интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Асинхронный электродвигатель. Устройство и принцип действия. Устройство асинхронного электродвигателя


Асинхронный электродвигатель: конструкция и устройство

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором был изобретен в далеком 1889 году, 8 марта, знаменитым русским ученым и инженером Михаилом Осиповичем Доливо-Добровольским. А уже буквально через год, 15 декабря 1890 года, был изобретен и запатентован двигатель с фазным ротором.

асинхронный электродвигательЭлектродвигатель асинхронный трехфазный – один из самых распространенных электрических аппаратов в промышленности. Он прост в эксплуатации, надежен и обладает довольно-таки невысокой ценой. Асинхронный электродвигатель занимает фактически девяносто процентов от всего числа двигателей по всему миру. Его можно встретить практически везде – начиная от конструкции обычной стиральной машины, заканчивая огромными промышленными цехами, не говоря уже об электростанциях. Он совершил значительный технический переворот в мировой промышленности.

Асинхронный электродвигатель – это машина, которая предназначена для того, чтобы преобразовывать электрическую энергию в энергию механическую. «Асинхронный» значит просто «не одновременный». Имеется в виду, что у такой машины частота, с которой вращается магнитное поле, создаваемое статором, всегда будет больше, чем частота, с которой вращается подвижная часть двигателя – ротор.

Асинхронный электродвигатель состоит из неподвижной части - статора, и подвижной вращающейся части - ротора.

электродвигатели асинхронные трехфазные

Статор собирается из листов спрессованной электротехнической стали и обычно имеет форму цилиндра. В специальные пазы сердечника уложена обмотка статора, выполненная из обмоточного провода. Обмоток у статора несколько. Оси данных обмоток обычно сдвинуты на угол в 120 градусов относительно друг друга. Концы этих обмоток могут быть соединены звездой или треугольником (в зависимости от того, какое подается напряжение).

Роторы у такой машины, как асинхронный электродвигатель, бывают короткозамкнутыми и фазными.

Первый тип (короткозамкнутый ротор) – это сердечник, который набран из медных или алюминиевых стержней с уложенной в них обмоткой. Стержни соединены торцовыми кольцами, и их внешний вид напоминает беличью клетку. Кстати, именно поэтому такой тип ротора часто и называют «беличья клетка». Ротор в этом случае опять-таки собирают из листов электротехнической стали, прессуют и заливают алюминием.

электродвигатель асинхронный трехфазный

Фазный ротор же часто называют ротором с контактными кольцами. Он имеет обмотку трехфазную, которая фактически совершенно не отличается от обмоток статора. В основном концы обмоток такого ротора с контактными кольцами (фазного) соединены в звезду. Свободные концы подведены к этим самым контактным кольцам. В цепь обмотки зачастую добавляют дополнительный резистор благодаря наличию специальных щёток, подключенных к кольцам. Такой резистор повышает активное сопротивление в электрической цепи ротора, что способствует более плавному пуску и уменьшению значений пускового тока - это очень важно для таких машин, как электродвигатели асинхронные трехфазные.

fb.ru

Асинхронный электродвигатель. Устройство и принцип действия.

Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка.

Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).

В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.

Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

Асинхронный электродвигатель Устройство и принцип действия

Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.

На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников. Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис. 1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности.

Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

Асинхронный электродвигатель Устройство и принцип действия

Рис. 2. Асинхронный электродвигатель с короткозамкнутым ротором Собранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

Асинхронный электродвигатель Устройство и принцип действия

Рис. 3. Короткозамкнутый ротор а — ротор с короткозамкнутой обмоткой, б — «беличье колесо», в — короткозамкнутый ротор, залитый алюминием; 1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни, 4 — вентиляционные лопатки

Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.

Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

Асинхронный электродвигатель Устройство и принцип действия

Рис. 4. Разрез асинхронного двигателя с фазным ротором 1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца

Фазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.

Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

Где применяют асинхронные двигатели

Асинхронные электродвигатели более широко распространены сегодня, однако в некоторых ситуациях синхронные двигатели оказываются более подходящими, более эффективными для решения конкретных промышленных и производственных задач, об этом будет рассказано далее.

Область применения асинхронных двигателей сегодня очень широка. Это всевозможные станки, транспортеры, вентиляторы, насосы, - все то оборудование, где нагрузка сравнительно стабильна, или снижение оборотов под нагрузкой не критично для рабочего процесса.

Некоторые компрессоры и насосы требуют постоянной частоты вращения при любой нагрузке, на такое оборудование ставят синхронные электродвигатели.

Синхронные двигатели дороже в производстве, чем асинхронные, поэтому если есть возможность выбора и небольшое снижение оборотов под нагрузкой не критично, приобретают асинхронный двигатель.

Источник: Кузнецов М. И. Основы электротехники. Учебное пособие. Изд. 10-е, перераб. «Высшая школа», 1970.

pkdemo.ru

Принцип действия асинхронного двигателя

Асинхронный двигатель — это асинхронное устройство, предназначенное для преобразования с минимальными потерями электрической энергии переменного тока в механическую энергию, необходимую для запуска работающих на этом двигателе приборов. Чтобы иметь более ясное представление о принципе работы асинхронных двигателей, необходимо познакомиться с устройством этого прибора, а также узнать, какие типы этих машин существуют на сегодняшний день.

Stator_and_rotor_by_Zureks 001История изобретения

Принцип магнетизма вращения был открыт еще в 1824 году французским физиком Д. Ф. Арагоном. В результате своих экспериментов, ученый обнаружил, что можно привести в движение медный диск, закрепленный на вертикальную ось, воздействуя на него постоянным магнитом. Работу над трудами Арагона продолжил английский физик Уильям Бейли в 1879 году. В своих экспериментах он воздействовал на медный диск четырьмя электромагнитами, подключенными к источнику постоянного тока. Однако законченную формулировку этому явлению дали в 1888 году итальянский физик Феррарис и Никола Тесла, работавшие независимо друг от друга.

В 1888 году Тесла представил миру свой первый опытный образец асинхронного двигателя. Однако широкое применение он не получил из-за низких технических показателей в момент запуска двигателя. Современная конструкция вращающего трансформатора, в том виде, в котором мы знаем его сегодня, была разработана французским инженером П. Бушеро, разработавшем аналог современного асинхронного двигателя.

Устройство асинхронного двигателя

Любой электродвигатель, независимо от мощности и габаритов, состоит из следующих элементов:

  • Статор;
  • Ротор;
  • Катушки статора и ротора;
  • Магнитопровод.

Ротор — это подвижный узел мотора, отвечающий за преобразование одной энергии в другую, посредством вращения ротора вокруг своей 6b8a71c30f3437590d32a95cdd942074оси. Двигатели, работающие от переменного тока и получающие энергию при помощи магнитного поля и индукции, называются асинхронными. Они устроены по принципу вторичной обмотки трансформатора, благодаря чему второе их название — вращающие трансформаторы. Наибольшее распространение получили асинхронные двигатели с трехфазным включением.

В основе устройства асинхронных двигателей лежит правило левой руки буравчика, которое демонстрирует взаимодействие магнитного поля и проводника, а также задает направление вращения электродвигателя.

Вторым законом, заложенным в устройство и работу вращающих трансформаторов, является закон электромагнитной индукции Фарадея, который гласит:

  1. Электродвижущая сила, или сокращенно ЭДС, наводится в обмотке устройства, но электромагнитный поток постоянно изменяется во времени;
  2. Электродвижущая сила изменяется в зависимости от изменения во времени электромагнитного потока.
  3. ЭДС и электрический ток имеют противоположное направление движения.

Принцип работы асинхронного двигателя

Принцип работы и скольжения в асинхронных машинах переменного тока предельно прост. В электрической обмотке статора, при подаче на нее напряжения, создается магнитное поле. При подаче напряжения переменного тока происходит изменения магнитного потока, создаваемого статором. Таким образом, магнитное поле статора изменяется и магнитные потоки поступают на ротор, что приводит его в действие и заставляет вращаться. Однако для обеспечения асинхронной работы статора и ротора необходимо чтобы магнитный поток и напряжение статора было равно по величине переменному току. Это обеспечит возможность ее работы исключительно от источника переменного тока.

Если асинхронный двигатель выполняет функцию генератора, то он будет вырабатывать постоянный ток. В этом случае вращение ротора 13831452671457будет обеспечиваться благодаря воздействию внешних источников, например, турбиной. Если в устройстве ротора присутствует так называемый остаточный магнетизм, то он будет обладать определенными магнитными свойствами, которые присущи магниту. В этом случае в стационарной обмотке статора будет вырабатываться переменный поток. Таким образом, наведенное напряжение будет поступать в обмотки катушек статора по принципу магнитной индукции.

Область применения индукционных генераторов достаточно широка. Их используют для обеспечения резервным источником электрического питания небольших магазинчиков и частных домов. Это одни из самых дешевых и простых в установке и эксплуатации типов радиаторов. В последние годы все активнее индукционные генераторы применяются во многих странах по всему миру, в которых существует проблема, связанная с постоянными перепадами напряжения в электрической сети. В процессе работы генератора, ротор приводится в движение благодаря дизельному двигателю небольшой мощности, подключенному к асинхронному генератору.

Принцип вращения ротора

Принцип работы ротора основан на электромагнитном законе Фарадея. Вращается он благодаря воздействию электродвижущей силы, возникающей в результате взаимодействия магнитных потоков и обмотки ротора. На деле это выглядит так: между статором, ротором и их обмотками существует некий зазор, сквозь который проходит вращающийся магнитный поток. В результате этого в проводниках ротора возникает напряжение, которое и является причиной образования ЭДС.

Двигатели с замкнутой цепью роторных проводников работают немного иначе. В этих типах двигателей используются короткозамкнутые роторы, в которых направление движения тока и электродвижущей силы задается правилом Ленца, согласно которому ЭДС противодействует возникновению тока. Вращение ротора происходит благодаря магнитному потоку, движущемуся между ним и неподвижным проводником.

Таким образом, для уменьшения относительной скорости, ротор начинает синхронное вращение с магнитным потоком на обмотке статора, стремясь к вращению в унисон. При этом частота электродвижущей силы ротора равняется частоте питания статора.

Гребневые асинхронные двигатели

При подаче низкого напряжения питания на короткозамкнутый ротор, не происходит возбуждения его обмоток. Это происходит из-за того, Copy of motorSectionBIGчто ротор и статор имеют одинаковое число зубьев, в результате чего магнитная фиксация между ними равна, что вызывает их взаимную нейтрализацию. В физике это явление называется зубо-блокировкой или магнитной блокировкой. Для того чтобы решить эту проблему, достаточно всего — лишь увеличить количество зубьев на статоре или роторе.

Принцип подключения асинхронных двигателей

В любой момент времени работу асинхронного двигателя можно остановить. Для этого достаточно всего — лишь поменять местами любые два вывода статора. Это может понадобиться при возникновении различного рода чрезвычайных ситуаций. После этого происходит противофазное торможение, происходящее в результате изменения направления вращающегося потока, что прекращает подачу электропитания ротора.

Чтобы избежать возникновения такой ситуации, в однофазных асинхронных двигателях используют специальные конденсаторные устройства, подключающиеся к пусковой обмотке двигателя. Однако перед использованием этих устройств, необходимо рассчитать оптимальные для работы параметры. При этом следует учитывать, что мощность конденсаторов, используемых в одно- или двухфазных электрических машинах переменного тока, должна равняться мощности самого двигателя.

Принцип муфты

Рассматривая технические характеристики вращающихся трансформаторов переменного тока, применяемых в производстве промышленного оборудования, и их принцип действия, можно обнаружить аналогию с принципом работы вращающейся муфты механического сцепления. Значение крутящего момента на валу привода должно соответствовать величине этого значения на ведомом валу. Помимо этого очень важно понимать, что эти два момента идентичны друг другу. Поскольку линейный преобразователь приводится в движение под воздействием терния между дисков, находящихся внутри муфты.

Электромагнитная муфта сцепления

soedinitelnaya-mufta-dr-20-5-6-184-BПохожая технология реализована и в тяговом двигателе, в котором используются фазовые роторы. Система этих моторов состоит из остовы и 4 основных, и 4 добавочных полюсов. Основные полюса представляют из себя медные катушки, которые начинают вращение благодаря зубчатой передаче, приводимой в движение сердечником также называемом, валовым якорем. Запитка от сети происходит благодаря четырем гибким кабелям. Основная область применения многополюсных двигателей — тяжелое машиностроение. Они выступают движущей силой для крупной сельскохозяйственной техники, железнодорожного транспорта и станков для некоторых типов промышленности.

Плюсы и минусы асинхронных двигателей

Вращающие трансформаторы получили большую популярность благодаря своей универсальности, позволяющей использовать их во многих отраслях. Однако эти механизмы, как и любые другие устройства, имеют свои достоинства и недостатки. Давайте подробнее разберемся с каждым из них.

Достоинства вращающих трансформаторов переменного тока:

  1. Простая конструкция двигателя;
  2. Дешевая себестоимость приборов;
  3. Высокие эксплуатационные характеристики;
  4. Простое управление конструкцией;
  5. Возможность работы в тяжелых условиях.

Высокая производительность асинхронных двигателей переменного тока достигается благодаря высокой мощности, потери которой минимизированы благодаря отсутствию трения в процессе их работы.

К недостаткам вращающих трансформаторов можно отнести:

  1. Потеря мощности при изменении скорости.
  2. Снижение крутящего момента при увеличении нагрузки.
  3. Низкая мощность в момент запуска.

autobrains.ru

принцип работы, устройство и конструкция

Жизнь в наше время невозможно представить без электрических двигателей. Широкое применение нашли эти агрегаты не только в промышленности, но и в быту — ведь электроприборы, которые призваны облегчить жизнь человека, в 95% случаев не обходятся без применения электродвигателей. И если даже сильно постараться, то представить себе жизнь без них вряд ли удастся.

Хотя первый опытный асинхронный двигатель был произведен Николой Тесла еще в конце 1880-х годов, в то время распространения он так и не получил ввиду слишком больших потерь электроэнергии при его работе. Да и показатели того двигателя в момент запуска были очень низкими.

Что же представляет собой асинхронный двигатель? По своей сути это устройство, преобразующее электрический ток в механическую энергию посредством магнитных полей, которые вращают ротор внутри статора. При этом частота вращения магнитных полей, которые создаются на обмотках статора, не равна тому же параметру сердечника. Именно поэтому они названы «двигатели асинхронные», т.е. «неодновременного вращения».

Что же касается видов этих агрегатов, то их различают несколько, но об этом чуть позже. Для начала имеет смысл разобрать достоинства и недостатки подобных двигателей, т.е. самого распространенного из них вида — устройства с короткозамкнутым ротором, обозначаемым как АДКЗ (асинхронный двигатель короткозамкнутого типа).

Асинхронный двигатель с короткозамкнутым ротором в разборе

Достоинства и недостатки

В первую очередь асинхронные электродвигатели достаточно просты в части устройства и изготовления, что не может не влиять на их стоимость, ведь в частности из-за невысокой цены этот мотор завоевал большую популярность среди покупателей. Так же важную роль играет и надежность АД, и их экономичность в области эксплуатационных затрат — они практически не требуют обслуживания. Конечно, это не говорит о том, что асинхронный электродвигатель можно установить и совсем забыть о периодических ревизиях, но все же их требуется достаточно мало, схема его достаточно неприхотлива.

Ну и конечно не стоит забывать о том, что для включения в сеть, т.е. для запуска и эксплуатации, не требуется каких-либо дополнительных устройств, таких как разнообразные преобразователи и т.п.

Но, при такой простоте и невысокой стоимости, естественно, не обошлось и без недостатков, которые нельзя назвать мелкими. Из них можно выделить следующие:

  • сравнительно небольшой пусковой момент;
  • значительные пусковые токи, а значит и энергозатраты при включении;
  • довольно низкий коэффициент полезного действия;
  • необходимую точность скорости довольно тяжело отрегулировать;
  • у асинхронного двигателя, имеющего короткозамкнутый привод (при включении в трехфазную сеть 50 Гц), скорость вращения не превышает 3000 об/мин;
  • большая зависимость крутящего момента от напряжения сети. К примеру, при понижении входного тока в 2 раза, скорость крутящего момента может упасть в 4 раза.

Но все вышеперечисленное относится только к моторам, имеющим строение на основе короткозамкнутого ротора, производство двигателей которыми не ограничивается. Попробуем рассмотреть более подробно асинхронные электродвигатели с короткозамкнутым ротором, а также другие типы подобных агрегатов, которые представлены на прилавках магазинов электротехники.

Короткозамкнутый ротор

АДКЗ

Ротор асинхронного двигателя, обмотка которого короткозамкнута, так же называют и «беличьим колесом» по причине того, что она похожа на цилиндрическую сетку, прутья которой замыкаются посредством двух колец с одного и другого торца.

Структура, как ротора, так и асинхронного статора является зубчатой. В АД небольших мощностей обмотка изготавливается простейшим способом — алюминиевый сплав в расплавленном состоянии заливается в углубления на роторе. Тем же способом, одновременно, заливаются и оба кольца, замыкающие «колесо», а также торцевой синхронизатор, осуществляющий вентиляционное охлаждение агрегата, т.е. с его помощью обеспечивается нормальная рабочая температура. При необходимости изготовления более мощных двигателей вместо алюминиевого сплава используют медь.

Асинхронные двигатели переменного тока с т.н. «двойной беличьей клеткой» для модернизации пусковой характеристики в настоящее время практически ушли в прошлое. Сейчас применяется схема, при которой пазы для проводников делаются глубже, причем внутренняя часть каждого из них имеет большее сечение, нежели внешняя. В результате подобной технологии изготовления ротора увеличивается пусковой момент и уменьшается ток, за счет более сильного активного сопротивления обмотки.

Области применения АДКЗ довольно обширны. К тому же, в последние годы все больше начали применяться частотные преобразователи, при помощи которых стало возможно плавное наращивание скорости, вследствие чего достигается больший пусковой момент и снижение тока, тем самым увеличивается коэффициент полезного действия асинхронного двигателя с короткозамкнутым ротором.

Так же очень интересна схема исполнения АДКЗ, в которой используется возможность изменения числа пар обмоток статора. Принцип работы асинхронного двигателя подразумевает, что подобным действием возможно изменение скорости его вращения.

На сегодняшний день подобные конструкции двигателей, несмотря на их недостатки, являются наиболее распространенными и востребованными. А вот остальные виды асинхронных двигателей уже более узконаправленны, и их применение не так значительно.

Фазный ротор

Массивный ротор в АД

Короткозамкнутый двигатель, принцип работы которого заключается в отсутствии обмотки как таковой. Ротор здесь состоит целиком из стали и одновременно является и проводником, и магнитопроводом. Вихревые токи, инициирующиеся вращающимся магнитным полем, взаимодействуют с потоками, создаваемыми статором, посредством чего и создается крутящий момент. Попробуем разобрать, какие же плюсы и минусы имеются у этих асинхронных двигателей.

Из преимуществ можно отметить низкую стоимость и простоту изготовления, довольно высокую механическую прочность (что очень важно для агрегатов с высокими скоростями вращения), а также наличие высокого пускового момента. Но при этом есть очень существенный недостаток —довольно большие энергопотери ротора при работе.

Интересны также и некоторые особенности, которые имеют подобные асинхронные двигатели, — это пологая механическая характеристика и сильный нагрев агрегата, независимо от нагрузки, что является довольно существенным минусом по причине резкого падения коэффициента полезного действия. Получается, что основная энергия тратится на нагрев, т.е. выработку тепла.

Конечно, разрабатываются и улучшения для подобных типов двигателей, такие как омеднение роторов или добавление с торцов колец из меди, но помогает подобная модернизация незначительно.

Также сюда можно отнести и пустотелые стальные роторы, которые изготавливаются для работы с меньшим нагревом.

Фазный ротор в асинхронном двигателе

Действия магнитных полей в статоре

Подобное устройство асинхронного электродвигателя является более сложным, т.к. их роторы имеют трехфазную обмотку, которая соединяется в «звезду». Подобные двигатели обладают возможностью плавной регулировки скорости, причем диапазон вращения достаточно широк. Внешняя цепь соединяется с вращающимся валом посредством специальных щеток, которые могут быть графитовыми или медно-графитовыми. Обмотка ротора выполняется из меди.

Подобный асинхронный электродвигатель подходит для использования с инверторами, реостатами для изменения скорости вращения и даже может работать в качестве синхронного двигателя при подаче на него прямого напряжения.

Возможности, которые имеют асинхронные двигатели с фазным ротором, довольно широки, но сложность при их изготовлении, а также довольно высокая стоимость не дали подобным устройствам более широкого распространения.

Двигатель Шраге-Рихтера

Этот тип является трехфазным коллекторным асинхронным двигателем, при этом питание на него поступает через ротор. Таким образом, подобные агрегаты называют также обращенными.

Асинхронный электродвигатель, у которого подобная схема, уже стал историей и практического применения на сегодняшний день не имеет.

Скорость вращения в них регулировалась специальным штурвалом, который перемещал щетки, в результате чего изменялась индуктивность. Подобная система довольно экономично изменяет скорость вращения ротора, но более подробно на таких агрегатах останавливаться не стоит.

Куда интереснее понять устройство асинхронного двигателя и принцип его работы.

Устройство и принцип действия

Как уже говорилось ранее, конструкция асинхронного двигателя достаточно проста — это ротор, или вращающаяся часть, и статор — неподвижная обмотка, внутри которой и создаются электромагнитные импульсы. Снаружи статор может иметь цельную либо сваренную оболочку из чугуна, алюминия, или его сплава, которая работает как радиатор охлаждения в процессе эксплуатации.

Асинхронный двигатель в разрезе

Принцип действия АД таков: напряжение, поступая на обмотки, создает магнитное поле. И т.к. угол сдвига фаз в асинхронном двигателе составляет 120 градусов, то поле, вырабатываемое ими, является вращающимся. Оно-то и создает крутящий момент, проходя через обмотки ротора. По сути, смысл работы тот же, что и у синхронных агрегатов, но тут не требуется создания на статоре дополнительного поля в виде магнитов.

Подключение асинхронных двигателей

Разобравшись, каков же принцип действия АД, можно переходить к подключению.

Существует две разновидности подключения асинхронного двигателя к сети 380 В, хотя от этого принцип его действия не меняется. Это может быть «звезда» либо «треугольник». Сейчас имеет смысл разобрать каждый из этих видов подробнее.

Подключение «звездой» происходит следующим образом: напряжение по фазным проводам подается к началу, а каждая обмотка асинхронного двигателя концом соединена с началом следующей таким образом, что создается некое подобие треугольника.

Нулевой провод при подключении трехфазных двигателей не требуется, им вполне хватает защитного заземления корпуса.

Подключение «звездой» немного отличается от предыдущего. Здесь концы всех обмоток соединены вместе, а напряжение подается также на начало. Интересно, что при подобном подключении в месте соединения всех трех обмоток по причине разности потенциалов возникает так называемый «технический ноль». Подобное физическое явление можно наблюдать и в жилах высоковольтного провода, где ноль находится точно по центру, в то время как по проводнику течет ток высокого напряжения.

Схемы подключений в «треугольник» и «звезда»

Есть ли альтернатива

Уже не секрет, что устройство трехфазного асинхронного двигателя предполагает затраты большого количества электроэнергии на вырабатывание тепла, а значит и коэффициент его полезного действия достаточно низок. Но на сегодняшний день альтернативы подобным агрегатам нет, а потому продолжается их использование, как в промышленности, так и в быту.

Конечно, с появлением инверторов, КПД их значительно возрос. Сейчас двигатели инверторного типа прекрасно работают в стиральных машинах, холодильниках и прочей технике, позволяя получить максимум результата при меньшем расходе электроэнергии.

Возможно, в будущем и появится что-то новое, что сможет заменить асинхронные двигатели, но пока это остается единственным в своем роде агрегатом, без которого различные производства невозможны. Именно этим и объясняется его востребованность и распространенность.

Похожие статьи:

domelectrik.ru

Асинхронный двигатель: принцип работы, особенности конструкции

Как устроен асинхронный двигательАсинхронный двигатель представляет собой мотор переменного тока, скорость вращения которого не равна частоте напряжения в обмотках статора. Эти электродвигатели получили широкое распространение, потому что являются достаточно выносливыми. Асинхронный однофазный, трехфазный моторы могут работать при значительной нагрузке продолжительное время, не перегреваясь, держать свой крутящий момент. Работа асинхронного двигателя проста, но при этом его характеристики напрямую зависят от параметров обмоток и технологии их укладки.

Область применения

Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще. Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой. Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.

Применяется асинхронный электродвигатель во многих сферах:

  • Где используется моторСистемы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
  • Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
  • Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
  • Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.

Разновидности моторов

От типа питающей сети асинхронные электродвигатели подразделяются на:

  1. Как устроен асинхронный моторТрехфазные. Обмотки асинхронных двигателей такого типа состоят из 3 катушек, специальным образом уложенных в пазах статора. Они предназначены для работы в промышленности, так как имеют высокий КПД и cosφ приближенный к 1, а для обеспечения дополнительной экономии работают с системой рекуперации энергии при торможении, выступая генератором.
  2. Однофазный асинхронный двигатель. Применяется в быту и промышленности: старые стиральные машины, бытовые вентиляторы, холодильное и прочие виды оборудования. Имеют меньший КПД, мощность, по сравнению с трехфазными, что объясняется потерями в статоре из-за отсутствия дополнительной фазы.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Особенности устройства каждого из элементов

В чем особенность работы мотораСтатор асинхронного электродвигателя представляет собой цилиндр, изготовленный из листов специальной электротехнической стали толщиной до 0.5 мм, покрытых лаком. Этот цилиндр является сердечником, с внутренней стороны имеются пазы, куда укладываются обмотки. В трехфазных, соответственно, сдвинутые на 120 градусов, в однофазных – на 90. Обмотки могут быть уложены несколькими способами в зависимости от схемы их подключения и эксплуатационных требований. Именно от этого зависит такой показатель, как момент и мощность на валу. А при наличии количества полюсов более, чем 2 пары, то он может использоваться в следящих системах управления приводными механизмами.

Статор запрессован в корпус либо же расположен между фланцами. Корпус и боковые крышки изготовлены из чугуна или сплава алюминия. На них имеются ребра для увеличения площади и повышения эффективности отведения тепла при работе. Такое устройство позволяет лучше охлаждать двигатель, обеспечивая продолжительную работу при предельных нагрузках.

Однополюсная обмотка такого электродвигателя наматывается из 3-х катушек. Каждая из них называется фазой. Для достижения требуемых параметров работы мотора обмотка укладывается в противоположных пазах сердечника. Катушки соединяются между собой специальным образом в соответствии со схемой подключения и ожидаемых характеристик, обеспечивая возбуждение магнитного поля и необходимый момент при вращении.

Все концы датчиков выводятся в клеммную коробку, что позволяет их соединять в звезду или треугольник, что зависит от схемы подключения системы управления, величины питания. 3-фазный электродвигатель является универсальным, при необходимости его можно подключать к однофазному питанию с линейным напряжением. При соединении обмоток треугольником напряжение обмоток равно линейному Uф, а при подключении по схеме звезды – √3Uф.

Ротор

Устройство мотораРотор в асинхронном электродвигателе представляет собой вал, на котором закрепляется сердечник, набранный из листов электротехнической стали. Что трехфазный, что однофазный мотор, ротор имеет практически одинаковую конструкцию. В качестве обмотки в обычных асинхронных моторах на рабочую частоту 50Гц используются куски медного или алюминиевого провода большой толщины или стержни, соединенные между собой торцевыми замыкающими кольцами.

Для того чтобы обмотка надежно удерживалась в сердечнике, имеются специальные пазы, куда она запрессована. Торцевые кольца могут быть снабжены вентиляционными лопатками, предназначенными для улучшения интенсивности охлаждения внутреннего пространства. Вал закреплен на подшипниках, впрессованных во фланцы или плитах, закрепленных к станине в зависимости от устройства.

Между валом и статором имеется зазор, величина которого зависит от пусковых параметров мотора. Если необходимо увеличить мощность и момент, то он должен быть как можно меньше. Одновременно с ростом мощности увеличиваются и добавочные потери в верхних слоях статора и ротора.

Принцип работы

Асинхронный двигатель принцип работы имеет достаточно простой. Он основан на двух физических явлениях:

  1. При подаче напряжения на статорные обмотки в двигателе возникает вращающееся магнитное поле.
  2. Поле оказывает воздействие на ток, индуцируемый в роторе. А это создает крутящий момент, поворачивающий вал двигателя относительно полюсов.

За каждый поворот вала полюса меняются полярностью с частотой сети. Поэтому напряжение обмотки статора имеет стандартную частоту, а скорость вращения зависит от:

  • нагрузки на валу;
  • количества пар полюсов;
  • особенностей намотки статора.

Маркировка электродвигателя

Для упрощения процесса подключения и выбора схемы асинхронного 3-фазного ЭД на каждом из них имеется соответствующая маркировка. В ней указываются такие характеристики, как:

  • крутящий момент;
  • мощность;
  • максимальная скорость вращения;
  • cosφ.

Также в зашифрованной маркировке имеется указание типа двигателя, количества полюсов. Их необходимо учитывать при выборе мотора для тех или для других нужд. А для облегчения процесса подключения все концы сводятся в клеммную коробку, где подписаны следующим образом:

Если мотор подключается к сети 380 В с линейным напряжением обмоток 220В, то его схема обмоток должна быть треугольником. Но если двигатель подключается к стандартной сети 380В, то схема включения обмоток должна быть звездой.

Скольжение

Описане мотора асинхронного типаПри рассмотрении принципа работы асинхронного электрического двигателя применяют такое понятие, как скольжение, и обозначается параметр буквой «s». Оно возникает из-за разницы в скоростях вращения магнитного поля статора и реальной частоты вращения ротора. При этом первый показатель на порядок больше. Следовательно, чем выше разница, тем сильнее скольжение.

Скольжение позволяет объяснить принцип работы. За счет отставания частоты вращения ротора от магнитного поля статора и обеспечивается наведение ЭДС в короткозамкнутом роторе. Но если бы поле вращалось со скоростью частоты ЭДС в роторе, то собственно вращения не происходило.

Скольжение, являясь относительной величиной, измеряется в %. И становится больше при увеличении нагрузки на валу двигателя.

Двигателя с фазным ротором

Когда речь идет о моторах с фазным ротором, то он имеет немного иное устройство. Также имеется 3 обмотки, которые соединены в звезду, а их начала выведены на подводящие кольца. Сравнивая два типа двигателя с короткозамкнутым и фазным роторами, то у второго развивается момент сразу же под высокой нагрузкой. Такие моторы получили применение в системах, где требуется сделать мощный приводной агрегат с высокой тягой. Также такие моторы являются более удобными для регулируемого управления посредством регулятора частоты.

Недостатки асинхронных электродвигателей

В стандартном исполнении без магнитов на роторе асинхронные электродвигатели являются маломощными. Они неспособны сразу обеспечить высокий крутящий момент. А также для их запуска требуется большое количество электрической мощности, которая может превышать предельно допустимые показатели системы питания. Поэтому их пуск должен выполняться без нагрузки. Кроме этого, асинхронные электродвигатели являются мощными источниками электромагнитных помех, сопровождающимися сбоями в работе различных других устройств, находящихся вблизи. Для снижения их влияния необходимо предусматривать качественное заземление и обязательное экранирование.

instrument.guru

Асинхронный электродвигатель. Устройство и принцип действия.

Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников.Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис. 1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

Рис. 2. Асинхронный электродвигатель с короткозамкнутым роторомСобранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

Рис. 3. Короткозамкнутый ротора — ротор с короткозамкнутой обмоткой, б — «беличье колесо»,в — короткозамкнутый ротор, залитый алюминием;1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни,4 — вентиляционные лопаткиТаким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

Рис. 4. Разрез асинхронного двигателя с фазным ротором1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольцаФазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

Источник: Кузнецов М. И. Основы электротехники. Учебное пособие.Изд. 10-е, перераб. «Высшая школа», 1970.

motors33.ru

Асинхронный электродвигатель: устройство, работа, советы

Англоязычный справочник называет асинхронный электродвигатель индукционным. Сразу точки встают над i. Интернет забит вопросами отличий данного типа машин, нюансы коллекторных, синхронных движков, на деле выходит просто. Единственный вид двигателей, создающий полюсы явлением индукции. Прочие конструкции применяют постоянные магниты, катушки, питаемые током… Только в индукционных (асинхронных) двигателях используются наводки, создающие движущую силу. Фактор определяет особенность – отличие скорости вращения вала от частоты поля.

Устройство асинхронного двигателя

Статор классический

Статор классический

Статор асинхронного двигателя

Начнем простейшим распространенным вариантом: питание переменным током подается на обмотки статора. Посмотрите фото: типичный образчик статора. Вынув ротор, нельзя сказать, какому типу двигателей принадлежит сердечник, увитый медью. Получили главный вывод: статор не определяет методику формирования движущей силы. Скорее выступает опорой, относительно которой действует статор.

Видим составной сердечник, содержащий две катушки. Направление намотки создает два явных полюса. Нельзя назвать сгущения напряженности поля северным или южным, поскольку направление линий постоянно меняется (с удвоенной частотой сети 100 Гц). Сборка ведется следующим образом:

  1. Катушки мотают отдельно. Конструкторы знают, сколько витков нужно, каким проводом вести.
  2. Полученный моток надевают аккуратно на распорки магнитопровода (традиционной формы буквы Т). Для изоляции прокладывают слой винила, другого полимера.
  3. Затем концы обмоток чуть пригибают к периферии, витки плотно упираются в основание буквы Т.
  4. В нашем случае сердечник составной, внутренняя часть катушками вставлена во внешнее кольцо. Но чаще конструкция попроще.

Сердечник собирается из пластин, изолированных друг от друга при помощи лака. Идет работа асинхронного электродвигателя на 230 вольт, переменное поле наводит вихревые токи, вызывая эффект перемагничивания. Чтобы снизить потери, сердечник разбивается на пластины. Специальная сталь, легированная добавками кремния обеспечивает низкий коэффициент электропроводности.

Статор асинхронного двигателя

Статор электрического двигателя

В бытовых асинхронных электродвигателях полюсов статора два. Встречаются исключения из правила. На другом снимке видим статор асинхронного двигателя напольного вентилятора с тремя скоростями. Полюсов восемь, чтобы запитать такую кучу железа, понадобился конденсатор. Сдвигает фазу напряжения на минус 90 градусов относительно тока. Становится возможным создать переменное вращающееся поле внутри статора. Данный тип асинхронных двигателей называется конденсаторным.

Первым две фазы использовать предложил Никола Тесла.

Схема выглядит следующим образом:

  1. Четыре обмотки, лежащие в вершинах креста запитываются сетью 230 вольт. Две – противолежащие – имеют один знак полюса, прочие – другой. Получается, поле вращается с половинной скоростью сети (25 Гц). Этого хватает исправной работе вентилятора.
  2. Плавный пуск асинхронного электродвигателя и работы возможны только в условиях, когда поле сглажено. Для этих целей применяются четыре обмотки, лежащие по диагоналям. Здесь напряжение сдвинуто на 90 градусов. Использованием вспомогательных катушек технические характеристики улучшаются.

Как подстраиваются обороты? Регуляторы скорости асинхронного электродвигателя коммутируют обмотку. Клавиатура управления устроена в каждый момент времени допускать нажатие одной кнопки, либо никакой. Восемь обмоток имеют пару отводов. Статором производится нужная коммутация, некоторые ветви запитываются конденсатором. Нажатие каждой кнопки включает в работу часть обмотки. Полностью статор работает на высшей скорости.

Принцип работы в схеме

Принцип работы схемы

Примерная схема, демонстрирующая принцип работы, иллюстрируется фото. Скорость вращения задается коммутацией обмоток кнопками 1, 2, 3. Необходимость защиты от одновременного включения диктуется требованиями к нормальной работе устройства. В результате реализуется простейшими методами управление по скорости.

Сердечник магнитопровода составлен листами электротехнической стали, снижающей потерь на нагрев. Температура может достигать значительных размеров, поэтому ротор асинхронного двигателя вентилятора снабжается лопастями (см. фото). Любой вентилятор реально может только разогревать воздух, никак не наоборот.

Лопасти ротора

Роторы асинхронных двигателей

Ротор асинхронного двигателя

В данном случае двигатель обеспечит долговременную работу. Поэтому ротор снабжен лопастями тангенциального вентилятора. Помогает охладить конструкцию жаркими летними ночами. Хозяин может спокойно спать, игнорируя возможность пожара. Любой хороший прибор работает аналогичным образом (себя охлаждает). В данном случае двигатель сконструирован по схеме с короткозамкнутым ротором. На валу сидит барабан, где в силумин утоплены медные жилы. Закорочены друг на друга кольцевым соединителем. Подобное техническое решение в литературе традиционно называется беличьей клеткой (колесом) в силу очевидных причин.

Асинхронный короткозамкнутый электродвигатель является доминирующим в быту. Поля в проводниках наводятся статором, затем происходит сцепление через эфир, вал набирает обороты. Никогда не догонит частоту сети. Потому что индукционные токи обращаются в нуль, сцепление нарушается. Вал тормозит, снова подхватывается полем. Подобным образом действуют однофазные асинхронные электродвигатели, любые другие. В сущности, нет разницы, при помощи чего создается переменное поле.

Выделяют ещё одно большое семейство. Устройство асинхронного электродвигателя принципиально иное. Ротор снабжен обмотками, как коллекторный мотор. Обычно трехфазные. Это позволит навести гораздо более сильные поля, возникает крупная проблема: сложно стронуть с места вал. Огромная напряженность поля образует невероятной силы сцепление, за счет чего имеется возможность выхода оборудования из строя. Кроме того вал вообще так не раскрутится.

Вот поэтому для уменьшения силы наведенных токов (напряженности поля) в цепи всех фаз ротора врубается реостат. Активное сопротивление мешает ЭДС развить мощность на валу: некоторая доля рассеивается джоулевым теплом, формируемым активным сопротивлением. Стартовый момент асинхронного двигателя с фазным ротором достаточно велик, срыва оборотов не происходит. Понятно, что значение сопротивлений реостата для каждой конструкции свое. Определяют цифру ротор асинхронного электродвигателя, заданные характеристики, стартовая нагрузка.

Обратите внимание, что во всех случаях с асинхронными двигателями наблюдаем большие потери. Особенно хорошо видно на примере реостата. Мощность асинхронного электродвигателя напрямую тратится на рассеиваемое тепло. Главным достоинство рассматриваемого класса приборов все-таки считаются простота конструкции и обслуживания. В противном случае любые типы асинхронных электродвигателей заброшены бы были на помойку истории.

Как работает асинхронный двигатель

Статор создает вращающееся магнитное поле. Направление линий напряженности определяется правилом буравчика (правой руки). Поэтому статор пока отложим в сторону, попробуем понять, что параллельно происходит на роторе. Начнем беличьей клеткой.

Внутри статора находится поле, линии напряженности которого в первом приближении направлены к центру, где находится вал. Пересекают проводник беличьей клетки под углом близким 90 градусам. По правилу правой руки переменное поле индуцирует ЭДС, порождающую ток. В результате возникает ответ.

Любая пара проводников беличьей клетки обращается в рамку. Вокруг вращается поле статора. По правилу руки возникает ответное поле, направленное противоположно исходному:

  1. Ротор движется медленнее статора. Пусть вращение описывает часовую стрелку.
  2. В какой-то момент северный полюс начинает догонять один из проводников беличьей клетки.
  3. Ток направлен так, что круговые линии напряженности ответного магнитного поля идут навстречу полюсу.
  4. Получается, впереди по курсу полюс наталкивается на одноименный знак заряда, начинает толкать его. Позади образуется «юг», старающийся бежать вслед полю.
Принцип действия

Принцип действия

Простое краткое объяснение того, почему беличья клетка, в конце концов, начинает вращаться. Ротор не должен быть слишком тяжелым, сцепление полей не очень сильное. Это объясняет низкое тяговое усилие, развиваемое асинхронным двигателем на старте. Пусковой ток высок, поскольку ничто не препятствует генерации поля внутри статора. Обратите внимание: в роторе однофазного асинхронного двигателя, показанного на фото в начале статьи, проводники беличьей клетки чуть наклонены к оси барабана. Помогает создать более равномерный магнитный полюс, компенсируя недостатки (в первую очередь неравномерность) вращения поля статора.

Фазный ротор состоит из обмоток, нормаль которых направлена примерно на центр двигателя (вал). Можно каждую представить гипертрофированной ячейкой беличьей клетки. Витков много (в дрелях, к примеру, порядка 40), сила поля намного выше. За счет резкого скачка на старте потребляемая энергия стала бы слишком большой. Уровень ЭДС значителен (определен скоростью изменения магнитного потока). Цепь ротора дополняется реостатом, пытаются компенсировать недостаток. Активное сопротивление понижает ток, закономерно снижая ответное поле, генерируемое проводниками.

Фазный ротор может улучшить характеристики асинхронных электродвигателей, два-три проводника (грубо говоря) дают большее тяговое усилие. К минусам технического решения относят наличие токосъемников, щеточного аппарата. Для снижения износа в некоторых асинхронных двигателях после набора оборотов ротор закорачивается специальным механизмом. Намного продляется жизнь оборудования.

Не видим причин рассматривать подробнее фазный ротор, лучшей иллюстрацией послужит усиленная беличья клетка. Представьте себе: вместо одной стало сорок штук! Количество (от 40 и вниз) регулируется сопротивлением реостата.

Как задать обороты асинхронного двигателя

Любой, в том числе асинхронный трехфазный, электродвигатель неспособен развить обороты близкие частоте поля. Количество полюсов стремятся снизить. Но даже в этом случае редко удается достичь желанных 3000 об/мин (50 Гц х 60 сек). В принципе невозможно. Увеличение количества полюсов статора практикуется для понижения оборотов, как показано выше на примере напольного вентилятора.

Чаще практикуется подключение асинхронного электродвигателя с короткозамкнутым ротором на трехфазный регулятор амплитуды. Методика позволит максимально просто добиться результата. Токи асинхронных электродвигателей велики на старте, «благодаря» потерям сердечника ротора (с ростом оборотов снижаются). Нельзя сказать, что ремонт своими руками статоров относится к категории простых, но намного лучше, нежели перематывать ротор коллектора. Простотой конструкции объясняется любовь промышленности к этому роду устройств.

vashtehnik.ru


Каталог товаров