и коммутации сигналов и обычно работают в активном режиме, т.е. когда переход база-эмиттер открыт, а база-коллектор закрыт. При этом ток коллектора будет протекать через оба перехода, а ток базы только через переход база-эмиттер. Таким образом, ток эмиттера будет равен сумме токов базы и коллектора (Iэ=Iб + Iк).

Для понимания принципа работы, рассмотрим n-p-n-транзистор, все рассуждения повторяются абсолютно аналогично для случая p-n-p- транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n-транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные

носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α=0.9–0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен:

β = α / (1−α) =(10÷1000).

Также коэффициент β может быть выражен как отношение приращения

тока коллектора к приращению тока базы:

Таким образом, изменяя малый ток базы, можно управлять значительно

большим током коллектора.

Схемы включения биполярного транзистора

Существует несколько схем включения биполярного транзистора:

  1. Схема включения с общей базой;
  2. Схема включения с общим эмиттером;
  3. Схема включения с общим коллектором;

Любая схема включения транзистора характеризуется такими

основными показателями:

  1. Коэффициент усиления по току ΔIвых\ΔIвх;
  2. Входное сопротивление Rвх=ΔUвх\ΔIвх;
  3. Выходное сопротивление Rвых.

malishev.info

Обозначение транзисторов на принципиальных схемах. Маркировка транзисторов. Классификация транзисторов.

Различают транзисторы биполярные и полевые. Биполярный транзистор — трёхэлектродный полупроводниковый прибор. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы, n (negative) — электронный тип примесной проводимости, p (positive) — дырочный. В биполярном транзисторе основными носителями являются и электроны, и дырки. Схематическое устройство транзистора показано на рисунке 6.Электрод, подключённый к центральному слою, называют базой, элек-троды, подключённые к внешним слоям, называют коллектором и эмитте-ром. На простейшей схеме различия между коллектором и эмиттером не видны. Главное отличие коллектора — большая площадь p-n перехода. Для работы транзистора абсолютно необходима малая толщина базы.Рис. 6

Рис. 7Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).Полевые транзисторы имеют большое входное сопротивление. Подразделяются на полевые транзисторы 1) с управляющим p-n переходом (рис. 7а) и 2) с изолированным затвором (рис. 7б). Полевые транзисторы с изолированным затвором в свою очередь подразделяются на транзисторы 1) со встроенным каналом и 2) с индуцированным каналом.Транзисторы, как правило, имеют три вывода. Вывод, от которого в канал приходят основные носители заряда, называется истоком. Вывод, к которому носители заряда приходят из канала, называется стоком. Вывод, на который подается управляющее напряжение относительно истока или стока, называется затвором. Полевыми транзисторы называют потому, что управление током в выходной цепи транзистора осуществляется электрическим полем во входной цепи. Канальными транзисторы называют потому, что ток в выходной цепи транзистора протекает через его канал. Униполярными транзисторы называют потому, что в работе транзистора принимают носители одной полярности. В условных обозначениях полевых транзисторов на принципиальных схемах стрелка направлена к каналу n-типа, или от канала p-типа. Индуцированный (наведенный электрическим полем) канал, обозначается пунктиром (рис. 7в).

Рис. 8 Цветовая маркировка транзисторов

Рис. 9. Условное графическое обозначение биполярного транзистора струк-туры n-p-n

Рис. 10.Условное графическое обозначение биполярного транзистора структуры p-n-p

Рис. 11. Условное графическое обозначение полевого транзистора с p-n-переходом и каналом n-типа

Рис.12. Условное графическое обозначение полевого транзистора с p-n-переходом и каналом p-типа

Рис.13. Условное графическое обозначение полевого транзистора со встро-енным p-каналом обедненного типа.

Рис. 14. Условное графическое обозначение полевого транзистора со встро-енным n-каналом обогащенного типа.

Рис. 15. Условное графическое обозначение полевого транзистора с индуцированным p-каналом обогащенного типа.

Рис. 16 — Условное графическое обозначение полевого транзистора с индуцированным n-каналом обогащенного типа.

Рис. 17. Обозначение транзистора с барьером Шотки (транзистор Шотки).

Рис. 18. Обозначение многоэмиттерного транзистора.Транзистор с барьером Шотки и многоэмиттерный транзистор встречаются лишь в микроэлектронике.

Рис. 19. Условное графическое обозначение фототранзистора

morez.ru

Что такое транзистор и для чего нужен транзистор

До сих пор мы изучали радиоэлектронные компоненты, которые имеют только два вывода, такие как резисторы, конденсаторы, аккумуляторы, светодиоды и переключатели и так далее.

Транзисторы же имеют в своем составе три вывода. Транзисторы бывают разных типов, форм и размеров. По большей части, все они работают одинаково, лишь с небольшими отличиями в зависимости от типа.

Большую же часть всех транзисторов составляют биполярные  и полевые транзисторы. В данной статье, для объяснения, того что такое транзистор и для чего нужен транзистор, в качестве примера мы будет использовать полевой (FET) транзистор, поскольку его работа  более понятна и это знание более полезно. Почти все, что вы узнаете здесь, так же с успехом можно применить к биполярным транзисторам.

Условное обозначение транзисторов и внешний вид транзисторов

Ниже приведено условное обозначение транзистора на схеме, и несколько примеров того, как выглядит транзистор:

Полевой транзистор (FET)

Внешний вид транзисторов

 схематичное изображение транзистора  внешний вид транзистора

Обратите внимание, что три вывода на схеме обозначены как  G (Gate) — Затвор , S (Source) – Исток  и D (Drain) — Сток.

Корпус транзисторов

На рисунке выше, изображены три разных типа корпуса транзисторов. Тип корпуса слева обозначается как ТО-92 , корпус посередине ТО-220 , и корпус справа именуется как транзистор в металлическом корпусе.

Что касается металлического корпуса, то он практически больше не применяется. Транзисторы малой и средней мощности выпускаются в корпусе ТО-92, в то время как мощные изготавливаются в ТО-220.

Ниже представлено наиболее распространенные сопоставления выводов полевого транзистора в корпусах  ТО-92 и ТО-220.

Корпус ТО-92 Корпус ТО-220
 корпус транзистора ТО-92  Корпус ТО-220

Транзистор в качестве переключателя

Транзисторы можно рассматривать как электронные коммутаторы. Транзистор используется для включения различных устройств, таких как двигатели, фонари и так далее. Так же, как и выключатель света в комнате, транзистор может включать и выключать лампочку накаливания.

Это достаточно удобно, так как небольшой источник напряжения может быть использован для коммутации большого источника напряжения. Давайте рассмотрим это на простом примере с использованием обычной лампочкой.

что такое транзистор. транзистор в качестве включателя лампы

На рисунке выше  мы имеем транзистор, подключенный к лампочке и к двум различным источникам питания. Давайте сперва посмотрим на левую половину схемы:

  • Минус низковольтной батареи  подсоединен к истоку транзистора.
  • Плюс низковольтной батареи  подсоединен к затвору транзистора.

В этой конфигурации  транзистор открыт. Вы можете видеть, как небольшой ток протекает через транзистор от затвора к истоку. Теперь давайте посмотрим на правую половину схемы:

  • Минус высоковольтной батареи  подсоединен к истоку транзистора.
  • Плюс высоковольтной батареи подключен к одному из выводов лампочки.

Другой вывод лампочки подключен к стоку транзистора.

Поскольку транзистор открыт, то больший ток  протекает через лампочку, далее через транзистор от стока к истоку. Если вы отключите низковольтную батарею от транзистора, то транзистор закроется, а лампочка погаснет.

chto-takoe-tranzistor-i-dlya-chego-nuzhen-tranzistor6

Обратите внимание, что транзистор здесь работает в качестве ключа, включая и выключая лампочку под действием низковольтного напряжения.

Данная схема не особо полезна на практике. Однако, когда мы заменим низковольтную батарею другим источником напряжения, то транзисторный ключ становится намного интереснее.

Вместо того чтобы переключать транзистор с помощью низковольтной батареи, мы можем включать его и выключать с помощью других источников напряжения. В качестве примера приведем несколько источников сигнала, способных влиять на переключения транзистора:

  • Микрофон, создающий переменный электрический сигнал в зависимости от уровня звука.
  • Солнечная батарея, вырабатывающая постоянное напряжение при освещении ее поверхности.
  • Датчик влажности.

Обратите внимание, что все перечисленные выше датчики реагирует на различные источники сигнала. Используя их слабое выходное напряжение   можно управлять гораздо более мощным устройством.

Следующий пример применения транзистора

В данном примере мы имеем микрофон, соединенный с затвором полевого транзистора и лампу накаливания, подключенную к транзистору и повышенному источнику питания. Теперь при улавливании звука микрофоном, лампочка будет загораться. И чем громче будет звук, тем ярче будет светиться лампа.

chto-takoe-tranzistor-i-dlya-chego-nuzhen-tranzistor7

Это происходит потому, что микрофон создает напряжение, поступающее на затвор полевого транзистора. При появлении сигнала на затворе происходит отпирание транзистора, в результате чего через транзистор начинает течь ток от стока к истоку.

Фактически, в этой схеме полевой транзистор играет роль усилителя сигнала. Для еще большего усиления можно использовать еще один транзистор.

Примечание: в этой схеме мы  использовали громкоговоритель в качестве микрофона, так как динамик  генерирует более сильное напряжение по сравнению с Электродинамическим микрофоном.

Данная схема аналогична предыдущей, только теперь вместо лампы подключен электродвигатель. Это позволяет  управлять скоростью вращения электродвигателя силой звука поступающего в динамик.

 chto-takoe-tranzistor-i-dlya-chego-nuzhen-tranzistor8

Чем громче вы кричите в микрофон, тем быстрее двигатель будет вращаться.

Транзистор в режиме инвертора

До сих пор все наши примеры были основаны на включении нагрузки при подаче напряжения на затвор транзистора. Транзистор так же может работать и в инверсном режиме, это когда он проводит ток при отсутствии входного напряжения на затворе.

Рассмотрим данный режим работы транзистора на примере простой охранной сигнализации, издающей звук при обрыве тонкого провода охранного шлейфа.

Сперва, мы должны с типами полевых транзисторов. Все транзисторы бывают двух разных типов проводимости: P-канальный  и N-канальный.

N-канальный

P-канальный
 n канальный транзистор  P-канальный полевой транзистор
Транзистор открыт при подаче напряжения   на затвор

Транзистор заперт  при подаче напряжения на затвор

Единственная разница в символьном обозначении является направление стрелки затвора.

До сих пор все наши примеры были связаны с полевым транзистором N-канальным. Транзисторы данного типа доминируют в радиоэлектронных схемах, поскольку они дешевле в производстве. Тем не менее, в следующем примере   мы используем   Р-канальный полевой транзистор.

chto-takoe-tranzistor-i-dlya-chego-nuzhen-tranzistor11

Помните, что Р-канальный полевой транзистор находится в закрытом состоянии в тот момент, когда на его затворе находится управляющее напряжение. Поэтому, как видно из вышеприведенной схемы, звуковой генератор (buzzer) будет в выключенном состоянии до тех пор, пока провод цел. Как только провод будет разорван, напряжение на затворе   пропадет,  и транзистор начнет пропускать ток, и активирует звуковой генератор.

Пока охранный шлейф не оборван, основная аккумуляторная батарея бездействует и тем самым сохраняет свой заряд. В тоже время, для обеспечения напряжения на затворе транзистора необходимо ничтожно малый ток малой батареи, и ее хватит на очень длительный срок.

Мы так же можем   оптимизировать данную схему и использовать всего один источник питания. Все, что мы должны сделать, это подключить охранный шлейф к затвору и плюсу большой батареи и исключить малую батарею.

перевод: http://efundies.com/

fornk.ru


Каталог товаров
    .