Ввод заземления в дом: схемы устройства, конструкция контура, правила монтажа

Как в частный дом выполнить ввод электроэнергии

В этой статье ЭлектроВести расскажут вам, как выполнить ввод электроэнергии в частный дом.

Подключение дома к электрической сети. Ввод электричества в дом и на прилегающую территорию: практические советы и основные моменты которые нужно знать.

Чаще всего в населенных пунктах, где преобладают частные дома, используются воздушные линии электропередач. Однако могут применяться и кабельные подземные магистрали.

Часть такой линии от ближайшей опоры до ввода в дом принято называть ответвлением. Оно может быть проложено по воздуху или под землей. Законодательно определено, что ответвление находится в собственности владельца линии электропередачи. Техническое обслуживание, эксплуатация и реконструкции ответвления входят в его обязанности. Самостоятельное проведение работ без согласования с владельцем ЛЭП выполнять запрещено.

Для создания нового ответвления и подключения его к вводу здания необходимо иметь проект, который должен быть согласован с представителями владельца линии до начала выполнения работ. В документе должен быть отражен перечень всех технических решений и материалов.

Если выполнить ответвление своими силами затруднительно, то тогда следует заключить договор с энергоснабжающей организацией о подключении здания к ЛЭП и оплатить предоставление услуги.

По старым правилам ответвления для частных домов с однофазной схемой выполнялись двумя проводниками:

  • L – фазным;
  • PEN – нулевым совмещенным.

У трехфазных схем использовались 4 проводника: три фазных (L1, L2, L3) и один нулевой совмещенный.

Существующие правила эксплуатации требуют создать расщепление совмещенного нулевого проводника PEN у ввода в дом на:

  • рабочий N;
  • защитный РЕ.

Для этого применяют искусственные заземлители, которые дополнительно повышают безопасность эксплуатации ЛЭП и не противоречат требованиям действующих правил.

Большинство находящихся в эксплуатации распределительных сетей низкого напряжения построены с использованием системы защитного заземления TN-C. Такая сеть обычно состоит из питающего трансформатора, трех фазных проводников и объединенного PEN-проводника, совмещающего в себе функции нейтрального (N) и защитного (PE) проводников. Однако такая система построения электрических сетей низкого напряжния не позволяет в должной мере удовлетворить повышенные требованиям эксплуатации потребителей электроэнергии, которые подключаются к указанным электрическим сетям.

Подключение ввода дома к воздушной линии электропередач

Место расщепления может быть выбрано на ближайшей опоре ЛЭП или в электрическом распределительном щите дома.

При выполнении расщепления внутри здания необходимо учитывать вероятность обрыва или отгорания нулевого проводника у питающей ЛЭП. На приведенном ниже рисунке наглядно показано, что при созданной аварийной ситуации через установленное повторное заземление дома станет протекать электрический ток от всех ближайших присоединений.

Схема работы ответвления ВЛ-0,4 кВ для частного дома с повторным заземлением при обрыве нуля на линии (для увеличения нажмите на рисунок)

При такой ситуации нагрузка на провод ответвления PEN проводника значительно возрастет, он станет сильно нагреваться и может перегореть. Это можно исключить использованием провода повышенной мощности, выдерживающего такую же токовую нагрузку, как и провода ЛЭП.

С этой целью для ответвительного PEN проводника выбирают провод с площадью поперечного сечения S отв равной аналогичному значению у провода линии S лин.

При расщеплении PEN проводника непосредственно на опоре ВЛ для владельца дома эта задача упрощается, а большой запас толщины проводов делать нет необходимости. Их можно уменьшить до разумных пределов, обеспечивающих нормальное протекание тока нагрузки. Но к распределительному щиту дома придется тянуть три жилы, а не две для однофазной схемы и пять, а не четыре для трехфазной схемы.

Состав жил кабеля для подключения к ответвлению с повторным заземлением на опоре по схеме TN-C-S

Место перехода с системы TN-C на TN-C-S определяется расположением схемы расщепления PEN проводника.

Для подключения зданий по схеме TN-C повторное заземление и расщепление PEN проводника не выполняется, а количество жил в кабеле уменьшается на одну.

Системы заземления TN-S и TN-C-S различаются режимами работы N- и PE-проводников, поскольку в системе TN-S разделение на N- и РЕ-проводники производится по всей сети, а в системе TN-C-S такое разделение осуществляется только в определенной ее части. Применение системы TN-C-S считается наиболее перспективным, так как не требует коренной реконструкции распределительной сети низкого напряжения и, соответственно, увеличения материальных затрат. В этом случае разделение общего PEN-проводника на N- и РЕ-проводники производится обычно в месте присоединения ответвления к основной магистрали (например, ввод в здание, ответвление на объект, использующий трехфазное напряжение и др.). При этом металлические корпуса однофазных и трехфазных электроприемников заземляются с помощью РЕ-проводника непосредственно и/или через «трехполюсные» розетки (так называемые «евророзетки»), снабженные дополнительным заземляющим контактом с целью обеспечения электробезопасности в отношении возможного поражения людей электрическим током.

Подключение ввода дома к подземной кабельной линии электропередач

Все принципы выполнения электрической схемы, рассмотренные для воздушной ЛЭП, полностью соответствуют требованиям подключения к кабельным линиям. Отличия заключаются в способах расположения и механического подключения составных частей монтируемого участка. Коммутация жил кабеля ответвления к подземной линии выполняется в специальном металлическом шкафу.

Для его монтажа необходимо выполнить фундамент, обеспечивающий устойчивость конструкции при деформации грунтов во время промерзания зимой и в условиях осенне-весенней распутицы.

Материал шкафа и конструкция должны отвечать требованиям повышенной прочности для того, чтобы противостоять попыткам вандалов проникновения к электрооборудованию. С этой целью такие шкафы рекомендуется поднимать на высоту более двух метров. Такие же шкафы часто располагают на опорах ВЛ.

Все работы на воздушной ЛЭП и подземной кабельной линии, включая монтаж ответвлений, проводятся исключительно по утвержденному проекту силами местной обслуживающей организации.  Самостоятельное выполнение подключений категорически запрещено и опасно для жизни!

Конструктивные особенности воздушного ответвления

Закрепление проводов электрической схемы к опорам осуществляется через фарфоровые, стеклянные или полимерные изоляторы. В случае использования самонесущих кабелей СИП применяют специальный крепеж, который продается вместе с кабелями. При размещении ответвления важно выдержать все расстояния, обеспечивающие безопасность пользования электроэнергией.

Особенности конструкции воздушного ответвления (для увеличения нажмите на рисунок)

Если от ближайшей опоры до ввода в дом расстояние превышает 25 метров, то необходимо устанавливать дополнительную опору в качестве промежуточной. При расположении проводов над проезжей частью дороги минимальное провисание нижнего провода не должно быть меньше 6 метров.

В случае необходимости расположения кабелей над дорожками их требуется монтировать на высоте, превышающей 3,5 метра. Расположение изоляторов на стене дома выбирают так, чтобы прикрепленные к ним провода размещались над поверхностью земли не ниже, чем на 2,75 метра. Выращивание деревьев и даже кустарников под электрическими проводами недопустимо.

Над закрепленными изоляторами могут находиться элементы крыши, балкон и другие архитектурные конструкции. Расстояние от них до токоведущих частей должно превышать 0,2 м. Для присоединения изолированных алюминиевых проводов к линии используют скрутку или специальные зажимы.

Правила монтажа ответвления отдельными проводами

Ввод проводов воздушной ВЛ в деревянное здание

Этот способ широко использовался до появления в продаже самонесущих изолированных кабелей СИП. Для его применения проход через стену выполняется изолированным проводом, который дополнительно отделяется от стены фарфоровой втулкой, воронкой и полутвердой изоляционной трубкой из резины или полиэтилена.

Каждый провод схемы закрепляется на своем изоляторе, установленном около входного отверстия. Его можно делать общим для всех проводов, но прокладка их должна быть выполнена в отдельных изолированных трубах. Изоляторы на стене дома должны отстоять друг от друга не менее, чем на 20 см.

Правила монтажа ответвления кабелем

Для низких строений используют трубостойку и ввод кабеля выполняют через крышу.

Схема организации ввода кабеля в низкое строение

При этом способе необходимо обеспечить удаление кабеля от крыши на 2 метра или более. Стальная трубостойка в обязательном порядке подключается к контуру заземления дома.

В отдельных случаях удобно применить подставной столб.

Схема организации ввода кабеля с помощью приставного столба

Спуск кабеля по столбу в этом случае тоже рекомендуется выполнять в стальной трубе.

При любом способе подключения ответвительные провода или кабель должны быть целыми, не иметь разрывов и подсоединений. Их необходимо подключать одним концом к изоляторам линии, а вторым — непосредственно на клеммы вводного автомата для коммутации на электросчетчик.

Установка вводного устройства

Как выполнить вводное устройство для частоного дома. Протяженные магистрали линий объединяют множество потребителей с трансформаторной подстанцией. При транспортировке электрической энергии постоянно происходят коммутации нагрузок, сопровождаемые переходными процессами, качанием мощностей, колебаниями токов, напряжений, частоты.

Во время грозового периода существует вероятность попадания энергии молнии в воздушные ЛЭП. Все эти неисправности призваны устранять защиты линии, но до момента их срабатывания электропроводка дома может пострадать.

Поэтому между линией электропередачи и распределительным щитом дома необходимо монтировать еще один шкаф, выполняющий функцию защит электрооборудования здания от проникновения в электропроводку анормальных режимов, периодически возникающий на ЛЭП. Его называют вводным устройством. В нем размещают:

  • мощный автоматический выключатель или заменяют его обычным рубильником вида серии РБ-31 с комплектом предохранителей, укомплектованных мощными плавкими вставками, рассчитанными на токи около 100 А;
  • разрядники или ограничители перенапряжения, защищающие от проникновения высокого потенциала молнии;
  • схему расщепления PEN проводника, подключенного к повторному заземлению.

На рисунке ниже показана конструкция трехфазного вводного устройства. Для однофазной схемы оно упрощается использованием элементов только одной фазы.

Конструкция вводного устройства

Вводное устройство можно размещать прямо на опоре воздушной ЛЭП или на стене дома с наружной стороны. Его конструкция для подключения к подземным кабельным линиям устроена так же, как и для ВЛ.

Наличие повторного заземления в доме требует установки молниезащиты и системы УЗИП.

В заключение еще раз обратите внимание, что все работы на линиях электропередач и их опорах разрешено выполнять только обученному и допущенному персоналу организации, за которой закреплено это электрооборудование.

Ранее ЭлектроВести писали, что председатель комитета Верховной Рады по вопросам энергетики и жилищно-коммунальных услуг, депутат от фракции «Слуга народа» Андрей Герус намерен обратиться в Антимонопольный комитет (АМКУ) для проверки «спецаукционов» по продаже электроэнергии национальной атомной энергогенерирующей компании «Энергоатом» на наличие нарушений конкурентного законодательства.

По материалам: electrik.info.

Заземление в частном доме

Для создания хорошего и надежного заземления в частном доме есть очень простое и удобное в реализации решение, гарантирующее результат на сотню лет. 
Это монтаж заземления дома с помощью готового, быстро сборного комплекта заземления ZANDZ (пр. Россия ), разработанного специально для такого применения.

 

Достоинства

Основной элемент любого заземляющего устройства – заземлитель, представляет собой металлическую конструкцию, смонтированную в грунт.
Заземлитель ZANDZ, получаемый из комплекта «Заземление в частном доме» — 
это одиночный сборный глубинный заземляющий электрод, состоящий из четырёх 
1,5-метровых стальных штырей, покрытых слоем электротехнической меди.

Преимущества такой конструкции и используемых материалов:

  • Срок службы до 100 лет
  • Простой монтаж силами одного человека без специнструмента. 
    Для строительства заземлителя необходимой длины 1,5-метровые штыри заглубляются в землю друг за другом с помощью ударного ручного инструмента (кувалды). Для подключения проводника до электрощита используется болтовой зажим.
  • Минимальная площадь, занимаемая заземлителем позволяет монтировать его в подвалах домов, либо в близости от стен в виде всего одной точки. Компактность сводит к минимуму необходимые земляные работы.
  • Не требуется сварка *
  • Качество заземления не зависит от погоды и времени года

* Соединение элементов заземляющих устройств НЕ из черных металлов разрешено техциркуляром 11/2006 ассоциации «РосЭлектроМонтаж» (ссылка на документ)

 

Ограничения по применению

Комплект «Заземление в частном доме» ZZ-6 предназначен для монтажа в мягких глинистых грунтах (например, суглинках).

Затруднителен, но допустим, монтаж в плотных глинистых грунтах (например, тяжелая глина).

Невозможен монтаж в твёрдых песчаных и каменистых грунтах. Данное ограничение связано с малой энергией удара ручного инструмента (кувалды), применяемой при монтаже.


Для монтажа заземлителя в плотном или твёрдом грунтах рекомендуем использовать комплекты модульного заземления.

Информация об упаковке

Артикул: ZZ-6

Комплект упакован в коробку из крепкого картона с пластиковой ручкой для переноски. Внутри коробки находятся детали комплекта заземления, а также руководство по монтажу и пара фирменных наклеек для размещения на дверце электрощита или на другой плоской поверхности по усмотрению покупателя

 

Комплект заземления ZZ-6

Готовый комплект ZZ-6 (пр. Россия ) содержит все необходимые детали для монтажа заземлителя, легко сопрягаемые друг с другом.


Увеличить фото

Штырь заземления омедненный безмуфтовый
(D17 мм / L1,5 м)
4 штуки

Основа комплекта — штырь длиной 1,5 м с толстым медным покрытием (для максимального срока службы). Один из концов сужен, в другом конце сделано глухое отверстие для соединения штырей друг с другом (для увеличения суммарной длины электрода).

При монтаже соединение автоматически запрессовывается, образуя очень надежный электрический и механический контакт.

Для монтажа безмуфтовых штырей необходимо применять нагель, передающий ударную силу к центру штыря.

 

 

Подробная информация о технологии производства и испытаниях покрытия представлена на отдельной странице.

 


Увеличить фото

 

Нагель для монтажа кувалдой
1 штука

Нагель из закаленной стали предназначен для передачи энергии удара инструмента (кувалды) в центр штыря. При монтаже располагается в пазовой части штыря.

 

 


Увеличить фото

 

Зажим для подключения проводника
1 штука

Профилированный зажим из нержавеющей стали с болтами М10. Позволяет соединять стержень с заземляющим проводником — круглым проводом либо полосой (шириной до 40 мм).

Возможно безопасное использование стального и оцинкованного проводника — для этого внутри зажима находится прокладка, препятствующая образованию электрохимической связи между сталью/цинком и медью.

Для предотвращения самоотвинчивания резьбовых соединений «болт-гайка» используются пружинные шайбы (шайбы Гровера / гровер-шайбы), установленные между поверхностью зажима и гайкой.

 

 

Дополнительные материалы

Дополнительно потребуется только медный провод поперечным сечением 
16 или 25 мм² необходимой длины — для соединения смонтированного заземляющего электрода с электрощитом.

Для максимальной защиты глухого отверстия вверху штыря в уже смонтированном заземлителе можно воспользоваться силиконовым герметиком, наносимым в это отверстие. Он блокирует проникновение влаги и грязи к сердцевине штыря, полностью останавливая коррозию.

Перед монтажом

При размещении заземлителя ВНУТРИ дома место монтажа определяется из соображений механической защищенности заземляющего проводника от этого заземлителя до электрощита в месте его прокладки, сухости помещения, удобства монтажа штырей в грунт. Наилучшим местом будет позиция в радиусе 0,5 метра от щита для достижения наименьшей длины проводника. Максимальная удаленность от щита не ограничена.

При размещении заземлителя ВНЕ дома нужно учесть, что заземляющий проводник должен быть уложен на глубину 0,5 — 0,7 метра в заранее выкопанный канал. Данная мера является обязательной и необходима для защиты проводника от механических повреждений во время эксплуатации и для минимизации погодного / сезонного влияния, что увеличивает его срок службы.  
Заземлитель монтируется в этом же канале. Ввод заземляющего проводника через стену производится внутри стальной трубы.

Необходимые материалы:

  • комплект «Заземление в частном доме» ZZ-6
  • медный провод / кабель поперечным сечением 16 или 25 мм² необходимой длины. При прокладке в грунте требуется проводник с минимальным поперечным сечением 25 мм².
  • герметик силиконовый

Необходимые инструменты:

  • ударный ручной инструмент весом 300 — 1500 гр: кувалда или тяжелый молоток
  • два гаечных ключа или двое пассатиж (для затягивания болтов зажима)

 

Последовательность работ при монтаже заземления вне здания

  1. Вырыть канал глубиной 0,5 — 0,7 метра в месте укладки заземляющего проводника
  2. Провести монтаж заземлителя в подготовленном канале. В качестве инструкции по монтажу необходимо использовать список операций «Порядок проведения монтажа….»
  3. Уложить в канал заземляющий проводник
  4. Соединить заземлитель с проводником, используя зажим, идущий в комплекте
  5. Соединить проводник с электрощитом
  6. Засыпать канал грунтом

Порядок проведения монтажа заземлителя

Уплотняющие втулки из нержавеющей стали одеты на штыри для удобства транспортировки. Перед монтажом втулки необходимо снять.

Выполняемые операции:

  1. В отверстие штыря вставить нагель.
  2. Заглубить штырь в грунт, нанося удары инструментом по нагелю.
  3. Снять нагель и одеть на смонтированный штырь втулку (широкой частью вниз).
  4. Вставить в смонтированный штырь с одетой втулкой следующий штырь заостренной частью. Соединение самостоятельно запрессуется во время монтажа.
  5. Повторить этапы 1-4 до получения заземляющего электрода нужной глубины. Последний штырь необходимо оставить на 20 см над землей. На последний заглубленный штырь втулка не одевается.
  6. Установить зажим для подключения заземляющего проводника и, подключив сам проводник, закрутить болты зажима с максимальным усилием.
  1. Отверстие в штыре обильно залить герметиком во избежание попадания влаги.

Соединение заземления с электрощитом

Соединение производится медным проводником рекомендованным 
сечением 16 — 25 мм². Например, специальным заземляющим проводником.

Для соединения заземляющего электрода с проводником используется специальный зажим, входящий в комплект.

Пример монтажа заземления в частном доме

Достаточно ли такого заземления? (параметры)

Заземлитель из комплекта «Заземление в частном доме» ZZ-6
в глинистых грунтах (глина, суглинок) обеспечивает сопротивление заземления примерно:

Грунт Сопротивление заземления, Ом
Влажная глина 4
Влажный суглинок 6
Глина 12
Суглинок 18

 

Требования к качеству заземления дома

Если Вы не планируете подключать к заземлению молниезащиту и газовое оборудование:

  • в обычном глинистом грунте качественное локальное (повторное) заземление должно иметь рекомендованное сопротивление не более 30 Ом (при линейном напряжении 220 В источника однофазного тока или при линейном напряжении 380 В источника трехфазного тока)
  • в песчаном грунте качественное локальное (повторное) заземление должно иметь рекомендованное сопротивление не более 150 Ом
    (при линейном напряжении 220 В источника однофазного тока или при линейном напряжении 380 В источника трехфазного тока)

 

Требования к качеству заземления

(особые случаи)

Если заземление будет использоваться вместе с молниеприемниками:

  • в обычном глинистом грунте сопротивление заземления должно быть не более 10 Ом (РД 34. 21.122-87, п. 8)
  • в песчаном грунте сопротивление заземления должно быть 
    не более 40 Ом (РД 34.21.122-87, п. 8; для грунтов с удельным электрическим сопротивлением более 500 Ом*м)

При этом заземлитель должен иметь в своем составе не менее 3-х вертикальных электродов, разнесенных друг от друга на расстояние не менее двух глубин погружения электродов (РД 34.21.122-87, п. 2.2.г).

Подробнее о таком применении на отдельной странице «Молниезащита и заземление».


 

Если заземление будет использоваться для подключения газового котла / газопровода:

  • в обычном глинистом грунте его сопротивление должно быть 
    не более 10 Ом (ПУЭ 1.7.103; для всех повторных заземлений).
  • в песчаном грунте его сопротивление должно быть
    не более 50 Ом (ПУЭ 1.7.103; для всех повторных заземлений; для грунтов с сопротивлением более 500 Ом*м).

Заземлитель рекомендуется выполнять в виде одного электрода (точечное заземление). Подробнее о таком применении на отдельной странице «Заземление газового котла / газопровода».

Выбор системы заземления (TT / TN)

для частного дома

В 2007 году из управления государственного энергетического надзора было направлено письмо (№10-04/481) руководителям МТУ и начальникам УТЭН Ростехнадзора, о том что в целях уточнения и дополнения требований нормативно-технических документов в электроэнергетике и обеспечения мер безопасности при эксплуатации электроустановок подготовлены (одобрены / согласованы) технические циркуляры (ТЦ), которые рекомендуется использовать для руководства и применения при проверке проектной документации и вводе в работу новых и реконструированных электроустановок:

  • № 6/2004 от 16.02.2004 «О выполнении основной системы уравнивания потенциалов на вводе в здания»;
  • № 7/2004 от 02.04.2004 «О прокладке электропроводок за подвесными потолками и в перегородках»;
  • № 10/2006 от 01.02.2006 «О схемах временного электроснабжения строительных площадок»;
  • № 11/2006 от 16. 10.2006 «О заземляющих электродах и заземляющих проводниках»;

 

В комментарии к ТЦ №11/2006 «О заземляющих электродах и заземляющих проводниках» (от разработчика этого ТЦ: г-на Шалыгина А.А., начальника ИКЦ Московского института энергобезопасности и энергосбережения) указано:

В соответствии с указаниями п. 1.7.59 ПУЭ седьмого издания: «Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО…».

Примером электроустановки, где невозможно в пределах разумных технических решений выполнить требования электробезопасности в системе TN, являются индивидуальные жилые дома, которые по местным условиям необходимо подключить к воздушной линии 0,4 кВ, выполненной неизолированными проводами (ВЛ). Дело в том, что нейтральный проводник ВЛ не может рассматриваться как PEN-проводник по определению. В этих условиях до замены неизолированных проводов ВЛ на самонесущие изолированные провода обосновано применение системы защитного заземления ТТ.

На вводе в такие установки для автоматического отключения питания, как правило, устанавливают УЗО с номинальным дифференциальным током срабатывания 300 или 500 мА. Сопротивление заземляющего устройства выбирают порядка 30 Ом, а для грунтов с высоким объемным сопротивлением до 300 Ом. При таких параметрах заземляющего устройства обеспечивается надежное срабатывание УЗО, а токи короткого замыкания незначительны.


 

Позже — в 2012 году вышел ТЦ № 31/2012 «О выполнении повторного заземления и автоматическом отключении питания на вводе объектов индивидуального строительства». Его текст (с некоторыми сокращениями):

Объекты индивидуального строительства, как правило, получают питание ответвлением от воздушных линий электропередачи напряжением до 1 кВ.

Для объектов нового строительства и при реконструкции, в соответствии с указаниями главы 2.4 ПУЭ седьмого издания, воздушные линии выполняются с применением самонесущих изолированных проводов и обозначаются как ВЛИ.

Большинство действующих объектов индивидуального строительства получают питание от воздушных линий с применением неизолированных проводов ВЛ, выполненных по нормам главы 2.4 ПУЭ шестого и более ранних изданий.

… Целью выхода настоящего циркуляра является выдача конкретных рекомендаций по обеспечению защиты от косвенного прикосновения в электроустановках, получающих питание от ВЛ и ВЛИ до 1 кВ. При выборе мер защиты от косвенного прикосновения в электроустановках, получающих питание от ВЛ и ВЛИ до 1 кВ, необходимо руководствоваться следующим:

  1. Поскольку для объектов, получающих питание от воздушных линий напряжением до 1 кВ, у большинства потребителей невозможно выполнение требований по автоматическому отключению из-за низких кратностей токов короткого замыкания, установка устройства защитного отключения (УЗО) с дифференциальным током срабатывания до 300 мА на вводе является обязательной.
    Примечание. Установка УЗО с дифференциальным током срабатывания до 300 мА на вводе является обязательной и с точки зрения обеспечения пожарной безопасности.
  2. При питании от ВЛИ сопротивление повторного заземления у потребителя выбирается из условия обеспечения надежного срабатывания УЗО при повреждении изоляции (однофазное замыкание на землю) при отключенном PEN проводнике ответвления от ВЛИ. Сопротивление рассчитывается по току надежного срабатывания УЗО, равному пятикратному размеру этого тока, но должно быть не более 30 Ом. При удельном сопротивлении грунта более 300 Ом*м допускается увеличение сопротивления до 150 Ом.
  3. При питании от ВЛ, в соответствии с указаниями п. 1.7.59 ПУЭ седьмого издания и п. 531.2.3 МЭК 60364-5-53 (российский аналог ГОСТ Р 50571-5-53 готовится к выпуску), следует использовать систему защитного заземления ТТ. Параметры повторного заземления выбираются в соответствии с указаниями п. 2 настоящего технического циркуляра.
  4. Применение системы ТТ рассматривается как временная (вынужденная) мера. После реконструкции ВЛ и перехода на ВЛИ в электроустановках следует перейти на систему защитного заземления TN, для этого во вводном устройстве следует установить перемычку между N и РЕ шинами.

заземление, шасси и сигнальная земля

В аналоговых схемах отношение сигнала к земле имеет фундаментальное значение (и может создавать проблемы и в цифровых схемах). Однако понятие «земля» может сбивать с толку, поскольку оно относится к трем различным ситуациям: заземление шасси, заземление сигнала или заземление. Все три указывают на подключение к точке (теоретически) нулевого напряжения , но в другом контексте: заземление шасси для устройства, заземление сигнала для сигналов очень низкого напряжения внутри устройства и заземление для системы питания.

Рисунок 1: Есть три различных электрических символа для заземления, которые указывают контекст на схеме. Источник: Википедия.

Но заземление как нулевое напряжение теоретическое; только проводник с нулевым импедансом будет иметь нулевое напряжение. В действительности заземляющий слой или шина обычно имеют переменное напряжение на незначительном уровне. В необычных случаях проблемы возникают из-за того, что «нулевое» напряжение земли вообще не близко к нулю. Это наиболее вероятно, если цепь или устройство работают с большим потреблением тока или в случаях, когда заземляющий экран, проводник или рельс имеют высокое полное сопротивление (т. е. «заземляющий» материал или «заземляющий проводник/рельс» имеют0003, а не — хороший проводник электричества.) В любом случае действует закон Ома: V=IR. Ток (I) через любой материал с сопротивлением (R) будет иметь напряжение (V), отличное от нуля. Провода и дорожки имеют сопротивление в реальном мире и действительно влияют на то, как обратный путь («земля») работает, например, для обратных рельсов. Здравый смысл говорит, что соединение проводов таким образом, что сопротивление проводки аддитивно (последовательно) в обратном пути для одного устройства, но не для других, создает другое напряжение на «земле» для этого одного устройства (V = IR).

Заземление шасси — это точка сбора заземления, которая подключается к металлическому корпусу электрического устройства. Заземление корпуса может использоваться для экранирования и заземления во избежание поражения электрическим током. Заземление сети и (теоретически) шины питания 0 В связаны вместе и подключены к шасси в одной точке. Например, в случае многослойных печатных плат один или несколько проводящих слоев могут использоваться в качестве заземления корпуса. Заземление шасси обычно выполняется только в одной точке. Это предотвращает обратный путь тока через доступное, но нежелательное средство и предотвращает циркуляцию тока через шасси. Ток, циркулирующий через шасси, может вызвать «контур заземления». Но если шасси заземлено только в одной точке, ток не может течь через шасси, и связь между магнитным потоком и электричеством не может быть установлена. Контуры заземления, вызывающие наведенную ЭДС (шум), особенно проблематичны для приложений, чувствительных к шуму, таких как контрольно-измерительные приборы и аудиотехника.

Заземляющие контуры часто возникают при соединении нескольких электронных устройств, потому что никакие два заземления никогда не имеют одинаковый потенциал, что вызывает поток. Даже очень низкая разность потенциалов (напряжения) вызывает протекание тока от земли одного блока к другому блоку и обратно к первому блоку через дополнительное заземление, обеспечиваемое сетью распределения электроэнергии. Несмотря на то, что импеданс контура заземления составляет всего лишь небольшую часть ома, этого достаточно, чтобы вызвать такие проблемы, как шум и помехи. Распространенным решением для контуров заземления является распределение по схеме «звезда», где выбирается произвольная точка «земли с наименьшим потенциалом напряжения». Звездное распределение имеет все взаимосвязанные компоненты, соединенные в радиальной схеме, направленной наружу от «земли». Если распределение по схеме «звезда» выполнено тщательно, сигнальная проводка между оборудованием, заземленным по схеме «звезда», будет иметь нулевой потенциал, что позволит избежать контуров заземления.

Рисунок 2: В идеальном мире все точки, помеченные как «земля», находятся под нулевым напряжением. По пути будет течь электричество. Электричество и магнетизм взаимосвязаны, и это хорошо, поскольку моторы зависят от этой взаимосвязи в работе, но плохо, когда ток нежелателен. Источник: товарищ схемотехника Питер Уилсон.

Сигнальная земля — это опорная точка, от которой измеряется сигнал. В данной цепи может быть более одного эталонного заземления. Чистое сигнальное заземление или заземление без наведенных помех имеет важное значение для электрического оборудования, которое должно точно обнаруживать очень малые уровни или перепады напряжения, например, в медицинском оборудовании. Когда есть несколько путей для протекания электричества в землю, дублирующиеся пути заземления улавливают токи помех и преобразуют токи в колебания напряжения. В этом случае эталон заземления в системе перестает быть стабильным потенциалом, и шум становится частью сигнала.

Печатные платы (PCBs) могут унаследовать проблемы с заземлением из-за программ автоматической компоновки. Заземление сигнала или опорное напряжение сигнала 0 В должно быть на печатной плате и не должно быть заземлено от печатной платы, где оно может улавливать внешние помехи.

Напряжения сигналов намного меньше, чем напряжения, поступающие в систему, например, на силовых модулях точки входа (POE). Здравый смысл говорит, что сигнальная земля изолирована от шасси или земли питания. Сигнальная земля также может быть разделена между цифровой и аналоговой частями системы. Сигналы могут страдать от помех, вносимых землей, когда заземление входного сигнала является внешним по отношению к печатной плате, на которой находится сигнал. Однако помехи, вводимые землей, можно игнорировать, если сигнал намного больше, чем введенный шум. Однако заземление для обеспечения целостности сигнала на печатных платах является детальной темой, которая не может быть рассмотрена в этом месте.[i]

Заземление восходит к практике использования заземляющего стержня, вбитого в поверхность земли из соображений безопасности. Обычный контекст для заземления — в бытовых электрических системах, где ток выходит из панели главной цепи через провод под напряжением и течет к розеткам и источникам света по мере потребления электричества (или иным образом отводится по жизнеспособному пути), а обратный путь предоставляется обратно. к панели через нейтральный провод. Заземление добавляет третий провод (провод заземления), чтобы обеспечить путь для тока, который не может замкнуть цепь. Например, оголенный проводник может создать ситуацию, когда ток может протекать через тело человека на пути к земле, если бы не провод заземления, который вместо этого безопасно рассеивает ток на землю и, как мы надеемся, срабатывает предохранитель из-за чрезмерного потребляемый ток на землю.

Заземление особенно важно, если речь идет о высоком напряжении. Если в электрическом оборудовании есть неисправный компонент, из-за которого, например, напряжение под напряжением контактирует с проводящим шасси, оборудование может продолжать работать из-за внутренней изоляции систем, но первый человек, который коснется шасси, станет причиной поломки. землю и получит серьезную травму или даже смерть. Даже если предохранитель находится на пути от источника напряжения под напряжением, все равно требуется микро- или миллисекунды, чтобы предохранитель перегорел и разомкнул цепь, предотвратив поток. Таким образом, замыкание на землю и автоматические прерыватели чаще всего используются везде, где присутствуют высокие напряжения.

Понятно, что понятие заземления является фундаментальным для электрических концепций и на практике. Последствия различаются при работе с очень высокими напряжениями по сравнению со слабыми сигналами, контуры заземления могут возникать в любой ситуации, когда заземление имеет установленный путь, и по этому вопросу написаны книги. Но только после того, как вы часами занимаетесь поиском и устранением неисправностей, только чтобы найти ослабленный винт (влияющий на заземление шасси) или неуместную дорожку (сигнальное заземление), которые являются причиной того, что вы действительно понимаете, как электрическое заземление считается само собой разумеющимся.

[i] Уилсон, Питер. Напарник схемотехника . 3-е изд. Оксфорд: Newnes, 2012. Печать.

 

В чем разница между PE и FG?

Правильное заземление электрических устройств необходимо по разным причинам, но зачем мы это делаем?

Моим первым неприятным опытом с электричеством был удар током от настенной розетки переменного тока. Я помню, как мое тело вибрировало около секунды. Излишне говорить, что я держался подальше от электричества до тех пор, пока мне не пришлось подключать продукты, чтобы смоделировать сценарии реальных клиентов в полевых условиях. Именно тогда я узнал, насколько важно заземление на самом деле.

 

Почему заземление?

  • Предотвращение повреждений или травм
  • Защита от электрической перегрузки
  • Стабилизировать уровни напряжения

 

Надлежащее заземление может предотвратить поражение электрическим током людей, работающих с электричеством. Электричество всегда проходит самый простой путь от напряжения к земле.

Приведенный ниже пример стиральной машины иллюстрирует концепцию пути прохождения тока в незаземленном приборе по сравнению с заземленным.

 

 

Когда устройство не заземлено, ток утечки, генерируемый внутри устройства, становится потенциалом, который просто ищет путь к земле. Как только человек прикасается к прибору и имеет свободный путь к земле, он становится заземляющим проводом, и ток проходит через тело человека, а затем на землю. Я не знаю, можете ли вы сказать, но у нее нет счастливого лица.

Когда прибор заземлен, ток утечки теперь имеет менее устойчивый путь к земле, чем тело человека, поэтому ток утечки проходит через тело человека и проходит через заземляющий провод в вилке переменного тока, у которого есть собственный путь к земле. . Теперь у нее счастливое лицо.

Зачем нужно заземлять двигатели?

Во-первых, заземление требуется почти для всех электродвигателей. Национальный электротехнический кодекс (NEC), раздел 430-L, определяет условия заземления двигателя.

Электрический ток проходит через обмотки двигателя, которые обычно изолированы от других частей двигателя. Потенциально опасная ситуация возникает при выходе из строя изоляции. В этот момент корпус двигателя может стать проводником при том же входном напряжении двигателя. Любой, кто прикоснется к раме двигателя и заземленной поверхности, может получить травму или что-то похуже. Как только двигатель заземлен, избыточное напряжение будет иметь безопасный путь к земле.

Если клемма PE двигателя не заземлена, может произойти поражение электрическим током или, что еще хуже, поражение электрическим током. Сила тока всего от 0,1 до 0,2 ампера потенциально может убить человека.

Почему на этом знаке всегда написано
«высокое напряжение» вместо «сильный ток»?

Давайте рассмотрим роли трех обычных подозреваемых в нарушении закона Ома, В, И и Р, при поражении электрическим током.

Напряжение – это потенциальная энергия в виде электрического заряда, ток – это выход в виде потока электрического заряда и определяется в амперах, а сопротивление сопротивляется протеканию тока.

На самом деле ток самый опасный из трех. Причина, по которой на знаке всегда написано «высокое напряжение», заключается в том, что без высокого напряжения не было бы достаточного тока, чтобы быть опасным.

Опасность переменного тока сильно зависит от его частоты, в то время как постоянный ток становится более опасным по мере увеличения уровней напряжения и тока. Вот таблица от OSHA, которая описывает потенциальный ущерб.

 

 

Что означают «PE» и «FG»?

PE — защитное заземление

В Великобритании это называется «заземление». В США мы называем это «заземлением». Они означают один и тот же электрический потенциал 0 В. Назначение PE — защита от поражения электрическим током и возгорания из-за тока утечки.

Если раньше заземление двигателя осуществлялось с помощью одного из четырех болтов или винтов, то теперь для упрощения реализации предлагаются специальные винтовые клеммы.

FG — Заземление рамы

Это также известно как «заземление шасси». Целью FG является защита от электрических помех, которые могут искажать сигналы и вызывать неисправности.

 

 

Примечание. В этом посте не обсуждается сигнальное заземление, которое является третьим типом заземления, обычно путаемым с защитным заземлением и заземлением корпуса. Информацию о заземлении сигнала см. в этой статье «Правила заземления: заземление, шасси и заземление сигнала» из Analog IC Tips.

 

Примеры клеммы защитного заземления

Клемма защитного заземления может быть винтовой клеммой двигателя или винтовой клеммой привода. И двигатель, и драйвер должны быть заземлены.

 

Примеры: клеммы защитного заземления

 

На приведенном ниже примере установки двигателя и привода и на схеме подключения показано, где заземление PE необходимо в конфигурации системы шагового двигателя.

 

 

Для мер против электрических помех, включая заземление FG, мы предоставляем следующую информацию в наших руководствах.

 

 

СОВЕТ. Используйте более толстый и короткий заземляющий провод 
При подключении заземляющего провода к земле используйте более толстый и короткий провод. Это уменьшает сопротивление провода, поэтому ток проходит легче.

 

Инструкции по заземлению конкретного изделия Oriental Motor см. в руководствах по эксплуатации или обратитесь за помощью к нашим инженерам службы технической поддержки. Самый простой способ найти руководство по эксплуатации продукта — выполнить поиск по номеру детали.