Светоизлучающие диоды: 1.2.1. Светоизлучающие диоды, СИД — Электронный учебно-методический комплекс по ТМ и О ЦВОСП

Содержание

1.2.1. Светоизлучающие диоды, СИД — Электронный учебно-методический комплекс по ТМ и О ЦВОСП

СИД
представляет собой полупроводниковый прибор с р-n
переходом, протекание электрического тока через который вызывает интенсивное
спонтанное излучение. Известно много конструкций СИД, однако наибольшее
применение получили поверхностные и торцевые СИД.

Спонтанное
излучение обладает низкой монохроматичностью. Его называют некогерентным
светом.(СИД)

Когерентными
источниками называют такие источники, которые излучают синфазные оптические
волны. В основе их работы лежит спонтанное излучение полупроводника
охваченное  объемным резонатором
(например, Фабри-Перо).

В
поверхностном светодиоде волоконный световод присоединяется к поверхности
излучения через специальную выемку 
в полупроводниковой подложке. Такой способ стыковки СИД и стекловолокна
обусловлен необходимостью ввода максимальной мощности спонтанного излучения в
световод. (Рис.1.2)

Рисунок
1.2. Конструкция поверхностного светодиода

В
конструкции торцевого светодиода предусмотрен вывод оптической мощности
излучения через один из торцов. При этом другой торец выполнен в виде зеркала,
которое отражает фотоны в активный слой. В приборе применяются дополнительные
слои полупроводникового материала GaAlAs, который отличается от активного слоя
показателем преломления и шириной запрещенной зоны. Это создает в активном слое
оптический волновод, способствующий концентрации фотонов и усилению бегущей
волны в инверсной насыщенной зарядами среде. Светоизлучающий торец СИД
согласуется с волоконным световодом линзовой системой (Рис. 3).

Работа
светодиодов основана на случайной рекомбинационной люминесценции
избыточных носителей заряда, инжектируемых в активную область
светодиода.

В
результате инжекции не основных носителей заряда и дрейфа основных в активном
слое происходит накопление и рекомбинация этих зарядов с выделением квантов
энергии. При этом фотоны (кванты энергии),

 

 

Рисунок
1.3. Конструкция торцевого светодиода

(Ga-
галлий, As – мышьяк, Al – алюминий)

 

случайно
образовавшиеся, могут двигаться в любом случайном направлении, отражаться от
границ различных слоев полупроводников, поглощаться кристаллами и излучаться с
поверхности или из торца. Величина излучаемой мощности СИД примерно линейно
зависит от величины тока инжекции.

Данная
мощность больше у торцевых СИД, их еще называют СЛД – супер люминесцентными
диодами.

 

Основные
характеристики светодиодов

1.    
Ватт-амперная
характеристика светодиодов

— это зависимость излучаемой мощности от тока, протекающего через прибор
(рис.4)

Рисунок
1.4 Ватт-амперные характеристики светодиодов

 

Характеристики
имеют линейный и нелинейные участки. Нелинейность обусловлена предельными
возможностями по спонтанной рекомбинации электронов и дырок и их ограниченным
числом, зависящим от насыщенности примесными компонентами и общего объема
активного слоя.

Ватт-амперная
характеристика зависит от температуры кристалла. С ее повышением мощность
излучения может значительно снижаться .

2.
Спектральная характеристика светодиодов
показывает зависимость излучаемой мощности от длины волны излучения (Рис.
5).

 

Рисунок
1. 5. Спектральные характеристики светодиодов

По
спектральной характеристике можно определить ширину спектра излучения на уровне
половинной от максимальной мощности излучения. Ширина спектра СЛД Δλ1
(10 ÷ 30 нм), для поверхностного СИД Δλ2 (30 ÷ 60
нм).

Более
узкий спектр излучения СЛД объясняется волноводным эффектом и некоторой
согласованностью (когерентностью) излучательных
рекомбинаций.

3.    
Диаграмма
направленности излучения светодиода

показывает распределение энергии излучения в пространстве.

Рисунок
1.6. Угловая расходимость излучения

Угловая
расходимость излучения оценивается на уровне уменьшения мощности в пространстве
в два раза (Рmax/2),
что отмечено на рисунке точками на пересечении лучей и кривых распределения
мощности (рис.6). Для поверхностного СИД величины φxy и
могут составлять 110°…180°. Для СЛД величины φx и φy не
равны и примерно составляют: φx = 60 °,

φy
= 30.

4.    Внешняя
квантовая эффективность светодиода

показывает долю выводимой мощности излучения от полученной в результате
спонтанной рекомбинации

Эта
доля не превышает 2 – 10 %, что обусловлено большими потерями из-за рассеяния
мощности внутри прибора и отражением фотонов на границе «полупроводник – воздух»
и «полупроводник – световод» из-за различных показателей преломления
полупроводника (n = 3,5) и среды (n = 1,5).

5.    Срок
службы и надежность.

Всем светодиодам присуще деградация параметров – постепенное уменьшение мощности
при длительной эксплуатации. Срок службы зависит от материала и конструкции СИД,
от температуры. При увеличении температуры на 100 – 200
срок службы снижается вдвое. Для использования в системах связи срок службы СИД
должен составлять 105, для наземных и для подводных линий связи —
106.

Полупроводниковые
СИД  являются приборами с низким
входным сопротивлением и потребляют большой ток, поэтому для их возбуждения  следует использовать низкоомные
транзисторы, обеспечивающие большой ток и требуемую линейность
(Рис.7).

Рисунок
1. 7. Схема включения СИД в коллекторную схему
транзистора

На
схеме СИД включается в коллекторную цепь транзистора. Модулирующий сигнал
поступает на базу транзистора и управляет коллектором и током, являющийся
одновременно током инжекции СИД. С помощью резисторов R1
и R2  можно подобрать  необходимое значение начального тока,
пробегающего через СИД.

Реальные
схемы модуляции, как правило, включают цепь стабилизации режима работы и цепь
обратной связи, которая уменьшает нелинейность ватт-амперной характеристики
СИД.

Итак,
сравнительно простая конструкция, высокая надежность, слабая зависимость от
температуры делают СИД особенно подходящими для ВОСП на короткие расстояния при
относительно невысокой информационной пропускной способности.  

 

3.2. Светоизлучающие диоды. Конструкции, принцип действия, основные электрические и оптические характеристики. 3. Источники оптического излучения для систем передачи. Волоконно-оптические системы передачи

3.2. Светоизлучающие диоды. Конструкции, принцип действия, основные электрические и оптические характеристики

3.2.1. Конструкции светодиодов для оптической связи

3. 2.2. Принцип действия светодиодов

3.2.3. Основные характеристики светодиодов

Светодиод (СИД) представляет собой полупроводниковый прибор с p — n переходом, протекание электрического тока через который вызывает интенсивное спонтанное излучение. Известно много конструкций СИД, однако наибольшее применение получили поверхностные и торцевые СИД.

3.2.1. Конструкции светодиодов для оптической связи

В технике оптической связи наибольшее применение получили две конструкции СИД: поверхностный (рисунок 3.1) и торцевой (рисунок 3.2).

Рисунок 3.1. Конструкция поверхностного светодиода

В поверхностном светодиоде волоконный световод присоединяется к поверхности излучения через специальную выемку в полупроводниковой подложке. Такой способ стыковки СИД и стекловолокна обусловлен необходимостью ввода максимальной мощности спонтанного излучения в световод.

Рисунок 3. 2. Конструкция торцевого светодиода

В конструкции торцевого светодиода предусмотрен вывод оптической мощности излучения через один из торцов. При этом другой торец выполнен в виде зеркала, которое отражает фотоны в активный слой. В приборе применяются дополнительные слои полупроводникового материала GaAlAs, который отличается от активного слоя показателем преломления и шириной запрещенной зоны. Это создает в активном слое оптический волновод, способствующий концентрации фотонов и усилению бегущей волны в инверсной насыщенной зарядами среде. Светоизлучающий торец СИД согласуется с волоконным световодом линзовой системой.

3.2.2. Принцип действия светодиодов

Работа светодиодов основана на случайной рекомбинационной люминесценции избыточных носителей заряда, инжектируемых в активную область светодиода. В результате инжекции не основных носителей заряда и дрейфа основных в активном слое происходит накопление и рекомбинация этих зарядов с выделением квантов энергии, которые примерно соответствуют ширине запрещенной зоны активного слоя:

(3. 2)

При этом фотоны (кванты энергии), случайно образовавшиеся, могут двигаться в любом случайном направлении, отражаться от границ различных слоев полупроводников, поглощаться кристаллами и излучаться с поверхности (рисунок 3.1) или из торца (рисунок 3.2). Величина излучаемой мощности СИД примерно линейно зависит от величины тока инжекции. Благодаря некоторым вышеперечисленным особенностям конструкции торцевого СИД в нем может происходить образование небольшого числа стимулированных, вынужденных и, естественно, когерентных фотонов. Это способствует увеличению общей мощности излучаемой энергии с концентрацией в пространстве. По этой причине торцевые СИД называются слабокогерентными источниками света или суперлюминесцентными диодами (СЛД).

3.2.3. Основные характеристики светодиодов

Ваттамперная характеристика светодиодов показывает зависимость излучаемой мощности от тока, протекающего через прибор (рисунок 3.3).

Рисунок 3. 3. Ваттамперные характеристики светодиодов

Характеристики имеют линейный и нелинейные участки. Нелинейность обусловлена предельными возможностями по спонтанной рекомбинации электронов и дырок и их ограниченным числом, зависящим от насыщенности примесными компонентами и общего объема активного слоя.

Ваттамперная характеристика зависит от температуры кристалла. С ее повышением мощность излучения может значительно снижаться [8].

Спектральная характеристика светодиодов показывает зависимость излучаемой мощности от длины волны излучения (рисунок 3.4)

Рисунок 3.4. Спектральные характеристики светодиодов

По спектральной характеристике можно определить ширину спектра излучения на уровне половинной от максимальной мощности излучения. Ширина спектра СЛД Dl1 (около 10 ¸ 30 нм), для поверхностного СИД Dl2 (около 30 ¸ 60 нм).

Более узкий спектр излучения СЛД объясняется волноводным эффектом и некоторой согласованностью (когерентностью) излучательных рекомбинаций. При этом характер излучения остается спонтанным и ширина спектра определяется разбросом энергетических состояний рекомбинирующих электронов и дырок.

Диаграмма направленности излучения светодиода показывает распределение энергии излучения в пространстве (рисунок 3.5)

Рисунок 3.5. Угловая расходимость излучения

Угловая расходимость излучения оценивается на уровне уменьшения мощности в пространстве в два раза (РМАКС /2), что отмечено на рисунке точками на пересечении лучей и кривых распределения мощности. Для поверхностного СИД величины j x » j y и могут составлять 110° …180°. Для СЛД величины j x и j y не равны и примерно составляют: j x » 60 °, j y » 30
Внешняя квантовая эффективность светодиода показывает долю выводимой мощности излучения от полученной в результате спонтанной рекомбинации

(3.3)

В [3, 8, 13] показано, что эта доля не превышает 2 – 10 %, что обусловлено большими потерями из-за рассеяния мощности внутри прибора и отражением фотонов на границе «полупроводник – воздух» и «полупроводник – световод» из-за различных показателей преломления полупроводника (n = 3,5) и среды (n = 1,5).

светоизлучающих диодов (LED) — SparkFun Learn

Авторы:
Ник Пул, bboyho

Избранное

Любимый

66

Введение

Светодиоды окружают нас повсюду: В наших телефонах, автомобилях и даже домах. Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за этим стоит светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одна общая черта: они — бекон электроники. Считается, что они делают любой проект лучше, и их часто добавляют к маловероятным вещам (к всеобщему удовольствию).

Однако, в отличие от бекона, они уже не годятся после того, как их приготовили. Это руководство поможет вам избежать случайных светодиодных барбекю! Впрочем, обо всем по порядку. Что именно это этот светодиод, о котором все говорят?

Светодиоды (это «элли-и-ди») представляют собой особый тип диодов, которые преобразуют электрическую энергию в свет. На самом деле, светодиод означает «светоизлучающий диод». (Он делает то, что написано на банке!) И это отражено в сходстве между диодом и символами схемы светодиода:

Короче говоря, светодиоды похожи на крошечные лампочки. Тем не менее, светодиоды требуют гораздо меньше энергии для освещения по сравнению с ними. Они также более энергоэффективны, поэтому они не нагреваются, как обычные лампочки (если только вы не накачиваете их энергией). Это делает их идеальными для мобильных устройств и других приложений с низким энергопотреблением. Однако не сбрасывайте их со счетов в мощной игре. Светодиоды высокой интенсивности нашли свое применение в акцентном освещении, прожекторах и даже автомобильных фарах!

Вы уже испытываете тягу? Тяга поставить светодиоды на все подряд? Хорошо, оставайтесь с нами, и мы покажем вам, как!

Рекомендуемая литература

Вот некоторые другие темы, которые будут обсуждаться в этом руководстве. Если вы не знакомы с каким-либо из них, пожалуйста, ознакомьтесь с соответствующим руководством, прежде чем идти дальше.

Что такое цепь?

Каждый электрический проект начинается со схемы. Не знаете, что такое цепь? Мы здесь, чтобы помочь.

Избранное

Любимый

78

Что такое электричество?

Мы можем видеть электричество в действии на наших компьютерах, освещая наши дома, как удары молнии во время грозы, но что это такое? Это не простой вопрос, но этот урок прольет на него свет!

Избранное

Любимый

81

Диоды

Праймер для диодов! Свойства диодов, типы диодов и применение диодов.

Избранное

Любимый

68

Электроэнергия

Обзор электроэнергии, скорость передачи энергии. Мы поговорим об определении мощности, ваттах, уравнениях и номинальных мощностях. 1,21 гигаватт обучающего веселья!

Избранное

Любимый

53

Полярность

Знакомство с полярностью электронных компонентов. Узнайте, что такое полярность, в каких частях она присутствует и как ее определить.

Избранное

Любимый

49

Метрические префиксы и единицы СИ

В этом руководстве объясняется, как использовать и преобразовывать стандартные метрические префиксы.

Избранное

Любимый

22

Рекомендуем к просмотру

Как их использовать

Итак, вы пришли к разумному выводу, что вам нужно поставить светодиоды на все. Мы думали, ты придешь.

Давайте пройдемся по книге правил:

1) Полярность имеет значение

В электронике полярность указывает, является ли компонент схемы симметричным или нет. Светодиоды, будучи диодами, пропускают ток только в одном направлении. А когда нет тока, нет и света. К счастью, это также означает, что вы не сможете сломать светодиод, подключив его наоборот. Скорее просто не получится.

Положительная сторона светодиода называется «анодом» и маркируется более длинным «выводом» или ножкой. Другая, отрицательная сторона светодиода называется катодом . Ток течет от анода к катоду и никогда в обратном направлении. Перевернутый светодиод может препятствовать правильной работе всей цепи, блокируя протекание тока. Так что не волнуйтесь, если добавление светодиода сломает вашу цепь. Попробуйте перевернуть его.

2) Сила тока Moar равна мощности Moar Light

Яркость светодиода напрямую зависит от потребляемого им тока. Это означает две вещи. Во-первых, сверхъяркие светодиоды быстрее разряжают батареи, потому что дополнительная яркость достигается за счет дополнительной потребляемой мощности. Во-вторых, вы можете контролировать яркость светодиода, контролируя величину тока через него. Но создание настроения — не единственная причина сократить потребление тока.

3) Существует такая вещь, как слишком большая мощность

Если вы подключите светодиод напрямую к источнику тока, он попытается рассеять столько энергии, сколько ему разрешено потреблять, и, подобно трагическим героям прошлого, он уничтожить себя. Вот почему важно ограничить величину тока, протекающего через светодиод.

Для этого используем резисторы. Резисторы ограничивают поток электронов в цепи и защищают светодиод от слишком большого тока. Не волнуйтесь, для определения наилучшего номинала резистора требуется лишь немного базовой математики. Вы можете узнать все об этом в примерах применения нашего руководства по резисторам!

Резисторы

1 апреля 2013 г.

Учебное пособие по резисторам. Что такое резистор, как они ведут себя параллельно/последовательно, расшифровка цветовых кодов резисторов и применение резисторов.

Избранное

Любимый

55

Пусть вас не пугает вся эта математика, на самом деле довольно сложно все испортить слишком сильно. В следующем разделе мы рассмотрим, как сделать светодиодную схему без калькулятора.

Светодиоды без математики

Прежде чем мы поговорим о том, как читать техническое описание, давайте подключим несколько светодиодов. В конце концов, это учебник по светодиодам, а не учебник по для чтения .

Это также не учебник по математике, поэтому мы дадим вам несколько практических правил для запуска и работы светодиодов. Как вы, вероятно, поняли из информации в предыдущем разделе, вам понадобится батарея, резистор и светодиод. Мы используем батарею в качестве источника питания, потому что ее легко найти, и она не может обеспечить опасное количество тока.

Базовый шаблон для светодиодной цепи довольно прост, просто подключите батарею, резистор и светодиод последовательно. Как это:

Резистор 330 Ом

Хорошим номиналом резистора для большинства светодиодов является 330 Ом (оранжевый — оранжевый — коричневый). Вы можете использовать информацию из последнего раздела, чтобы помочь вам определить точное значение, которое вам нужно, но это светодиоды без математики . Итак, начните с включения резистора 330 Ом в приведенную выше схему и посмотрите, что произойдет.

Метод проб и ошибок

Что интересно в резисторах, так это то, что они рассеивают дополнительную мощность в виде тепла, поэтому, если у вас есть резистор, который нагревается, вам, вероятно, нужно использовать меньшее сопротивление. Однако, если ваш резистор слишком мал, вы рискуете сжечь светодиод! Учитывая, что у вас есть несколько светодиодов и резисторов, вот блок-схема, которая поможет вам спроектировать схему светодиодов методом проб и ошибок:

Броски с батарейкой типа «таблетка»

Еще один способ зажечь светодиод — просто подключить его к батарейке типа «таблетка»! Так как батарейка типа «таблетка» не может обеспечить ток, достаточный для повреждения светодиода, вы можете соединить их напрямую! Просто вставьте батарейку типа «таблетка» CR2032 между выводами светодиода. Длинная ножка светодиода должна касаться стороны батареи, отмеченной знаком «+». Теперь вы можете обмотать все это лентой, добавить магнит и приклеить к чему-либо! Ура метателям!

Конечно, если вы не получаете отличных результатов методом проб и ошибок, вы всегда можете взять свой калькулятор и посчитать. Не волнуйтесь, рассчитать наилучшее значение резистора для вашей схемы несложно. Но прежде чем вы сможете определить оптимальное значение резистора, вам нужно найти оптимальный ток для вашего светодиода. Для этого нам нужно сообщить в таблицу…

Узнать подробности

Не подключайте никакие странные светодиоды в свои цепи, это просто вредно для здоровья. Познакомьтесь с ними первыми. А как лучше читать даташит.

В качестве примера мы рассмотрим техническое описание нашего базового красного 5-мм светодиода.

LED Current

Начиная сверху и спускаясь вниз, первое, с чем мы сталкиваемся, это очаровательный стол:

Ах, да, но что все это значит?

В первой строке таблицы указано, какой ток ваш светодиод сможет непрерывно выдерживать. В этом случае вы можете дать ему 20 мА или меньше, и он будет светить ярче всего при 20 мА. Вторая строка говорит нам, каким должен быть максимальный пиковый ток для коротких импульсов. Этот светодиод может выдерживать короткие скачки до 30 мА, но вы не хотите поддерживать этот ток слишком долго. Это техническое описание даже достаточно полезно, чтобы предложить стабильный диапазон тока (в третьем ряду сверху) 16-18 мА. Это хорошее целевое число, которое поможет вам произвести расчеты резисторов, о которых мы говорили.

Следующие несколько строк менее важны для целей данного руководства. Обратное напряжение — это свойство диода, о котором в большинстве случаев не стоит беспокоиться. Рассеиваемая мощность — это мощность в милливаттах, которую светодиод может использовать до того, как он выйдет из строя. Это должно работать само собой, пока вы держите светодиод в пределах рекомендуемых значений напряжения и тока.

Напряжение светодиодов

Посмотрим, какие еще столы они здесь поставили. .. Ах!

Это полезный столик! Первая строка сообщает нам, каким будет прямое падение напряжения на светодиоде. Прямое напряжение — это термин, который часто встречается при работе со светодиодами. Это число поможет вам решить, какое напряжение потребуется вашей схеме для питания светодиода. Если у вас есть более одного светодиода, подключенного к одному источнику питания, эти цифры действительно важны, потому что прямое напряжение всех светодиодов, сложенных вместе, не может превышать напряжение питания. Мы поговорим об этом более подробно позже в более подробном разделе этого руководства.

Длина волны светодиода

Во второй строке этой таблицы указана длина волны света. Длина волны — это, по сути, очень точный способ объяснить, какого цвета свет. Это число может немного варьироваться, поэтому в таблице указаны минимум и максимум. В данном случае это от 620 до 625 нм, что находится как раз на нижнем красном конце спектра (от 620 до 750 нм). Опять же, мы рассмотрим длину волны более подробно в более подробном разделе.

Яркость светодиода

Последняя строка (помеченная как «Интенсивность света») показывает, насколько ярким может быть светодиод. Единица mcd, или милликандела — стандартная единица измерения интенсивности источника света. Этот светодиод имеет максимальную интенсивность 200 мкд, что означает, что он достаточно яркий, чтобы привлечь ваше внимание, но не совсем яркий фонарик. При 200 мкд этот светодиод мог бы стать хорошим индикатором.

Угол обзора

Далее у нас есть веерообразный график, представляющий угол обзора светодиода. Различные стили светодиодов будут включать линзы и отражатели, чтобы либо концентрировать большую часть света в одном месте, либо распространять его как можно шире. Некоторые светодиоды подобны прожекторам, испускающим фотоны во всех направлениях; Другие настолько направленны, что вы не можете сказать, что они включены, если не смотрите прямо на них. Чтобы прочитать график, представьте, что светодиод стоит прямо под ним. «Спицы» на графике обозначают угол обзора. Круглые линии представляют интенсивность в процентах от максимальной интенсивности. Этот светодиод имеет довольно узкий угол обзора. Вы можете видеть, что если смотреть прямо вниз на светодиод, он наиболее яркий, потому что при 0 градусах синие линии пересекаются с самым внешним кругом. Чтобы получить угол обзора 50%, угол, при котором интенсивность света вдвое меньше, проследите за кругом 50% вокруг графика, пока он не пересечет синюю линию, затем следуйте по ближайшему выступу, чтобы считать угол. Для этого светодиода угол обзора 50% составляет около 20 градусов.

Размеры

Наконец, механический чертеж. Это изображение содержит все размеры, которые вам понадобятся для установки светодиода в корпус! Обратите внимание, что, как и у большинства светодиодов, у этого есть небольшой фланец внизу. Это удобно, когда вы хотите установить его в панель. Просто просверлите отверстие идеального размера для корпуса светодиода, и фланец предотвратит его падение!

Теперь, когда вы знаете, как расшифровать техническое описание, давайте посмотрим, какие причудливые светодиоды вы можете встретить в дикой природе. ..

Типы светодиодов

Поздравляем, вы знаете основы! Может быть, вы даже получили в свои руки несколько светодиодов и начали их освещать, это потрясающе! Как бы вы хотели активизировать свою игру с миганием? Давайте поговорим о том, как сделать что-то необычное за пределами вашего стандартного светодиода.

Крупный план суперяркого 5-мм светодиода Крупный план

Типы светодиодов

Вот другие персонажи.

RGB-светодиоды

RGB-светодиоды (красный-зелено-синий) на самом деле представляют собой три светодиода в одном! Но это не значит, что он может делать только три цвета. Поскольку красный, зеленый и синий являются аддитивными основными цветами, вы можете контролировать интенсивность каждого из них, чтобы создать любой цвет радуги. Большинство светодиодов RGB имеют четыре контакта: по одному для каждого цвета и общий контакт. У некоторых общий штырек является анодом, а у других катодом.

Светодиод RGB Common Clear Cathode

Светодиоды с интегральными схемами

Цикличность

Некоторые светодиоды умнее других. Возьмем, к примеру, велосипедный светодиод. Внутри этих светодиодов на самом деле есть интегральная схема, которая позволяет светодиоду мигать без какого-либо внешнего контроллера. Вот крупным планом микросхема (большой черный квадратный чип на кончике наковальни), управляющая цветами.

5-миллиметровый светодиод с медленным циклом крупным планом

Просто включите его и смотрите, как он работает! Они отлично подходят для проектов, где вы хотите немного больше действий, но не имеете места для схемы управления. Есть даже мигающие светодиоды RGB, которые переключаются между тысячами цветов!

Адресные светодиоды

Другие типы светодиодов могут управляться индивидуально. Существуют различные наборы микросхем (WS2812, APA102, UCS1903 и многие другие), используемые для управления отдельными светодиодами, соединенными вместе. Ниже показан крупный план WS2812. Большая квадратная микросхема справа управляет цветами по отдельности.

Адресный WS2812 PTH Close Up

Встроенный резистор

Что это за магия? Светодиод со встроенным резистором? Вот так. Существуют также светодиоды с небольшим токоограничивающим резистором. Если вы внимательно посмотрите на изображение ниже, на штыре есть небольшая черная квадратная микросхема для ограничения тока на этих типах светодиодов.

Светодиод со встроенным резистором Крупный план

Итак, подключите светодиод со встроенным резистором к источнику питания и зажгите его! Мы протестировали эти типы светодиодов при напряжении 3,3 В, 5 В и 9 В.

Сверхяркий зеленый светодиод со встроенным резистором с питанием

Примечание: В техническом описании светодиодов со встроенным резистором указано, что рекомендуемое прямое напряжение составляет около 5 В. Тестирование одного на 5 В, он потребляет около 18 мА. Стресс-тестирование с 9V аккумулятор, он тянет около 30мА. Вероятно, это верхний предел входного напряжения. Использование более высокого напряжения может сократить срок службы светодиода. При напряжении около 16 В в наших стресс-тестах светодиод перегорел.

Корпуса для поверхностного монтажа (SMD)

Светодиоды для поверхностного монтажа представляют собой не столько определенный вид светодиодов, сколько тип корпуса. По мере того, как электроника становится все меньше и меньше, производители придумали, как втиснуть больше компонентов в меньшее пространство. Детали SMD (Surface Mount Device) представляют собой крошечные версии своих стандартных аналогов. Вот крупный план адресуемого светодиода WS2812B, упакованного в небольшой корпус 5050.

Адресный WS2812B Крупный план

SMD-светодиоды бывают нескольких размеров, от довольно больших до размеров меньше рисового зерна! Поскольку они такие маленькие и имеют подушечки вместо ножек, с ними не так просто работать, но если у вас мало места, они могут быть именно тем, что прописал доктор.

Пакет WS2812B-5050 Пакет APA102-2020

9Светодиоды 0008 SMD также облегчают и ускоряют установку большого количества светодиодов на печатные платы и полосы для машин . Вы, вероятно, не стали бы вручную припаивать все эти компоненты вручную.

Крупный план адресной светодиодной матрицы 8×32 (WS2812-5050) Адресная светодиодная лента 5M (APA102-5050) с питанием

High Power

Мощные светодиоды таких производителей, как Luxeon и CREE, невероятно яркие. Они ярче, чем суперяркие! Как правило, светодиод считается высокомощным, если он может рассеивать мощность 1 Вт или более. Это причудливые светодиоды, которые вы найдете в действительно хороших фонариках. Массивы из них можно построить даже для прожекторов и автомобильных фар. Поскольку через светодиод проходит так много энергии, для них часто требуются радиаторы. Радиатор — это, по сути, кусок теплопроводного металла с большой площадью поверхности, задачей которого является передача как можно большего количества отработанного тепла в окружающий воздух. В конструкцию некоторых разделительных досок, таких как показанная ниже, может быть встроено некоторое рассеивание тепла.

Мощный RGB-светодиод Алюминиевая задняя панель для некоторого рассеивания тепла

Мощные светодиоды могут генерировать столько отработанного тепла, что могут повредить себя без надлежащего охлаждения. Не позволяйте термину «отработанное тепло» обмануть вас, эти устройства по-прежнему невероятно эффективны по сравнению с обычными лампочками. Для управления можно использовать драйвер светодиода постоянного тока.

Специальные светодиоды

Существуют даже светодиоды, излучающие свет за пределами обычного видимого спектра. Например, вы, вероятно, используете инфракрасные светодиоды каждый день. Они используются в таких вещах, как пульты от телевизора, для отправки небольших фрагментов информации в виде невидимого света! Они могут выглядеть как стандартные светодиоды, поэтому их будет трудно отличить от обычных светодиодов.

ИК-светодиод

На противоположном конце спектра также можно найти ультрафиолетовые светодиоды. Ультрафиолетовые светодиоды заставят некоторые материалы флуоресцировать, как черный свет! Они также используются для дезинфекции поверхностей, поскольку многие бактерии чувствительны к ультрафиолетовому излучению. Они также могут быть использованы для обнаружения подделок (купюры, кредитные карты, документы и т. д.), солнечных ожогов, список можно продолжить. Пожалуйста, надевайте защитные очки при использовании этих светодиодов.

УФ-светодиод Проверяем банкноту США

Другие светодиоды

Имея в вашем распоряжении такие причудливые светодиоды, нет оправдания тому, чтобы оставить что-либо неосвещенным. Однако, если ваша жажда знаний о светодиодах не утолена, тогда читайте дальше, и мы подробно рассмотрим светодиоды, цвет и силу света!

Углубление

Итак, вы закончили со светодиодами 101 и хотите большего? О, не волнуйтесь, у нас есть еще. Давайте начнем с науки о том, что заставляет светодиоды тикать… э-э… мигать. Мы уже упоминали, что светодиоды — это особый вид диодов, но давайте немного углубимся в то, что именно это означает:

То, что мы называем светодиодом, на самом деле представляет собой светодиод и упаковку вместе, но сам светодиод на самом деле крошечный! Это чип полупроводникового материала, легированный примесями, которые создают границу для носителей заряда. Когда ток течет в полупроводник, он перескакивает с одной стороны этой границы на другую, высвобождая при этом энергию. В большинстве диодов эта энергия уходит в виде тепла, но в светодиодах эта энергия рассеивается в виде света!

Длина волны света и, следовательно, цвет зависят от типа полупроводникового материала, из которого изготовлен диод. Это связано с тем, что структура энергетических зон полупроводников различается между материалами, поэтому фотоны излучаются с разными частотами. Вот таблица распространенных светодиодных полупроводников по частоте:

Усеченная таблица полупроводниковых материалов по цветам. Полная таблица доступна в статье Википедии для «LED»

В то время как длина волны света зависит от ширины запрещенной зоны полупроводника, интенсивность зависит от количества энергии, проходящей через диод. Мы немного говорили об интенсивности света в предыдущем разделе, но это больше, чем просто числовое значение того, насколько ярко что-то выглядит.

Единица измерения силы света называется кандела, хотя, когда вы говорите об интенсивности одного светодиода, вы обычно находитесь в диапазоне милликандела. Что интересно в этой единице, так это то, что на самом деле это не мера количества световой энергии, а фактическая мера «яркости». Это достигается путем взятия мощности, излучаемой в определенном направлении, и взвешивания этого числа с помощью функции светимости света. Человеческий глаз более чувствителен к некоторым длинам волн света, чем к другим, и функция светимости представляет собой стандартизированную модель, учитывающую эту чувствительность.

Сила света светодиодов может составлять от десятков до десятков тысяч милликандела. Индикатор питания на вашем телевизоре, вероятно, составляет около 100 мкд, тогда как у хорошего фонарика может быть 20 000 мкд. Смотреть прямо на что-то более яркое, чем несколько тысяч милликандел, может быть болезненно; не пытайтесь.

Прямое падение напряжения

О, я также обещал, что мы поговорим о концепции прямого падения напряжения. Помните, когда мы смотрели техническое описание, я упомянул, что прямое напряжение всех ваших светодиодов, сложенных вместе, не может превышать напряжение вашей системы? Это связано с тем, что каждый компонент в вашей схеме должен иметь разделяет напряжение, и количество напряжения, которое каждая часть использует вместе, всегда будет равно доступному количеству. Это называется законом напряжения Кирхгофа. Таким образом, если у вас есть источник питания 5 В, и каждый из ваших светодиодов имеет прямое падение напряжения 2,4 В, вы не сможете питать более двух одновременно.

Законы Кирхгофа также пригодятся, когда вы хотите приблизить напряжение на данной части на основе прямого напряжения других частей. Например, в примере, который я только что привел, есть источник питания 5 В и 2 светодиода с прямым падением напряжения 2,4 В каждый. Конечно, мы хотели бы включить токоограничивающий резистор, верно? Как узнать напряжение на этом резисторе? Это просто:

5 (напряжение системы) = 2,4 (светодиод 1) + 2,4 (светодиод 2) + резистор

5 = 4,8 + Резистор

Резистор = 5 — 4,8

Резистор = 0,2

Итак, на резисторе 0,2 В! Это упрощенный пример, и это не всегда так просто, но, надеюсь, это даст вам представление о важности прямого падения напряжения. Используя значение напряжения, которое вы получаете из законов Кирхгофа, вы также можете делать такие вещи, как определение тока через компонент с помощью закона Ома. короче вы хотите, чтобы напряжение вашей системы было равно ожидаемому прямому напряжению компонентов вашей комбинированной схемы.

Расчет токоограничивающих резисторов

Если вам нужно рассчитать точное значение токоограничивающего резистора, включенного последовательно со светодиодом, ознакомьтесь с одним из примеров приложений в руководстве по резисторам для получения дополнительной информации.


Ресурсы и продолжение

Вы сделали это! Вы знаете почти все… о светодиодах. Теперь иди и ставь светодиоды на все, что угодно! А теперь… драматическая реконструкция светодиода без токоограничивающего резистора, перегруженного и перегоревшего:

Да… не впечатляет.

Если вы хотите узнать больше о некоторых темах, связанных со светодиодами, посетите эти другие учебные пособия:

Легкий

Light — полезный инструмент для инженера-электрика. Понимание того, как свет связан с электроникой, является фундаментальным навыком для многих проектов.

Избранное

Любимый

22

ИК-связь

В этом руководстве объясняется, как работает обычная инфракрасная (ИК) связь, а также показано, как настроить простой ИК-передатчик и приемник с помощью Arduino.

Избранное

Любимый

40

Цилиндр Das Blinken

Цилиндр, украшенный светодиодными лентами, станет отличным свадебным подарком.

Избранное

Любимый

1

Как делают светодиоды

Мы совершаем экскурсию по производителю светодиодов и узнаем, как производятся светодиоды PTH 5 мм для SparkFun.

Избранное

Любимый

18

Хакеры по месту жительства: звуковой визуализатор

Забавный проект, в котором используется Raspberry Pi и пользовательское приложение Java для создания собственного звукового визуализатора с использованием светодиодной матрицы RGB.

Избранное

Любимый

2

Руководство по подключению гибкого троса с адресным светодиодом Neon

Адресная (UCS1903) светодиодная неоновая гибкая веревка добавляет крутые световые эффекты для наружного и внутреннего использования, включая коридоры и лестницы, праздничное освещение и многое другое! В этом руководстве по подключению вы узнаете, как подключать, запитывать и управлять светодиодными сегментами с помощью Arduino и библиотеки FastLED.

Избранное

Любимый

5

Распечатанная на 3D-принтере опора для жезла с подсветкой

В этом уроке мы узнаем, как создать театральную опору для представления путем 3D-печати жезла и добавления светодиода.

Избранное

Любимый

2

Руководство по подключению SparkFun gator:bit v2

Gator:bit v2 — это коммутационная плата для BBC micro:bit. Gator:bit открывает почти каждый контакт на micro:bit для клиппируемой контактной площадки с защитой цепи. Он также имеет встроенные адресные светодиоды и встроенный зуммер.

Избранное

Любимый

1

 

Хотите узнать больше о светодиодах?

См. нашу страницу LED , где вы найдете все, что вам нужно знать, чтобы начать использовать эти компоненты в своем проекте.

Отведи меня туда!

 

Или посмотрите некоторые из следующих сообщений в блоге:

Гонка на дно: светодиодные лампы и DFM

11 мая 2015 г.

Избранное

Любимый

7

T³: Приключения с УФ-светодиодами, фотоинициаторами и гель-лаком для ногтей

19 апреля 2016 г.

Избранное

Любимый

0

T³: Использование светодиодов в качестве датчиков освещенности

9 августа 2016 г.

Избранное

Любимый

2

Распечатанные на 3D-принтере руки-помощники

16 апреля 2018 г.

Избранное

Любимый

0

ATP: Схема со светодиодами

2 июля 2018 г.

Избранное

Любимый

0

Математическое выцветание

26 декабря 2018 г.

Избранное

Любимый

4

Узнайте о светодиодном освещении | ENERGY STAR

  • Основы
    • Что такое светодиоды и как они работают?
    • Срок службы светодиодных осветительных приборов
    • Где использовать светодиодные лампы
    • Светодиоды и тепло
  • Чем отличается светодиодное освещение?
  • Почему я должен выбирать продукты светодиодного освещения, сертифицированные ENERGY STAR®?

Основы светодиодного освещения

Что такое светодиоды и как они работают?

LED означает светоизлучающий диод . Светодиодные осветительные приборы производят свет на 90% эффективнее, чем лампы накаливания. Как они работают? Электрический ток проходит через микрочип, который освещает крошечные источники света, которые мы называем светодиодами, и в результате получается видимый свет. Чтобы предотвратить проблемы с производительностью, тепло, выделяемое светодиодами, поглощается радиатором.

Срок службы светодиодных осветительных приборов

Срок службы светодиодных осветительных приборов определяется иначе, чем срок службы других источников света, таких как лампы накаливания или компактные люминесцентные лампы (КЛЛ). Светодиоды обычно не «сгорают» и не выходят из строя. Вместо этого они испытывают «амортизацию светового потока», когда яркость светодиода медленно тускнеет с течением времени. В отличие от ламп накаливания, «срок службы» светодиодов определяется прогнозом, когда светоотдача уменьшится на 30 процентов.

Как светодиоды используются в освещении

Светодиоды используются в лампах и светильниках для общего освещения. Небольшие по размеру светодиоды открывают уникальные возможности для дизайна. Некоторые решения на основе светодиодных ламп могут физически напоминать знакомые лампочки и лучше соответствовать внешнему виду традиционных ламп накаливания. Некоторые светодиодные светильники могут иметь встроенные светодиоды в качестве постоянного источника света. Существуют также гибридные подходы, в которых используется нетрадиционный формат «лампочки» или сменного источника света, специально разработанный для уникального светильника. Светодиоды предлагают огромные возможности для инноваций в форм-факторах освещения и подходят для более широкого спектра применений, чем традиционные технологии освещения.

Светодиоды и тепло

В светодиодах используются радиаторы для поглощения тепла, выделяемого светодиодом, и рассеивания его в окружающую среду. Благодаря этому светодиоды не перегреваются и не перегорают. Управление температурным режимом , как правило, является наиболее важным фактором успешной работы светодиода в течение всего срока его службы. Чем выше температура, при которой работают светодиоды, тем быстрее ухудшается качество света и тем короче срок службы.

В светодиодных изделиях используется множество уникальных конструкций и конфигураций радиаторов для отвода тепла. Сегодня достижения в области материалов позволили производителям разрабатывать светодиодные лампы, которые соответствуют формам и размерам традиционных ламп накаливания. Независимо от конструкции радиатора, все светодиодные продукты, получившие сертификат ENERGY STAR, были протестированы, чтобы убедиться, что они правильно распределяют тепло, чтобы световой поток оставался должным образом до конца номинального срока службы.

Чем светодиодное освещение отличается от других источников света, таких как лампы накаливания и компактные люминесцентные лампы (КЛЛ)?

Светодиодное освещение отличается от ламп накаливания и люминесцентных ламп по нескольким параметрам. При правильном проектировании светодиодное освещение является более эффективным, универсальным и служит дольше.

Светодиоды являются «направленными» источниками света, что означает, что они излучают свет в определенном направлении, в отличие от ламп накаливания и компактных люминесцентных ламп, которые излучают свет и тепло во всех направлениях. Это означает, что светодиоды могут более эффективно использовать свет и энергию во множестве приложений. Однако это также означает, что для производства светодиодной лампочки, излучающей свет во всех направлениях, необходимы сложные инженерные решения.

Общие цвета светодиодов включают желтый, красный, зеленый и синий. Для получения белого света светодиоды разных цветов комбинируются или покрываются люминофорным материалом, который преобразует цвет света в знакомый «белый» свет, используемый в домах. Люминофор представляет собой желтоватый материал, покрывающий некоторые светодиоды. Цветные светодиоды широко используются в качестве сигнальных и световых индикаторов, таких как кнопка питания на компьютере.

В КЛЛ электрический ток течет между электродами на каждом конце трубки, содержащей газы. Эта реакция производит ультрафиолетовый (УФ) свет и тепло. Ультрафиолетовый свет преобразуется в видимый свет, когда он попадает на люминофорное покрытие внутри колбы. Узнайте больше о КЛЛ.

Лампы накаливания излучают свет, используя электричество для нагревания металлической нити до тех пор, пока она не станет «белой» или, как говорят, не раскалится. В результате лампы накаливания выделяют 90% своей энергии в виде тепла.

Почему мне следует выбирать светодиодные осветительные приборы, сертифицированные ENERGY STAR?

Сегодня доступно больше вариантов освещения, чем когда-либо прежде. Несмотря на это, ENERGY STAR по-прежнему является простым выбором для экономии на счетах за коммунальные услуги.

Светодиодные лампы, получившие сертификат ENERGY STAR, соответствуют очень специфическим требованиям, разработанным для того, чтобы воспроизвести опыт, к которому вы привыкли при использовании стандартной лампы, поэтому их можно использовать для самых разных целей. Как показано на рисунке справа, светодиодная лампа общего назначения, не отвечающая требованиям ENERGY STAR, может не распространять свет повсюду и может разочаровать при использовании в настольной лампе.

ENERGY STAR означает высокое качество и производительность, особенно в следующих областях:

  • Качество цвета
    • 5 различных требований к цвету для обеспечения качества сразу и с течением времени
  • Световой поток
    • Минимальная светоотдача, обеспечивающая достаточное количество света
    • Требования к распределению света, чтобы свет попадал туда, где он нужен
    • Руководство по заявлениям об эквивалентности, позволяющее избежать догадок при замене
  • Душевное спокойствие
    • Подтверждено соответствие более чем 20 требованиям в отношении производительности и маркировки
    • Долгосрочное тестирование для подтверждения заявлений о сроке службы
    • Тестирование продуктов в условиях эксплуатации, аналогичных тем, в которых вы будете использовать продукт дома
    • Минимальный срок гарантии 3 года

Как и все продукты ENERGY STAR, сертифицированные светодиодные лампы ежегодно проходят выборочное тестирование, чтобы убедиться, что они продолжают соответствовать требованиям ENERGY STAR.