Обозначения диода: характеристики, обозначение и маркировка диодов

Диод. Полупроводниковый диод. Подключение диода. Маркировка диодов. Работа диода

Основы

Полупроводниковый диод. Подключение диода. Маркировка диодов. Работа диода.

Диод — электронный прибор, пропускающий ток только в одну сторону.




Обозначение диода на схемах

Диод имеет два контакта, которые называют анодом и катодом. При включении диода в электрическую цепь ток протекает от анода к катоду. Умение проводить ток только в одну сторону — основное свойство диода.

Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы — пассивными).




Треугольник можно рассматривать как острие стрелки, показывающей направление тока








При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску.



Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора — как уже говорилось выше, диод пропускает ток только в одну сторону. Если измерительного прибора под рукой нет, можно использовать батарейку и маломощную лампочку так, как описано в приводящемся ниже эксперименте.

Работа диода




Полупроводниковые диоды



Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный — с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, — прямым током Iпр, а поданное на него напряжение, из-за которого диод оказался открытым, — прямым напряжением Uпр.

Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током Iобр, а напряжение, создающее его,— обратным напряжением Uобр.



В нейронных цепях BEAM-роботов диоды часто применяются при создании нейронов, моделирующих логическое сложение (элементы ИЛИ). Кроме того, в схемах BEAM-роботов иногда используются емкостные свойства диодов.


Обозначение, применение и параметры диодов Шоттки » НАШ САЙТ

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Диоды SK36, SK16Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры.
Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.Мощный сдвоенный диод Шоттки

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию. Однако явные пробои в практике встречаются очень и очень редко.

В основном же, приходится иметь дело с утечками (причем зачастую с тепловыми утечками) диодов Шоттки. А вот утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером в режиме «диод» является в подавляющем большинстве случаев полностью исправным. Гарантированную точность диагностики, на наш взгляд, позволяет дать только такой метод, как замена диода на заведомо исправный аналогичный прибор.

Но все-таки, выявить «подозрительный» диод можно попытаться с помощью методики, заключающейся в измерении сопротивления его обратного перехода. Для этого будем пользоваться не режимом проверки диодов, а обычным омметром.

Внимание! При использовании этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.

Итак, устанавливаем предел измерений на значение [20К] и измеряем обратное сопротивление диода. Как показывает практика, исправные диоды на этом пределе измерений должны показывать бесконечно большое сопротивление.
Если же при измерении выявляется некоторое, как правило, небольшое сопротивление (2–10 КОм), то такой диод можно считать «очень подозрительным» и его лучше заменить, или хотя бы проверить методом замены. Если же проводить проверку на пределе измерений [200К], то даже исправные диоды могут показывать в обратном направлении очень небольшое сопротивление (единицы и десятки кОм), поэтому и рекомендуется использовать предел [20К]. Естественно, что на больших пределах измерений (2 Мом, 20 Мом и т. д.) даже абсолютно исправный диод оказывается полностью открытым, т. к. его p-n переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. На пределе [200К] можно проводить проверку сравнительным методом, т. е. брать гарантированно-исправный диод, измерять его обратное сопротивление и сравнивать с сопротивлением проверяемого диода. Значительные отличия в этих измерениях будут указывать на необходимость замены

Предложенную методику можно дополнить еще и проверкой на термическую устойчивость. Суть этой проверки заключается в следующем. В тот момент времени, когда проверяется сопротивление обратного перехода на пределе измерений [20K] (см. предыдущий абзац), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев ее кристалла. Неисправная диодная сборка практически мгновенно начинает «плыть», т. е. ее обратное сопротивление начинает очень быстро уменьшаться, в то время как исправная диодная сборка достаточно долго удерживает обратное сопротивление на бесконечно большом значении. Эта проверка очень важна, т. к. при работе диодная сборка сильно нагревается (не зря же ее размещают на радиаторе) и вследствие нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки к температурным колебаниям, ведь увеличение температуры корпуса до 100 или 125°C увеличивает значение обратного тока утечки в сто раз (см. данные табл. 1).

Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками не стоит злоупотреблять, т. е. не следует проводить проверки на слишком большом пределе измерений сопротивления и слишком сильно разогревать диод, т. к. теоретически, все это может привести к повреждению диода.

Кроме того, из-за возможности отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим и время пайки). Хотя надо отдать должное производителям диодов, так как многие из них добились того, что монтаж сборок можно осуществлять при высокой температуре 250 °C в течение 10 секунд.

Где ещё в электронике используются диоды Шоттки? 
Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

ПРИЛОЖЕНИЕ B. Буквенное обозначение класса — Tech Explorations

   Обозначения для электрических и электронных частей и оборудования

Пункт 0, для использования при присвоении условных обозначений для электрических и электронных частей и оборудования.

Пункт 0.    Буквы обозначения класса

Для использования при присвоении ссылочных обозначений электрическим и электронным частям и оборудованию, как описано в ANSI/ASME Y14.44, Справочные обозначения для электрических и электронных частей и оборудования.

Пункт 0.1      Буква обозначения класса

Буквы, обозначающие класс изделия, выбираются в соответствии со списком, приведенным в пункте 0.4.

Определенные названия элементов и обозначающие буквы могут относиться как к детали, так и к сборке.

Пункт 0.2    Особые соображения по присвоению буквенного обозначения класса

Пункт 0.2.1   Фактическая функция по сравнению с предполагаемой

Если часть служит цели, отличной от ее общего предназначения, фактически выполняемая функция должна быть представлена ​​графическим символом, используемым на принципиальной схеме; буква класса должна быть выбрана из списка в пункте 0. 4 и должна указывать на его физические характеристики. Например, полупроводниковый диод, используемый в качестве предохранителя, будет представлен графическим символом предохранителя (фактическая функция), но буква класса будет D (класс детали). Если деталь выполняет двойную функцию, должна применяться буква класса для основной физической характеристики детали.

Пункт 0.2.2    Сборка по сравнению с подсборкой

Используемый здесь термин подсборка в равной степени относится к сборке.

Пункт 0.2.3    Подсборка по сравнению с отдельной деталью

Группа деталей не должна рассматриваться как подсборка, если она не является одним или несколькими из следующих элементов:

a) Вставной элемент.

b) Важный элемент, охватываемый отдельной схемой.

c) Многоцелевое изделие.

d) Может использоваться как сменный элемент в целях технического обслуживания.

Пункт 0.2.4   Особые и общие

Буквы A и U (для сборки) не должны использоваться, если в пункте 0. 4 для конкретного изделия указаны более конкретные буквы классов.

Пункт 0.2.5    Неразборные подузлы

Герметичные, встроенные, клепаные или герметически закрытые подузлы, модульные узлы, печатные платы, корпуса интегральных схем и аналогичные элементы, которые обычно заменяются как единый предмет поставки, должны рассматриваться как части. Им присваивается буква класса U, если не применяется более конкретная буква класса.

Пункт 0.4 Буквы обозначения класса: Алфавитный список

Частям, не включенным специально в этот список, должна быть присвоена буква или буквы из приведенного ниже списка для части или класса, наиболее схожих по функциям.

Примечания

[1] Литера класса А присваивается на основании того, что изделие является отделимым. Букву класса U следует использовать, если отправление является неотделимым.

[2] Из экономических соображений узлы, которые принципиально отделимы, могут не предусматриваться таким образом, но могут поставляться как полные узлы. Однако буква класса А должна быть сохранена.

[3] Не буква класса, но используется для обозначения подразделения оборудования в методе нумерации местоположения.

[4] Не буква класса, но обычно используется для обозначения контрольных точек в целях технического обслуживания.

[5] Не буква класса, но обычно используется для обозначения точки привязки на схемах соединений.

[6] Добавлена ​​эта буква класса.

Просмотрите эту статью

Пункт 0.    Буквы обозначения класса

Примечания

Перейти к другой статье

Об авторе

Статьи этой серии написаны Лоуренсом В. Джоем (Ларри)
[email protected]
Мичиган, США.

Быть или не быть диодом? Это зависит от градиента температуры

Что вы узнаете:

  • Как усовершенствованный материал может стать как p-, так и n-материалом на основе температурного градиента.
  • Процесс открытия и усовершенствования этого материала.
  • Возможные области применения этой технологии устройств.

 

Электрические и электронные схемы в том виде, в котором они есть, не существовали бы без скромного диода. Еще до наших современных твердотельных диодов инженеры использовали грубый, но эффективный, ныне устаревший селеновый выпрямитель и даже ламповые диоды. Хотя их номинальная функция проста — пропускать ток только в одном направлении — фактическая роль, которую диоды играют в цепях, гораздо более разнообразна и творческая.

Полупроводниковый диод, изготовленный из материалов, легированных p- и n-элементами, имеет хорошо известную зависимость зависимости тока от напряжения от температуры — характеристика, которая может неблагоприятно влиять на характеристики схемы, но также может использоваться для создания полезных функций, таких как точное измерение температуры. датчики. В любом случае, одним общим свойством всех диодов является то, что они функционируют как диоды до катастрофического выхода из строя или полного выхода из строя.

Но, возможно, принцип «однажды диод — всегда диод» не обязательно должен быть таким. Группа исследователей из Технического университета Мюнхена (TUM) обнаружила материал, который позволяет создавать компонент, который обратимо переходит между диодом и недиодом посредством простого изменения температурного градиента.

«Теперь мы нашли материал, который мы можем сделать n-проводящим или p-проводящим, просто изменив температуру», — сказал Том Нилджес, профессор синтеза и характеристики инновационных материалов в ТУМ.

Материальные доказательства

Исследователям удалось показать, что достаточно изменить температуру всего на несколько градусов, чтобы вызвать этот эффект, и что работающий диод может быть создан с температурным градиентом внутри материала. Когда материал находится при комнатной температуре, это обычный p-проводник. Когда применяется достаточный температурный градиент, в нагретых областях одновременно генерируется n-проводник. Если градиент падает ниже порогового значения, действие диода прекращается. Важным аспектом для потенциальных приложений является то, что эффект работает в диапазоне комнатной температуры с локальным повышением температуры всего на несколько градусов, от 22 до 35°C.

На поиск идеального материала ушло 12 лет работы, кульминацией которого стало открытие и углубленное исследование группой халькогенид-галогенидов Ag 18 Cu 3 Te 11 Cl 3 . Он состоит из элементов серебра, меди, теллура и хлора. Исследователи столкнулись с этим классом соединений при изучении термоэлектрических материалов.

Один материал, который они изучали, демонстрировал эффект p-n переключения. Однако это наблюдалось только в диапазоне температур около 100°С, что непригодно для практических применений. После обширного анализа и экспериментов исследователи обнаружили, что Ag 18 Cu 3 Te 11 Cl 3 демонстрирует желаемый эффект и подходит для применения при более нормальных температурах (рис. 1) .

1. Изготовление диодов и характеристика U/I («U» — немецкое обозначение вольт): (a) Схема измерительной установки. (b) Монокристалл Ag 18 Cu 3 Te 11 Cl 3 , установленный поверх электродов Au и контактирующий с металлическим In. 49Рядом с правым контактом находятся резисторы -Ω, используемые для создания температурного градиента посредством резистивного нагрева. (c) График U/I, измеренный при 281 K в b-Ag 18 Cu 3 Te 11 Cl 3 (черная линия) и после применения температуры к системе для создания градиента 13 K между 295 (1) и 308(1) К (синяя линия). (г) Время переключения диода при том же температурном градиенте. Был подан прямой ток 5 В, а затем обратный ток –5 В при t = 0. (Ошибки измеренных значений расположены внутри точек. (e) Чтобы убедиться, что в приложенном диоде не образуется диод Шоттки диапазонах температур, они также измерили изотермические кривые U/I для Ag 18 Cu 3 Te 11 Cl 3 до 331 К. При выдержке всего кристалла при одинаковой температуре выпрямляющая характеристика не обнаружена. Увеличение проводимости наблюдалось при более высоких температурах, как и ожидалось для полупроводника. (Ошибки измеренных значений расположены в точках.)

Применение — если есть

Возникает очевидный вопрос: каковы возможные применения этого трансформируемого диода? Тогда ответ прост: непонятно. Авторы размышляют о возможностях, но они очень предварительны и расплывчаты. В качестве следующего шага исследователи намерены показать, что их материал можно использовать для создания транзисторов посредством изменения температуры. Тогда при соответствующей конструкции одно устройство могло бы функционировать как сопротивление, диод или транзистор, в зависимости от градиента температуры и положения соединений.

Конечно, эту разработку легко отвергнуть как не имеющую жизнеспособных приложений, по крайней мере пока. Однако часто фундаментальные достижения, которые, казалось бы, не имеют применения, в конечном итоге находят применение.