интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Расчет токов в сложной электрической цепи методом законов Кирхгофа. Как определяют число независимых узлов в сложной разветвленной схеме


Определение числа независимых узлов и контуров

Главным сечением графа называется такое сечение, в которое входит только одна ветвь выбранного дерева. Остальные ветви, входящие в главное сечение, яв ляются связями (рис. 1.35). Число главных сечений равно числу ветвей дерева:m = q

— 1.

Каждому дереву может быть поставлена в соответствие своя система глав­ ных сечений, причем главные сечения, соответствующие выбранному дереву, отли­ чаются друг от друга, по крайней мере, одной ветвью— ветвью дерева, входящей в каждое из сечений. Главным сечениям графа присваивают номера и приписывают ориентацию, совпадающие с номером соответствующей ветви дерева и ее ориента цией относительно линии сечения.

Если одна из частей, на которые граф делится линией сечения, представляет собой изолированный узел, то соответствующее сечение называется каноническим (сечения3 и6 на рис. 1.35,а).

Рис. 1.35. Главные сечения графа рис. 1.27, соответствующие деревьям, приведенным:

а — на рис. 1.32, а; б — на рис. 1.32, б; в — на рис. 1.32, в

Для определения числа независимых узлов и независимых контуров электри ческой цепи и, следовательно, числа независимых уравнений, составляемых на ос новании законов Кирхгофа, воспользуемся тем обстоятельством, что для линейной независимости системы уравнений достаточно, чтобы каждое из входящих в систе му уравнений отличалось от остальных уравнений хотя бы одной переменной. Дей ствительно, если любое из входящих в систему уравнений содержит хотя бы одну переменную, отсутствующую в других уравнениях, то данное уравнение не может быть получено из других входящих в систему уравнений и, следовательно, система уравнений является линейно независимой. Таким образом, для линейной независи мости уравнений, составленных на основании первого закона Кирхгофа, достаточ но, чтобы каждое из уравнений баланса токов отличалось от других уравнений хотя бы одним током или, что то же самое, чтобы каждый из узлов или каждое из сече ний, для которых составляется уравнение баланса токов, отличались бы от других узлов или сечений хотя бы одной ветвью. Этому условию удовлетворяет система главных сечений графа, так как каждое из главных сечений, соответствующих вы бранному дереву, отличается от других главных сечений, по крайней мере, одной

studfiles.net

Метод контурных токов: примеры решения задач

Содержание:
  1. Основная суть метода контурных токов
  2. Применение метода контурных токов для расчета цепи
  3. Видео

В каждой электрической цепи имеются так называемые Р - ребра (они же ветви, звенья, участки) и У – узлы. Для ее описания существует система уравнений, в которых используются два правила Кирхгофа. В них, в качестве независимых переменных, выступают токи ребер. Поэтому количество независимых переменных будет равно количеству уравнений, что дает возможность нормального разрешения данной системы.

На практике используются определенные методики, направленные на сокращение числа уравнений. Среди них очень часто используется метод контурных токов, позволяющий выполнять сложные расчеты и получать довольно точные результаты.

Суть метода контурных токов

Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.

Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.

Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.

Другим способом расчетов служит метод выделения максимального дерева. Само дерево представлено в виде подмножества звеньев электрической цепи и является односвязным графом, в котором отсутствуют замкнутые контуры. Для того чтобы оно появилось, из цепи постепенно исключаются некоторые звенья. Дерево становится максимальным, когда к нему добавляется любое исключенное звено, в результате чего образуется контур.

Применение метода выделения максимального дерева представляет собой последовательное исключение из цепи заранее установленных звеньев в соответствии с определенными правилами. Каждый шаг в цепи предполагает произвольное исключение одного звена. Если такое исключение нарушает односвязность графа, разбивая его на две отдельные части, в этом случае звено может возвратиться обратно в цепь. Если граф остается односвязным, то и звено остается исключенным. В конечном итоге, количество звеньев, исключенных из цепи, оказывается равным количеству независимых контуров, расположенных в схеме. Получение каждого нового независимого контура связано с присоединением к электрической цепи конкретного исключенного звена.

Применение метода контурных токов для расчета цепи

В соответствии с этой методикой, неизвестными величинами являются расчетные или контурные токи, предположительно протекающие во всех независимых контурах. В связи с этим, все неизвестные токи и уравнения в системе, равны количеству независимых контуров электрической цепи.

Токи ветвей в соответствии с данным методом рассчитываются следующим образом:

  • В первую очередь вычерчивается схема цепи с обозначением всех ее элементов.
  • Далее определяется расположение всех независимых контуров.
  • Направления протекания контурных токов задаются произвольно по часовой или против часовой стрелки в каждом независимом контуре. Они обозначаются с использованием цифровых или комбинированных символов.
  • В соответствии со вторым законом Кирхгофа, затрагивающего контурные токи, составляются уравнения для всех независимых контуров. В записанном равенстве направления обхода контура и контурного тока этого же контура совпадают. Необходимо учитывать и то обстоятельство, что в ветвях, расположенных рядом, протекают собственные контурные токи. Падение напряжения потребителей берется отдельно от каждого тока.
  • Следующим этапом является решение полученной системы любым удобным методом, и окончательное определение контурных токов.
  • Нужно задать направление реальных токов во всех ветвях и обозначить их отдельной маркировкой, чтобы не перепутать с контурными.
  • Далее нужно от контурных токов перейти к реальным, исходя из того, что значение реального тока конкретной ветви составляет алгебраическую сумму контурных токов, протекающих по этой ветви.

Если направление контурного тока совпадает с направлением реального тока, то при выполнении алгебраического суммирования математический знак не меняется. В противном случае значение контурного тока нужно умножить на -1.

Метод контурных токов очень часто применяется для расчетов сложных цепей. В качестве примера для приведенной схемы нужно задать следующие параметры: Е1 = 24В, Е2 = 12В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Для решения этой сложной задачи составляются два уравнения, соответствующие двум независимым контурам. Направление контурных токов будет по часовой стрелке и обозначается I11 и I22. На основании второго закона Кирхгофа составляются следующие уравнения:

После решения системы получаются контурные токи со значением I11 = I22 = 3 А. Далее произвольно обозначается направление реальных токов, как I1, I2, I3. Все они имеют одинаковое направление – вверх по вертикали. После этого выполняется переход от контурных к реальным. В первой ветви имеется течение только одного контурного тока т I11. Его направление совпадает с реальным током, поэтому I1 + I11 = 3 А.

Формирование реального тока во второй ветке осуществляется за счет двух контурных токов I11 и I22. Направление тока I22 совпадает с реальным, а направление I11 будет строго противоположно реальному. Таким образом, I2 = I22 - I11 = 3 - 3 = 0 А. В третьей ветке I3 наблюдается течение лишь контурного тока I22. Его направление будет противоположным направлению реального тока, поэтому в данном случае расчеты выглядят следующим образом: I3 = -I22 = -3А.

Основным положительным качеством метода контурных токов по сравнению с вычислениями по законам Кирхгофа, является значительно меньшее количество уравнений, используемых для вычислений. Тем не менее, здесь присутствуют определенные сложности. Например, реальные токи ветвей не всегда удается определить быстро и с высокой точностью.

electric-220.ru

2.5.1. Метод непосредственного применения законов Кирхгофа

Пример . Методом непосредственного применения законов Кирхгофа рассчитать токи в схеме на рис.

Число ветвей обозначим m, а число узлов n. Произвольно выбираем положительные направления токов в ветвях и направления обхода контуров. Поскольку в каждой ветви протекает свой ток, то число токов, которое следует определить, а следовательно, и число уравнений, которое нужно составить, равно m. По первому закону Кирхгофа составляем n-1 уравнений. Недостающие m-(n-1) уравнений следует составить по второму закону Кирхгофа для взаимно независимых контуров.

Рис. 2.20. Схема замещения сложной электрической цепи с несколькими источниками энергии: I, II, III – номера контуров

1. Проводим топологический анализ.

Она содержит пять ветвей и три узла, m = 5, n = 3. Составляем два уравнения по первому закону Кирхгофу, т. к. n – 1 = 2 (например, для узлов а и б).

2. Составляем уравнения по певому и второму законам Кирхгофа

Для узла "а" - I1 - I2 + I4 = 0.

Для узла "б" - I1 + I2 - I3 - I5 = 0.

Остальные m - (n - 1) = 3 уравнения составляем по второму закону Кирхгофа.

Для контура I - R1·I1 - R2·I2 = - E1 + E2.

Для контура II - R2·I2 + R3·I3 + R4·I4 = - E2 - E3.

Для контура III - - R3·I3 + R5·I5 = E3.

Решив систему, состоящую из пяти уравнений, находим пять неизвестных токов. Если какие-либо значения токов оказались отрицательными, то это означает, что действительные направления этих токов противоположны первоначально выбранным.

При расчётах сложных цепей с использованием ЭВМ удобна матричная форма записи. Уравнения, составленные по законам Кирхгофа, запишем в виде

- I1 - I2 + 0 + I4 + 0 = 0

I1 + I2 - I3 + 0 - I5 = 0

R1·I1 - R2·I2 + 0 + 0 + 0 = - E1 + E2

0 + R2·I2 + R3·I3 + R4·I4 + 0 = - E2 - E3

0 + 0 + - R3·I3 + 0 + R5·I5 = E3.

В матричной форме

или [R]·[I] = [Е],

где [R] – квадратная (5 х 5) матрица, элементами которой являются коэффициенты при неизвестных токах в исходных уравнениях;

[I] – матрица - столбец неизвестных токов;

[E] – матрица - столбец, элементами которой могут быть алгебраическая сумма ЭДС.

Решение матричного уравнения ищут в виде

[I] = [R]-1·[E],

где [R]-1 – матрица, обратная матрице [R].

Рассмотренный метод расчета неудобен, если в цепи имеется большое количество узлов и контуров, поскольку потребуется решать громоздкую систему уравнений. В таких случаях рекомендуется применять метод контурных токов, позволяющий значительно сократить число расчетных уравнений 2.

Метод контурных токов

Метод основан на 2-м законе Кирхгофа. При его использовании в составе анализируемой схемы выбирают независимые контуры и предполагают, что в каждом из контуров течет свой контурный ток. Для каждого из независимых контуров составляют уравнение по 2-му закону Кирхгофа и их решают. Токи в ветвях находят как алгебраическую сумму контурных токов, протекающих по данной ветви.

Все источники сигналов, представленные источниками тока, заменяют источниками ЭДС (рис. 4.29).

Эта схема эквивалентна, если

а)E = IZiI;

б) ZiII = ZiI.

1) Топологический анализ схемы.

а) Как и в предыдущем методе, определяют число ветвей b.

б) Определяют число узлов у.

в) Подсчитывают число независимых контуров Nk = b – y + 1.

Все независимые контуры обозначены дугами со стрелками на них, которые показывают положительное направление обхода.

Все контуры нумеруют и каждому контуру присваивают свой контурный ток: Ik1; Ik2;IkNk.

За положительное направление контурного тока принимают положительное направление обхода контура.

2) По второму закону Кирхгофа относительно контурных токов записывают уравнения, которые после приведения подобных членов образуют систему линейных уравнений Nk = Nkпорядка:

где Iki– контурный токi-го контура;

Zii– собственное сопротивлениеi-го контура и равно алгебраической сумме сопротивлений, входящих вi-й контур;

Zji– сопротивление смежных ветвей междуi-м иj-м контурами. Оно представляет собой алгебраическую сумму, причем ее члены берутся со знаком «+», если контурные токи направлены одинаково, и со знаком «–», если они направлены встречно;

Eki– контурная ЭДСi-ого контура. Она равна алгебраической сумме ЭДС, входящих вi-й контур. Контурная ЭДСEkiберется со знаком «+», когда направление источника ЭДС и направление тока совпадают, и со знаком «–», если они направлены встречно.

3) По правилу Крамера находят контурные токиIki=.

4) Токи в ветвях находят как алгебраическую сумму контурных токов, протекающих через данную ветвь. В алгебраической сумме контурные токи берутся со знаком «+» , если ток ветви и совпадает с контурным током и «–» если не совпадает.

Если токи ветви оказались положительными, то выбранное направление тока совпадает с истинным и наоборот.

Пример.Дана комплексная схема замещения электрической цепи (рис. 4.30). Определить токи во всех ветвях.

1. Проводим топологический анализ

а) b= 6; б)y= 4;в)Nk= 6 – 4 + 1=3.

2) Составим систему уравнений по методу МКТ

где:

E11= E1; E22 = 0;E33 = 0.

3) По методу Крамера находим контурные токи Iki = .

4) Находим токи в ветвях: I1 = Ik1; I2 = = Ik1 – Ik2; I3 = Ik1 – Ik3; I4 = –Ik2 + Ik3; I5 = Ik2; I6 = Ik3.

Пример 2. Рассмотрим электрической цепи постоянного тока, рис. 2.21.

1. Проводим топологический анализ

а) b= 5; б)y= 3;в)Nk= 5 – 3 + 1=3.

2) Для каждого контура записывают уравнение второго закона Кирхгофа,

Рис. 2.21. – Расчетная схема для метода контурных токов

В каждом из трех контуров протекает свой контурный ток J1, J2, J3. Произвольно выбираем направление этих токов, например, по часовой стрелке. Составляем уравнения по второму закону Кирхгофа для каждого контура с учетом соседних контурных токов, протекающих по смежным ветвям

(R1 + R2)·J1 - R2·J2 = E2 - E1

- R2·J1 + (R2 + R3 + R4)·J2 - R3·J3 = - E2 - E3

- R3·J2 + (R3 + R5)·J3 = E3.

Решив систему уравнений, находят контурные токи J1, J2, J3. Затем определяют реальные токи в ветвях, причем токи во внешних ветвях равны контурным, а в смежных – алгебраической сумме 2-х контурных токов, протекающих в данной ветви

I1 = J1; I2 = J2 - J1; I3 = J2 - J3; I4 = J2; I5 = J3.

Исходная система уравнений в матричной форме

или

[R]·[J] = [E],

где [R] – квадратная матрица коэффициентов контурных токов;

[J] – матрица – столбец контурных токов; [E] – матрица – столбец ЭДС.

Решением матричного уравнения является матрица

[J] = [R]-1 ·[E],

где [R]-1 – матрица, обратная матрице [R]

  • Пример 3. Для электрической цепи, схема которой приведена на рис. 1.1, получим следующие уравнения:

получим следующие уравнения:

По методу Крамера найдем контурные токи:

Действительные токи в ветвях: I1 = Ik1; I2 = Ik2 – Ik1; I3 = Ik2.

Пример 4. Расчет цепи методом контурных токов на рис. 2.22.

Рис. 2.22. – Расчет цепи методом контурных токов

Для схемы замещения электрической цепи, показанной на рис. 2.22, задано: E1 = 30 B; E2 = 10 В; R1 = 8 Ом; R2 = 15 Ом; R3 = 36 Ом. Требуется определить токи в ветвях методом контурных токов. Составить баланс мощности.

Схема содержит три ветви (m = 3), два узла (n = 2). Выбираем положительные направления токов в ветвях произвольно. Число уравнений, составленных по методу контурных токов, равно m - (n - 1) = 2. Задаем направление контурных токов (например, по часовой стрелке) и составляем систему уравнений

(R1 + R2)·J1 - R2·J2 = E1 - E2

- R2·J1 + (R2 + R3)·J2 = E2.

Подставляя численные значения сопротивлений резисторов и ЭДС в приведённые уравнения, находим контурные токи J1, J2 (Например, методом определителей)

20 = 23·J1 – 15·J2

10 = - 15·J1 + 51·J2

Токи в ветвях

I1 = J1 = 1,23 А; I2 = - J2 + J1 = 1,23 - 0,56 = 0,67 А; I3 = J2 = 0,56 А.

Составляем баланс мощностей.

Мощность генераторов (источников)

РИ = Е1·I1 - Е2·I2 = 30·1,23 – 10·0,67 = 30,2 Вт,

где произведение Е2·I2 имеет знак минус (ток через источник не совпадает с ЭДС, значит источник ЭДС работает в режиме потребителя электрической энергии).

Мощность, потребляемая нагрузкой, составляет

РН = R1·I12 + R2·I22 + R3·I32 = 8·1,232 + 15·0,562 + 36·0,562 = 30,13 Вт.

Погрешность

составляет менее 1%, т. е. токи найдены верно.

Метод узловых потенциалов (МУП)

Метод основан на применении первого закона Кирхгофа. В нем за неизвестные величины принимают потенциалы узлов. По закону Ома определяют токи во всех ветвях схемы.

Все источники ЭДС, имеющиеся в схеме, заменяют источниками тока (рис. 4.31).

а) I = E/ZiI;

б) ZiII = ZiI.

1) Топологический анализ.

а) Подсчитывают число ветвей bи число узловy.Определяется количество независимых узловNy =y – 1.

б) Нумеруют все узлы. Один из узлов, к которому сходится наибольшее число ветвей, считают нулевым, где – потенциал нулевого узла.

2) По 1-му закону Кирхгофа составляют уравнения для Nузлов схемы и решают их относительно потенциалов узлов:

,

где Yii– собственная узловая проводимость. Она равна сумме проводимостей всех ветвей, сходящихся вi-м узле, все они берутся со знаком «+»;

Yij– межузловая проводимость междуi-м иj-м узлами. Проводимости всех узлов берутся со знаком «–»;

Iii– алгебраическая сумма токов источников тока, сходящихся вi-м узле. Втекающие токи записываются в эту сумму со знаком «+», а вытекающие – со знаком «–».

3) Потенциалы узлов находят по формуле Крамера

.

4) Токи в ветвях находят по закону Ома

I= (1 –2)/Z.

Пример.Дана электрическая цепь (рис. 4.32). Рассчитать токи во всех ветвях.

П

I2

Z2

редварительно преобразуем все источники напряжения (рис. 4.32) в источники тока (рис. 4.33).

Z1

Z2

Z3

Z4

E1

E2

I

I1

I2

I4

I

I3

I1

Z1

Z3

Z4

Рис. 4.32 Рис. 4.33

Проведем топологический анализ.

а) число ветвей b= 4;

б) число независимых узлов Nу= 2, их потенциалы: φ1и φ2(рис. 4.33).

Составим систему уравнений по методу узловых потенциалов:

;

.

По методу Крамера найдем потенциалы узлов .

По закону Ома найдем токи во всех ветвях схемы:

.

  1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ по теме цепи переменного тока

studfiles.net

Расчет токов в сложной электрической цепи методом законов Кирхгофа

Если известны величины всех сопротивлений электрической цепи, а также величины и направления всех ЭДС, то токи в ветвях можно определить, используя законы Кирхгофа. При этом рекомендуется придерживаться следующего алгоритма расчета:

1) проводят топологический анализ цепи, то есть определяют количество узлов, ветвей и линейно независимых контуров в схеме;

2) произвольно выбирают положительные направления токов во всех ветвях схемы и обходов контуров;

3) составляют необходимое количество уравнений по первому закону Кирхгофа;

4) составляют на основании второго закона Кирхгофа недостающие уравнения;

5) полученная система уравнений записывается в алгебраической и матричной формах записи и решается любым способом.

Число совместно решаемых уравнений, составленных по законам Кирхгофа, равно количеству ветвей с неизвестными токами. Из них число уравнений, составляемых по первому закону Кирхгофа, на одно меньше чем количество узлов в схеме. Остальные недостающие уравнения составляются по второму закону Кирхгофа, и их количество соответствует числу элементарных контуров.

Если в результате решения составленной системы уравнений значение какого-либо тока получится отрицательным, то это значит, что действительное направление этого тока противоположно ранее выбранному.

По найденным значениям токов определяются напряжения на участках схемы и расходуемые в них мощности.

Для схемы рис.1.11 составим систему уравнений на основании законов Кирхгофа.

Рис. 1.11

Схема содержит шесть ветвей с неизвестными токами, четыре узла и три элементарных контура. По первому закону Кирхгофа составляем три уравнения, то есть на одно меньше, чем количество узлов в схеме, а недостающие три уравнения составляем по второму закону Кирхгофа для трех элементарных контуров, направления обходов которых показаны на рис. 1.11.

Узел 1:

Узел 2:

Узел 3:

Контур I:

Контур II:

Контур III:.

Запишем полученную систему уравнений в матричной форме:

Рассчитав главный определитель и шесть вспомогательныхопределителей, токи ветвей находятся.

Потенциальная диаграмма

Потенциальная диаграмма представляет собой график распределения потенциала вдоль какого-либо участка цепи или замкнутого контура.

При построении потенциальной диаграммы один из узлов схемы принимается в качестве опорного и потенциал этого узла считают равным нулю. Относительно опорного узла просчитываются потенциалы других точек схемы и в прямоугольной системе координат строится потенциальная диаграмма.

По оси абсцисс в выбранном масштабе сопротивлений mRоткладывают сопротивления в том порядке, в каком они встречаются при обходе цепи. По оси ординат в выбранном масштабе для потенциаловmφоткладываются значения рассчитанных потенциалов.

Рассмотрим построение потенциальной диаграммы для одного контура электрической цепи (рис. 1.6), содержащего два источника ЭДС Е1и Е3с внутренними сопротивлениямиrВ1иrВ3. Схема рассматриваемого контура представлена на рис. 1.12. Укажем в контуре точки таким образом, чтобы между двумя соседними был включен только один элемент.

Между точками 1 -3 и точками 5-7 включены реальные источники ЭДС с внутренним сопротивлением, представленные на схеме в виде последовательного соединения идеального источника ЭДС и его внутреннего сопротивления.

Примем потенциал точки 1 равным нулю (φ1=0). Потенциал точки 2 больше потенциала точки 1 на величину ЭДС Е1, так как распределение потенциалов на зажимах источника ЭДС не зависит от тока, протекающего через него, и ЭДС всегда направлена в сторону большего потенциала:

.

ток через внутреннее сопротивление источникаrВ1протекает от точки с большим потенциалом к точке с меньшим потенциалом, то есть от точки 2 к точке 3, поэтому потенциал точки 3 по отношению к потенциалу точки 2 меньше на величину напряжения на внутреннем сопротивлении источника ЭДСrВ1:.

Потенциал точки 4 по сравнению с потенциалом точки 3 уменьшается на величину напряжения на сопротивлении R1, так как ток на этом участке протекает от точки 3 к точке 4, то есть от точки с большим потенциалом к точке с меньшим потенциалом:.

Аналогично рассчитываются потенциалы остальных точек контура. Необходимо заметить, что при правильном расчете токов в схеме потенциал точки 1 должен получиться равным нулю:

,,,

На рис. 1.13 показана потенциальная диаграмма для рассматриваемого контура.

Пользуясь потенциальной диаграммой, можно определить напряжение между двумя любыми точками схемы.

Как видно на потенциальной диаграмме, напряжение на зажимах источника ЭДС Е1меньше значения его ЭДС на величину напряжения на внутреннем сопротивленииrВ1:

.

Говорят, что такой источник работает в режиме генератора, при этом направление ЭДС и тока ветви, в которую включен источник, совпадают.

Напряжение на зажимах источника ЭДС Е3больше значения его ЭДС на величину напряжения на внутреннем сопротивленииrВ3:

.

Говорят, что такой источник работает в режиме потребителя, и в этом случае направление его ЭДС и тока встречны.

studfiles.net

Определение числа независимых узлов и контуров

Главным сечением графа называется такое сечение, в которое входит только одна ветвь выбранного дерева. Остальные ветви, входящие в главное сечение, яв ляются связями (рис. 1.35). Число главных сечений равно числу ветвей дерева:m = q

— 1.

Каждому дереву может быть поставлена в соответствие своя система глав­ ных сечений, причем главные сечения, соответствующие выбранному дереву, отли­ чаются друг от друга, по крайней мере, одной ветвью— ветвью дерева, входящей в каждое из сечений. Главным сечениям графа присваивают номера и приписывают ориентацию, совпадающие с номером соответствующей ветви дерева и ее ориента цией относительно линии сечения.

Если одна из частей, на которые граф делится линией сечения, представляет собой изолированный узел, то соответствующее сечение называется каноническим (сечения3 и6 на рис. 1.35,а).

Рис. 1.35. Главные сечения графа рис. 1.27, соответствующие деревьям, приведенным:

а — на рис. 1.32, а; б — на рис. 1.32, б; в — на рис. 1.32, в

Для определения числа независимых узлов и независимых контуров электри ческой цепи и, следовательно, числа независимых уравнений, составляемых на ос новании законов Кирхгофа, воспользуемся тем обстоятельством, что для линейной независимости системы уравнений достаточно, чтобы каждое из входящих в систе му уравнений отличалось от остальных уравнений хотя бы одной переменной. Дей ствительно, если любое из входящих в систему уравнений содержит хотя бы одну переменную, отсутствующую в других уравнениях, то данное уравнение не может быть получено из других входящих в систему уравнений и, следовательно, система уравнений является линейно независимой. Таким образом, для линейной независи мости уравнений, составленных на основании первого закона Кирхгофа, достаточ но, чтобы каждое из уравнений баланса токов отличалось от других уравнений хотя бы одним током или, что то же самое, чтобы каждый из узлов или каждое из сече ний, для которых составляется уравнение баланса токов, отличались бы от других узлов или сечений хотя бы одной ветвью. Этому условию удовлетворяет система главных сечений графа, так как каждое из главных сечений, соответствующих вы бранному дереву, отличается от других главных сечений, по крайней мере, одной

studfiles.net

11. Расчёт сложных схем по уравнениям Кирхгофа.

Предположим, перед нами стоит задача по расчету сложной электрической цепи, состоящей из k узлов, l ветвей и m идеальных источников тока (под идеальным источником тока подразумевается такой источник тока, для которого Rт равен бесконечности). Суть метода сводится к решению системы линейных уравнений c l неизвестными. В качестве неизвестных выступают токи ветвей. Решив такую систему мы получим значения токов во всех ветвях электрической цепи, зная которые очень просто рассчитать все другие параметры цепи (напряжения на отдельных элементах, мощность и т.д.)

Перед началом расчета будет нелишним, по возможности, упростить электрическую схему с целью уменьшения количества ветвей. Это может существенно упростить расчеты и уменьшить вероятность ошибки. Например, решение системы линейных уравнений с 4 неизвестными гораздо проще решения системы с 5 неизвестными.

Порядок расчета цепей, связанный с использованием законов Кирхгофа следующий:

  1. Выбирают положительные направления токов в ветвях электрической цепи.

  2. Составляют (k-1) независимых уравнений по первому закону Кирхгофа. Уравнения составленные по первому закону Кирхгофа гораздо проще уравнений, составленных по второму закону Кирхгофа. Поэтому их составляют максимально возможное количество.

  3. Выбирают (l-k+1-m) независимых контуров электрической цепи. Контуры необходимо выбирать так, чтобы в них вошли все ветви схемы. Контуры взаимно независимы, если каждый последующий выбираемый контур содержит не менее одной новой ветви.

  4. Для каждого из выбранных независимых контуров выбирают направления обхода и составляют уравнение по второму закону Кирхгофа.

  5. Решают систему из (l-m) линейных уравнений любым удобным способом.

Пример.

На рисунке изображена схема сложной электрической цепи, содержащей 4 узла и 6 ветвей (k=4, l=6). Для расчета цепи необходимо составить систему из 6 линейных уравнений. Предварительно выберем направления токов в каждой из ветвей. По первому закону Кирхгофа составляем 3 уравнения (k-1=4-1=3), например для узлов A, B и C. Вместо любого из этих узлов для составления уравнения можно взять узел D, на результат расчетов это не повлияет. Оставшиеся 3 уравнения (l-k+1-m=6-4+1-0=3) придется составлять по второму закону Кирхгофа ()

Подставляем известные значения

Решаем получившуюся систему.

Получаем ответы в матричном виде.

12. Метод контурных токов.

Теоретические сведения.

В данном методе расчета полагают, что в каждом контуре протекает свой контурный ток. Контурные токи и принимают за неизвестные, находят их, и уже затем через контурные токи определяют токи в ветвях. Чтобы сократить количество неизвестных, источник тока включают в контур, но только в один. Ток данного контура считают известным и равным току источника. Если в схеме несколько источников тока, количество неизвестных можно существенно сократить, включая источники в разные контура. В таких схемах применение этого метода наиболее рационально. Число неизвестных в данном методе равно количеству уравнений, которые необходимо было бы составить по второму закону Кирхгофа для данной схемы. Уравнения составляют только для контуров, не содержащих источников тока.

Алгоритм расчета цепи методом контурных токов.

  1. Определяем общее число ветвей p*

  2. Определяем число ветвей с источниками тока pит.

  3. Определяем число ветвей с неизвестными токами p*-pит

  4. Определяем число контуров, необходимое и достаточное для определения всех неизвестных токов m= p*-(q-1).

  5. Произвольно наносим на схему номера и направления неизвестных токов.

  6. Обозначаем на схеме контура и выбираем направления их обхода. Необходимо, чтобы каждая ветвь входила хотя бы в один из обозначаемых контуров. При этом ветви с источниками тока обязательно включаем, но каждую в свой контур. Токи данных контуров считаем известными и равными токам источников – таким образом, число неизвестных сокращается.

  7. Записываем выражения для токов в ветвях через контурные токи. Контурные токи в ветвях, не являющихся смежными, и будут истинными токами. Для ветвей, входящих в несколько контуров (смежных ветвей) истинный ток будет являться суммой либо разностью контурных токов данных контуров. При этом те контурные токи, которые совпадают по направлению с током в ветви, берем со знаком плюс, а те, направления которых противоположны – со знаком минус. Определяем собственные сопротивления контуров как сумму всех сопротивлений, входящих в контур (только для контуров без источников тока). Эти сопротивления обозначаются двойным повторяющимся индексом: и т.д.

  8. Определяем сопротивления смежных ветвей и их знаки: плюс – если контурные токи сонаправлены в данной ветви, и минус, если их направления встречны. Эти сопротивления обозначаются двойным индексом, цифры которого указывают номера смежных контуров и т.д.

  9. Аналогично определяем сопротивления ветвей, являющихся смежными с контурами, содержащими источники тока.

  10. Определяем суммарную ЭДС контура (также обозначается двойным повторяющимся индексом - и т.д.). Это алгебраическая сумма ЭДС, входящих в данный контур, причем со знаком плюс берут те ЭДС, направления которых совпадают с выбранным направлением обхода, и наоборот, со знаком минус те, что направлены встречно.

  11. Записываем систему уравнений по форме, приведенной ниже:

  1. Решаем данную систему относительно контурных токов.

  2. Определяем токи в ветвях, подставляя контурные токи в выражения п. 7

Пример.

Найти токи в схеме рис. 35 с применением метода контурных токов.

Дано:

1.2.1.1. Топология цепи.

  1. Определяем общее число ветвей: p*=5

  2. Определяем число ветвей с источниками тока: pит=1.

  3. Определяем число ветвей с неизвестными токами: p*- pит=4.Количество узлов – 3

  4. Определяем необходимое и достаточное число контуров: 3

  5. Произвольно наносим на схему номера и направления неизвестных токов (рис. 36)

  1. Определяем собственные сопротивления контуров (для контуров без источников тока):

  2. Определяем сопротивления смежных ветвей и их знаки:

  3. Аналогично определяем сопротивления ветвей, являющихся смежными с контуром, содержащим источник тока:

  4. Определяем суммарную ЭДС контуров:

  5. Записываем систему уравнений по форме:

Если произвести подстановку сопротивлений, то видно, что данная система полностью совпала с системой, полученной в п. 7:

  1. Решаем данную систему относительно контурных токов:

  2. Определяем токи в ветвях, подставляя контурные токи в выражения п. 7

studfiles.net

4. Анализ сложных электрических цепей с несколькими источниками энергии

4.1. Метод непосредственного применения законов Кирхгофа

       На рис. 4.1 изображена схема разветвленной электрической цепи. Известны величины сопротивлений и ЭДС, необходимо определить токи. В схеме имеются четыре узла, можно составить четыре уравнения по первому закону Кирхгофа.

   Укажем произвольно направления токов. Запишем уравнения::

               (4.1)

                    Рис. 4.1

Сложим эти уравнения. Получим тождество 0 = 0. Система уравнений (4.1) является зависимой. Если в схеме имеется n узлов, количество независимых уравнений, которые можно составить по первому закону Кирхгофа, равно n - 1. Для схемы на рис. 4.1 число независимых уравнений равно трем.

       (4.2)

Недостающее количество уравнений составляют по второму закону Кирхгофа. Уравнения по второму закону составляют для независимых контуров. Независимым является контур, в который входит хотя бы одна новая ветвь, не вошедшая в другие контуры. Выберем три независимых контура и укажем направления обхода контуров. Запишем три уравнения по второму закону Кирхгофа.

       (4.3)

       Решив совместно системы уравнений (4.2) и (4.3), определим токи в схеме. Ток в ветви может иметь отрицательное значение. Это означает, что действительное направление тока противоположно выбранному нами.

Метод контурных токов

    Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11 и I22 - контурные токи.

Рис. 4.2 Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно.

Порядок расчета

    Выбираются независимые контуры, и задаются произвольные направления контурных токов. В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:

Перегруппируем слагаемые в уравнениях

     (4.4)

     (4.5)

 Суммарное сопротивление данного контура называется собственным сопротивлением контура. Собственные сопротивления контуров схемы

,     .

    Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

,

  где R12 - общее сопротивление между первым и вторым контурами; R21 - общее сопротивление между вторым и первым контурами. E11 = E1 и E22 = E2 - контурные ЭДС. В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

,

.

       Собственные сопротивления всегда имеют знак "плюс". Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11 и I22, затем от контурных токов переходим к токам в ветвях. Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви.         В схеме на Рис. 4.2

.

Рекомендации

Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам. Контурные токи желательно направлять одинаково (по часовой стрелке или против). Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным. Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

 

4.3. Метод узловых потенциалов

    Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла. Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов. Примем для схемы ?4 = 0.

                                 Рис. 4.3

Запишем уравнение по первому закону Кирхгофа для узла 1.

    (4.6)

    В соответствии с законами Ома для активной и пассивной ветви

,

     где - проводимость первой ветви.

,

      где - проводимость второй ветви.

  Подставим выражения токов в уравнение (4.6).

    (4.7)

    где g11 = g1 + g2 - собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле. g12 = g2 - общая проводимость между узлами 1 и 2. Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.

      - сумма токов источников, находящихся в ветвях, сходящихся в узле 1. Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком "плюс", если от узла - со знаком "минус". По аналогии запишем для узла 2:

    (4.8)     для узла 3:

    (4.9)        Решив совместно уравнения (4.7), (4.8), (4.9), определим неизвестные потенциалы ?1, ?2, ?3, а затем по закону Ома для активной или пассивной ветви найдем токи. Если число узлов схемы - n, количество уравнений по методу узловых потенциалов - (n - 1).

Замечание.

Если в какой-либо ветви содержится идеальный источник ЭДС, необходимо один из двух узлов, между которыми включена эта ветвь, выбрать в качестве базисного, тогда потенциал другого узла окажется известным и равным величине ЭДС. Количество составляемых узловых уравнений становится на одно меньше.

4.4. Метод двух узлов

     Схема на рис. 4.4 имеет два узла. Потенциал точки 2 примем равным нулю ?2 = 0. Составим узловое уравнение для узла 1.

,

,

      Рис. 4.4

                                               где  , , - проводимости ветвей.

В общем виде:

.

     В знаменателе формулы - сумма проводимостей параллельно включенных ветвей. В числителе - алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком "плюс", если она направлена к узлу 1, и со знаком "минус", если направлена от узла 1. После вычисления величины потенциала ?1 находим токи в ветвях, используя закон Ома для активной и пассивной ветви.

4.5. Метод эквивалентного генератора

    Этот метод используется тогда, когда надо определить ток только в одной ветви сложной схемы. Чтобы разобраться с методом эквивалентного генератора, ознакомимся сначала с понятием "двухполюсник". Часть электрической цепи с двумя выделенными зажимами называется двухполюсником. Двухполюсники, содержащие источники энергии, называются активными. На рис. 4.5 показано условное обозначение активного двухполюсника. Двухполюсники, не содержащие источников, называются пассивными. На эквивалентной схеме пассивный двухполюсник может быть заменен одним элементом - внутренним или входным сопротивлением пассивного двухполюсника Rвх. На рис. 4.6 условно изображен пассивный двухполюсник и его эквивалентная схема.

        Рис. 4.5 Рис. 4.6

Входное сопротивление пассивного двухполюсника можно измерить. Если известна схема пассивного двухполюсника, входное сопротивление его можно определить, свернув схему относительно заданных зажимов. Дана электрическая цепь. Необходимо определить ток I1 в ветви с сопротивлением R1 в этой цепи. Выделим эту ветвь, а оставшуюся часть схемы заменим активным двухполюсником (рис. 4.7). Согласно теореме об активном двухполюснике, любой активный двухполюсник можно заменить эквивалентным генератором (источником напряжения) с ЭДС, равным напряжению холостого хода на зажимах этого двухполюсника и внутренним сопротивлением, равным входному сопротивлению того же двухполюсника, из схемы которого исключены все источники (рис. 4.8). Искомый ток I1 определится по формуле:

     (4.10)

              Рис. 4.7 Рис. 4.8

Параметры эквивалентного генератора (напряжение холостого хода и входное сопротивление) можно определить экспериментально или расчетным путем. Ниже показан способ вычисления этих параметров расчетным путем в схеме на рис. 4.2. Изобразим на рис. 4.9 схему, предназначенную для определения напряжения холостого хода. В этой схеме ветвь с сопротивлением R1 разорвана, это сопротивление удалено из схемы. На разомкнутых зажимах появляется напряжение холостого хода. Для определения этого напряжения составим уравнение для первого контура по второму закону Кирхгофа

,

    откуда находим

,     (4.11)

        где определяется из уравнения, составленного по второму закону Кирхгофа для второго контура

.     (4.12)

    Так как первая ветвь разорвана, ЭДС Е1 не создает ток. Падение напряжения на сопротивлении Rвн1 отсутствует. На рис. 4.10 изображена схема, предназначенная для определения входного сопротивления.

.

                      Рис. 4.9 Рис. 4.10

Из схемы на рис. 4.9 удалены все источники (Е1 и Е2), т.е. эти ЭДС мысленно закорочены. Входное сопротивление Rвх определяют, свертывая схему относительно зажимов 1-1'

.     (4.13)

      Для определения параметров эквивалентного генератора экспериментальным путем необходимо выполнить опыты холостого хода и короткого замыкания. При проведении опыта холостого хода от активного двухполюсника отключают сопротивление R1, ток I1 в котором необходимо определить. К зажимам двухполюсника 1-1' подключают вольтметр и измеряют напряжение холостого хода Uxx (рис. 4.11). При выполнении опыта короткого замыкания соединяют проводником зажимы 1-1' активного двухполюсника и измеряют амперметром ток короткого замыкания I1кз (рис. 4.12).

                                  Рис. 4.11 Рис. 4.12

        откуда

                     (4.14)

nwpi-fsap.narod.ru


Каталог товаров
    .