интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Как пользоваться мегаомметром. Мегаомметр или мегомметр


Как правильно: Мегаомметр или мегомметр?

Данная статья будет как профессия инженера-электрика – творческая, но в рамках правил и техники безопасности. Данный вопрос волнует весь земной шар от начала веков или волновал всех, кто сталкивался по роду деятельности с данным прибором. С одной стороны есть книги, в которых написано по одному, с другой стороны есть сами приборы, на которых написано иначе. А бывает, есть старый опытный товарищ, который знает правду и «нечего вообще спорить».

Вопрос конечно интересный, за ответом я полез в литературу и интернет.

Вот, например, уже не действующее СТП в энергосистеме РБ.

Книга с соответствующим названием.

Результаты выдачи в яндексе по запросу «мегомметр или мегаомметр».

Как видим, встречаются оба варианта.

Ситуацию немного облегчила википедия, где написано, что мегомметр является устаревшим названием прибора. Хотя википедию пишут то люди, да и ссылки на источник не приведено, где бы точно об этом говорилось.

Вот, к примеру, надпись на сумке от мегаомметра. А на самом приборе в сумке написано «мегаомметр».

Погуглив, я узнал, что завод основан в 1957 году. А переименовывать предприятие вообще не особо принято из-за пары букв. Следовательно, завод называется «Мегомметр», а прибор, который он выпускает – мегаомметр.

Книга, обложку которой я привел, издана в 1963 году. В туже эпоху, что и начал работать завод. То есть в те времена прибор для измерения сопротивления изоляции называли мегомметром.

Потом вероятно люди подумали, и решили, что прибор, который меряет мегаомы, а теперь гигаомы и даже больше (о единицах гига, кило можно почитать тут), логично называть мега-ом-метром. А мегаомметр, а не, например, гигаомметр, так как сопротивление изоляции большинства оборудования все-таки находится в пределах от 1МОм до 1000МОм, да и мерить больше величину раньше не могли и писали бесконечность или же по максимально измеряемой величине 1000МОм.

За границей же используют выражение «мегертест». Само измерение у электриков порой называют «помегерить» – это выражение пошло издавна. Название прибора изменилось, выражение осталось. Никто же не говорит сейчас «пойдем помегаомметрим».

В общем, я считаю, что правильно говорить мегаомметр и этот вариант в наше время единственно правильный для употребления. Другое дело, что, если человек всю жизнь говорил мегомметр, то переучивать его не стоит, главное, чтобы измерения проводил правильно.

Поделитесь с коллегами и сокурсниками

pomegerim.ru

Мегомметр или мегаомметр > Megaommetr.com

Как же все таки правильно называется этот прибор для измерения сопротивления изоляции Мегаомметр или Мегомметр?! Этим вопросом наверное задавался почти каждый пользователь прибора. И вроде как от названия суть работы и измерений не измениться, но хочется, же не только правильно измерять, но и говорить.

Если искать в интернете, как правильно назвать прибор для измерения сопротивления изоляции в сети, то можно встретить название как «мегаомметр» так и «мегомметр». Так как интернет подстраивается под запросы людей, то истину здесь искать бесполезно. Википедия гласит о том, что прибор называется «мегомметр», но название это устарело и нужно использовать «мегаомметр», то есть ситуация особо не проясняется.

Мегаомметр UNI-T UT502A

Чтобы все-таки выяснить, как же назвать это устройство нужно вернуться, так сказать к первоисточнику, в этом случае к заводу производителю.

Как оказалось, мегомметры в 1957 году начал выпускать Уманский завод, который называется «Мегомметр». Но вот, казалось бы, все, докопались до истины, но не тут-то было, на приборах, которые производит завод, красуется надпись «мегаомметр».

Если совсем уж интересно можно поискать книги об этом устройстве, чтобы облегчить Вам задачу, скажу. В книгах написано «мегомметр», правда, год выпуска изданий 1963. В современных книгах встречается чаще название «Мегаомметр».

И опять непонятно как же правильно назвать это чудо-устройство, которое во многом помогает и облегчает жизнь электрика Мегаомметр или Мегомметр.

Мегаомметр ЭС0202/2Г

Прибор, который измеряет мегаомы, гигаомы, а теперь и больше по логике, должен называться все-таки Мегаомметр. Но логика вещь спорная, исходя из этого всего, можно сделать вывод, что не особо важно как Вы называете устройство Мегаомметр или Мегомметр. Главное чтобы перед использованием Вы внимательно изучали и7нструкцию по эксплуатации и придерживались правил техники безопасности. А название, это всего лишь название, важнее точные и четкие измерения.

При этом, если будете заполнять документы, то нужно писать «Мегаомметр», так гласит Википедия, а то по ГОСТу не положено. Из этого напрашивается вывод, что правильно будет Мегаомметр. Но если Вы привыкли говорить все время Мегомметр, то переучиваться не стоит, Вас и так поймут.

megaommetr.com

Для чего девушке нужен мегомметр, или обзор мегомметра UT-511

В своем предыдущем обзоре, я вскользь упомянула что умею пользоваться мегомметром. Этот факт вызвал неожиданное оживление и всплеск интереса в комментариях, вот и решила написать обзор мегомметра для вас :)

Для чего же применяется мегомметр? Очевидно, для измерения сопротивления, но сопротивление можно же измерять и обычным тестером, в чём же необходимость мегомметра? Ответ простой, если обычный тестер использует скажем там 3х вольтовую батарейку или 9 вольтовую, то в мегомметре стоит преобразователь, и для измерения может использоваться напряжение от 250 до 5000 вольт (в некоторых моделях). И что же это даёт? первый и очевидный ответ, расширение предела измерении. Если обычный тестер измеряет до 10-20 мегаом, то мегомметры могут изменять до 10-20 гигаом, т.е. сопротивления, в 1000 раз больше. И повышенное напряжение даёт второй плюс — можно измерять сопротивление изоляции, проверять устройства на пробой, вычислять рабочее напряжение конденсаторов.

У нас в лабе используется вот такой прибор, UT-511. Основные параметры такие:

Измерение сопротивления: 0.1 мегаом-10 гигаом. Измерение низкого сопротивления: 0.1-999.9 ом. Напряжение измерения: от 100 до 1000 вольт. Измеряемое напряжение: до 1000 (постоянный) 750 (переменный) ток.

На заглавном фото вы можете увидеть его комплектацию. К сожалению, прибор в лабе уже несколько лет, так что некоторые щупы и коробка утеряны, так что проверить смогу не все режимы.

Вот те детали, которые буду проверять. Это резистор 680килоом 2 ватта, 10 мегаом 0.25 ватт, конденсаторы на разное напряжение.

Начну с советского конденсатора на 400 вольт 0.047 микрофарад.

100 вольт — нет проблем, а что будет, если поднимем напряжение повыше?

250 вольт, тоже без проблем, а если 500?

На 500 есть утечка, что понятно, рабочее напряжение конденсатора всего лишь 400 вольт!

Посмотрим второй конденсатор, он на 250 вольт.

Точно на 250 вольт появилась утечка, которая заметно выросла на 500 вольтовом пределе.

А теперь резисторы, начну с большого, он на 2вт и 680 килоом сопротивления.

Точность измерения небольшая, но и диапазон 1000 вольт не рассчитан на такие номиналы, согласно паспорту, резисторы до 500 мегаом, надо измерять на пределе в 100 вольт. Просто я хотела определить, а пробивается он? не пробился. Подключаю резистор на 10 мегаом и 0.25вт, сразу подаю 1000 вольт, и смотрю сопротивление, показывает не совсем точно, и притом, оно начинает падать!

Сижу и думаю, что же это может быть? пробой? а если пробой, то почему сопротивление не падает больше? нет, тут что-то другое. Отключила питание, хотела другой резистор поставить, а он обжигающе горячий! видимо, такое напряжение и ток, сильно нагрели резистор, и сопротивление поплыло. Я решила перепроверить этот факт у нашего лектора. Он подтвердил что да, такое вполне могло случится, но резистор должен быть очень низкого качества, скажем композитно-углеродный. В любом случае, вина не прибора, а резистора.

Ради интереса, проверила на пробой изоляцию китайского патрона Е27 в винтажном стиле. 1000 вольт не пробивают.

Этот прибор может также измерять сопротивления от 0.1 до 999.9 ом, и напряжения до 1000 вольт, но для этого нужны другие щупы, которых в лабе нет, и где они, не знает ни кто.

С уважением и любовью, ваша Анна!

mysku.ru

Мегаомметр - это... Что такое Мегаомметр?

Мегаомметр (от мега- ом и метр) — прибор для измерения больших значений сопротивлений. Отличается от омметра тем, что измерение сопротивления производятся на высоких напряжениях, которые прибор сам и генерирует (обычно 500,1000 или 2500 Вольт).

В приборах старых конструкций, для получения напряжений обычно используется встроенный механический генератор, работающий по принципу динамомашины. В настоящее время, мегаомметры также выполняются в виде электронных устройств, работающих от батарей.

Наиболее часто применяется для измерения сопротивления изоляции кабелей.

Мегаомметр используется для измерения высокого сопротивления изолирующих материалов (Диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).

Измерение мегаомметром сопротивления изоляции

Сопротивление изоляции характеризует ее состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения ее испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегаомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток • с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для обмоток с напряжением до 3000 В — мегаомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.

Степень увлажненности изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегаомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15") и в конце измерения — через 60 с после начала (R60"). Отношение этих показаний KA = R60"/R15" называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение ее сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания подшипниковых токов в машинах со стояковыми подшипниками.

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями.

Ссылки

dic.academic.ru

Мегомметр - это... Что такое Мегомметр?

Мегомме́тр, мегаомме́тр (от мегаом и -метр) — прибор для измерения больших значений сопротивлений. Отличается от омметра тем, что измерение сопротивления производятся на высоких напряжениях, которые прибор сам и генерирует (обычно 500, 1000 или 2500 вольт).

В приборах старых конструкций для получения напряжений обычно используется встроенный механический генератор, работающий по принципу динамомашины. В настоящее время мегомметры также выполняются в виде электронных устройств, работающих от батарей.

Наиболее часто применяется для измерения сопротивления изоляции кабелей.

Мегомметр используется для измерения высокого сопротивления изолирующих материалов (диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).

Измерение мегомметром сопротивления изоляции

Мегомметр М1101М. Мегомметр с ручным генератором напряжения.

Сопротивление изоляции характеризует ее состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения её испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток с номинальным напряжением до 500 В (660) В применяют мегомметры на 500 В, для обмоток с напряжением до 3000 В — мегомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более — мегомметры на 2500 В и выше.

Степень увлажнённости изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15") и в конце измерения — через 60 с после начала (R60"). Отношение этих показаний KA = R60"/R15" называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение ее сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания подшипниковых токов в машинах со стояковыми подшипниками.

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегомметрами с различными номинальными напряжениями.

Ссылки

dic.academic.ru

Как пользоваться мегаомметром - назначение и приемы работы с прибором

Одним из важнейших аспектов безопасности, безотказности, правильности работы электрических силовых линий, установок, приборов и т.д., является качественная изоляция. Многими людьми, далекими от вопросов электротехники, она воспринимается, как данность. То есть изоляция имеется – и славно, значит, все в норме, и можно пользоваться электричеством без опаски. А между тем – это серьезное заблуждение.

Во-первых, идеальных диэлектриков просто не существует. Во-вторых, даже самая надежная изоляция со временем может потерять свои качества – прогореть, оплавиться, растрескаться, начать крошиться, получить механические повреждения. В-третьих, на ее диэлектрические качества влияют и внешние факторы – сырость, влажность воздуха, загрязнённость поверхности и другие.

Как пользоваться мегаомметром

Как пользоваться мегаомметром

Так что контроль за состоянием изоляции — не менее важен, чем за всеми другими составляющими электрических установок. Ни один объект не может быть запущен в эксплуатацию, пока не будет проверено соответствие сопротивления изоляции существующим нормам. А для таких контрольных замеров используются специальные приборы, называемые мегаомметрами (или мегомметрами). В повседневной жизни хозяевам домов и квартир сталкиваться с ними приходится нечасто. И многие даже не подозревают о существовании таких контрольно-измерительных приборов. А между тем, следить за состоянием своей электросети, так или иначе, необходимо. Поэтому видится, что информация о том, как пользоваться мегаомметром будет полезна всем.

Содержание статьи

Принцип измерения сопротивления изоляции мегомметром

Принцип измерения величины сопротивления изоляции сам по себе несложен. Используется закон Ома – замеряется сила протекающего между двумя щупами тока при известном поданном на них напряжении. Отношение величины напряжения к силе тока как раз и даст искомый результат. Этот принцип применяется практически во всех контрольно-измерительных приборах, предназначенных для измерения сопротивлений.

R = U/ I

Но для того чтобы вызвать и «засечь» электрический ток в цепи при очень больших показателях сопротивления (а у изоляции по умолчанию они должны быть такими), требуется подавать и весьма внушительное напряжение. Именно это и реализовано в мегомметрах.

Независимо от типа и модели прибора, он в обязательном порядке имеет:

  1. Высоковольтный источник постоянного напряжения.
  2. Измерительный блок, оценивающий силу проходящего по цепи электрического тока.
  3. Устройство индикации показаний – стрелочное со шкалами, или в виде цифрового дисплея с показом абсолютных значений.
  4. Набор измерительных проводов со щупами, посредством которых высокое напряжение передается на тестируемый объект.

На сегодняшний день существует два основных типа подобных приборов.

  • Еще не столь давно безраздельно господствовали мегомметры со стрелочной шкалой и встроенным индуктором – динамомашиной. Вращением специальной рукоятки генерируется высокое напряжение, которое после необходимого преобразования подаётся на щупы. Частота вращения – примерно 120÷140 оборотов в минуту (2 оборота в секунду). О выходе на установленное калиброванное высокое напряжение, как правило, извещает загоревшийся индикатор, расположенный на передней панели.
Подобные мегомметры без сколь-нибудь принципиальных изменений выпускаются уже много десятков лет. И, надо сказать, не торопятся «уходить со сцены».

Подобные мегомметры без сколь-нибудь принципиальных изменений выпускаются уже много десятков лет. И, надо сказать, не торопятся «уходить со сцены».

Подобные модели довольно просты в устройстве, несложны в управлении. Как правило, имеют весьма солидные габариты и вес. Но зато – они полностью автономны, то есть не требуют ни элементов питания, ни подключения к сети. Идеальное решение для любых «полевых» условий, что бывает особенно важно во время ведения строительства.

Как бы то ни было, мегомметры такого типа все еще выпускаются промышленностью, находят спрос. А многие мастера-электрики и вовсе предпочитают исключительно их, несмотря на появление более компактных и «навороченных» приборов.

  • Другой тип мегомметров – это электронные приборы, которые обычно намного компактнее и легче. Высокое напряжение у них вырабатывается в специальном электронном преобразователе от встроенного аккумулятора, сменных источников питания или от блока питания, требующего подключения к сети. Многие модели позволяют выбрать любой из этих  вариантов питания. Но в любом случае прослеживается зависимость от наличия источника – полной автономности в работе нет.
Многие современные мегомметры внешне напоминают привычные мультитестеры. А нередко и способны выполнять ряд функций, им присущих.

Многие современные мегомметры внешне напоминают привычные мультитестеры. А нередко и способны выполнять ряд функций, им присущих.

Электронные приборы довольно компактны, и некоторые из них внешне даже вполне можно спутать с мультиметрами. Кстати, во многих моделях это сходство не ограничивается лишь внешним. Действительно, в них заложены некоторые функции «общего плана». Обычно это измерение постоянного и переменного напряжения, прозвон цепей и определение сопротивления в нижнем диапазоне значений, то есть от нуля до мегаома. Могут иметься и другие функции, в том числе и узкоспециализированного предназначения.

Проведение измерений – до предела упрощено. После выставления всех необходимых параметров и коммутации проводов мегомметра к проверяемому объекту, остается только нажать кнопку «TEST».

Индикация полученных показаний замеров выводится на цифровой дисплей, что, безусловно, значительно упрощает восприятие информации. Спустя несколько секунд после пуска, на дисплее появится измеренное значение сопротивления, с указанием соответствующей величины (МОм или ГОм, МΩ или GΩ).

Цифровые дисплеи намного удобнее для считывания измеренных значений сопротивления

Цифровые дисплеи намного удобнее для считывания измеренных значений сопротивления

Удобство в том, что и замеры, и считывание результатов никак не зависит от пространственного положения прибора. У стрелочных с этим сложнее – для корректных замеров требуется исключительно горизонтальное расположение.

Итак, независимо от типа мегомметра, принцип его работы един. На тестируемом объекте закрепляются щупы измерительных проводов, подключенных к прибору. Затем на них подается калиброванное высокое напряжение. Измеренное значение силы тока позволяет судить о сопротивлении между щупами. Значение выводится на устройство индикации.

Какие меры безопасности должны соблюдаться при работе с мегомметром

Все, казалось бы, чрезвычайно просто. Но, оказывается, такие приборы относятся исключительно к категории профессиональных. И далеко не все работники могут быть допущены к их эксплуатации – требуется определенное обучение и получение соответствующего допуска – не ниже третьей группы электробезопасности.

Автор статьи в данном случае ни в коем случае не рекомендует, как обычно принято на строительных сайтах, выполнять измерения своими руками. Но если уж какой-то хозяин дома или квартиры возьмёт на себя смелость и ответственность за выполнение самостоятельных измерений – он должен по меньшей мере максимально соблюдать требования безопасности выполнения работ.

  • Сам прибор не должен иметь никаких механических повреждений корпуса. Особое внимание — целостности изоляции измерительных проводов, исправности щупов, зажимов-«крокодилов», штыревых контактов для подключения к мегомметру.
  • Любой тестируемый объект или линия в обязательном порядке обесточивается. Все автоматы переводятся в положение «выключено» или, в старых распределительных щитах, выкручиваются плавкие предохранители – пробки. В некоторых случаях требуется временное отсоединение проводов от выходных клемм автоматических выключателей.
Перед тестированием сопротивления изоляции проводится полное обесточивание объекта

Перед тестированием сопротивления изоляции проводится полное обесточивание объекта

На намеренно отключенное состояние сети желательно акцентировать внимание установкой таблички, например, «Не включать! Идут работы». Так, чтобы никто из домашних или помощников случайно не включил автоматы во время тестирования.

  • От сети отключаются все приборы. Вилки вынимаются их розеток. Лампочки выкручиваются из патронов светильников. Особое внимание – приборам с точной электроникой. Подаваемое в линию высокое напряжение может запросто их «убить».
Изо всех розеток вытаскиваются вилки. Из светильников (не забываем и про точечные) выкручиваются (вынимаются) лампы.

Изо всех розеток вытаскиваются вилки. Из светильников (не забываем и про точечные) выкручиваются (вынимаются) лампы.

  • Готовится к работе так называемое переносное заземление. Мастера пользуются приспособлением заводского изготовления, но вполне можно сделать вполне рабочее устройство и самому.
Переносное заземление заводского производства. Нечто подобное делается и собственными руками.

Переносное заземление заводского производства. Нечто подобное делается и собственными руками.

Оно может представлять собой отрезок медного многожильного провода требуемой длины, сечением не менее 1,5 мм². Один его конец зачищается, и может быть оснащен клеммой или зажимом-крокодилом с расчетом на подключение к шине заземления. Второй конец, также зачищенный, необходимо укрепить на диэлектрической штанге. Хорошо, если найдется пластиковый стержень нужной длины. Если нет, то подойдет и сухая деревянная рейка, на краю которой и крепится зачищенный конец провода, например, несколькими витками изоленты. Место на штанге, за которое придется браться руками, тоже можно «одеть» в пару слоев изоленты. А длина штанги выбирается такой, чтобы было удобно касаться концов тестируемых проводов с безопасного расстояния.

После каждого замера рекомендуется снимать остаточное напряжение в проверяемых проводниках касанием этого переносного заземления. Кстати, при тестировании линий значительной протяженности заряд может оставаться в них нешуточный, способный нанести тяжелую электротравму.

  • Работы по замеру сопротивления изоляции желательно проводить в диэлектрических перчатках. Многие это игнорируют и, наверное, напрасно. В ходе замеров, особенно по неопытности, ничего не стоит коснуться щупа или токоведущей детали, скажем, тыльной стороной ладони. А работать-то приходится с напряжениями, порой достигающими и 2500 вольт! Не шутка!
  • Необходимо правильно обращаться со щупами. Если обратить внимание, то на каждом из них на рукоятке имеется бортик, своеобразная гарда. Это не столько для удобства, сколько для обеспечения безопасности. Тем самым задается граница безопасной для пальцев зоны, пересекать которую при проведении замеров – запрещается.
Гарды на рукоятках щупов четко ограничивают расположение пальцев оператора. Ближе к оголённой части – становится опасным.

Гарды на рукоятках щупов четко ограничивают расположение пальцев оператора. Ближе к оголённой части – становится опасным.

  • После каждого замера должно сниматься остаточное напряжение и в щупах мегомметра. Для этого их оголенные концы просто замыкают между собой. Надо сказать, что современные приборы часто оснащаются функцией автоматического разряда после снятия каждого показания. Но лучше перестраховаться, а у многих электриков такое замыкание контактов после каждого замера – просто вошло в привычку.

Как проводятся измерения сопротивления изоляции

Далее будет рассмотрены вопросы подготовки мегомметра к работе и проведения замеров. Сразу отметим: пересмотреть все возможные варианты – просто невозможно. Тем более – показать работу на всех существующих моделях приборов. Но вот основные приемы тестирования – они в целом сходны. Тем более что информация направлена не электрикам-профессионалам (они сами кого хочешь научат), а тем, кто решился на свой страх и риск провести проверку изоляции в своих жилых владениях.

Как прибор готовится к работе

Задача несложна.

  • Если это электронный прибор, то необходимо первым делом вставить в батарейный отсек источники питания, естественно, с соблюдением полярности. После этого отсек закрывается. Если используется адаптер питания, то он подключается в соответствующее гнездо прибора.

Прибор старого образца, со встроенной динамомашиной, понятно, в такой операции не нуждается.

  • Далее, готовятся к работе измерительные провода со щупами.

В комплекте с прибором могут идти два или три измерительных провода. Чаще всего в замерах сопротивления изоляции участвуют два. Один подключается в гнездо прибора «Л» (или «R+»), второе – «З» (или «R-»). Некоторые современные мегомметры и вовсе обходятся этими двумя гнездами подключения.

Но на многих моделях имеется еще и гнездо «Э». И в комплект в этом случае входит экранированный провод несколько необычной конфигурации – у него два контакта для подключения к прибору. Один – обычный для подключения к «З», и второй – для гнезда «Э». значит, основныне измерения будут проводиться этим проводом, а оба разъема подключаются по умолчанию.

Специальный шнур для замеров сопротивления изоляции на экранированный кабелях

Специальный шнур для замеров сопротивления изоляции на экранированный кабелях

Экранированным шнуром обязательно пользуются в тех случаях, когда требуется произвести ревизию кабеля в экранирующей оплетке. Или же протяженной линии, на поверхности изоляции которой возможны поверхностные токи (вследствие ее сырости, загрязнённости, замасленности и т.п.), способные исказить конечный результат замеров. В таких случаях в подключении прибора к тестируемому кабелю, например, при взаимной проверке сопротивления между двумя жилами, будут участвовать три провода.

Вариант подключения проводов при необходимости исключить искажающее результат воздействие поверхностных наведенных токов на экране или оплетке кабеля

Вариант подключения проводов при необходимости исключить искажающее результат воздействие поверхностных наведенных токов на экране или оплетке кабеля

В повседневной работе профессиональных электриков, особенно занимающихся прокладкой и испытанием протяжённых силовых линий такие случаи – не редкость. Но в масштабах, скажем, квартиры или дома, сталкиваться с таким практически не приходится. Да и экранированные кабели во внутренней разводке почти никогда не применяются. Так что дальше этот варианту внимания уделяться не будет.

Значит, остаются два провода, «Л» и «З» (Rx «+» и «-») которые участвуют во всех проверках. Они подключаются в свои гнезда. А для удобства работы на щупы можно надеть зажимы-«крокодильчики», часто идущие в комплекте.

  • Далее, необходимо установить значение проверочного калиброванного напряжения. В различных моделях установка осуществляется по-своему, и может лежать в разных диапазонах, от 50 до 2500 вольт.

Какое же напряжение необходимо? Это можно посмотреть в таблице – оно зависит от типа тестируемого объекта. Там же в таблице указаны и минимально допустимые значения сопротивления изоляции, при которых объект может считаться исправным.

Тип проверяемого объектаКонтрольное напряжение на клеммах мегомметраМинимально допустимое сопротивление изоляцииПримечания по проведению замеров
Электрические приборы и установки с максимальным напряжением до 50 В100 ВСоответствие паспортному, но не менее 0,5 МОмПеред проведением замеров все полупроводниковые приборы должны быть зашунтированы.
- с напряжением от 50 до 100 В250 В
- с напряжением от 100 до 380 В500 – 1000 В
- с напряжением свыше 380, но не более 1000 В1000 – 2500 В
Распределительные щиты и устройства1000 – 2500 ВНе менее 1 МОмКаждая секция распределительного устройства должна проверяться индивидуально
Электропроводка, силовая и осветительная1000 ВНе менее 0,5 МОмПериодичность проверок: в нормальных условия – раз в три года, в опасных помещениях – ежегодно
Стационарные электрические плиты1000 ВНе менее 1 МОмПроверка проводится ежегодно. Замеры проводятся после прогрева и выключения плиты.

Если проверка показывает, что сопротивление изоляции больше указанных норм, то объект может считаться отвечающим требованиям безопасности и готовым к пуску. В противном случае приходится выяснять причину – искать повреждённый участок или допущенные в ходе электромонтажных работ ошибки.

Порядок выполнения замеров сопротивления изоляции

Основные приемы работы

В области обслуживания домашних электросетей наиболее часто практикуют две операции контроля состояния изоляции. Первая – это проверка жил кабеля на предмет пробоя на «землю». Вторая – проверка взаимной изолированности жил на предмет возможного короткого замыкания. Обе операции сходны между собой, но все же имеются и отличия.

ИллюстрацияКраткое описание выполняемых операций
Для начала посмотрим на проверку изоляции кабеля относительно земли. На иллюстрации условно показан разделанный кабель с тремя фазными проводами – А, В и С. Кроме того, вниз отведены два провода:синий – нулевой и желто-зеленый – защитного заземления. Концы всех проводов зачищены. Перед началом проверки, безусловно, следует лишний раз убедиться в полном обесточивании – с помощью индикаторной отвёртки или мультитестера. Мегомметр готовится к работе в гнезда вставляются два измерительных провода, на щупы удобнее будет надеть зажимы-«крокодильчики». Один, контрольный провод пока свободен (поз. 1), второй (поз. 2) сразу подключается к заземляющей шине электрощита. К этой же шине подсоединяется и провод переносного заземления (поз.3).
Когда тестируется многожильный кабель, то иногда все проводники объединяют закорачивающим проводом или же скруткой. И после этого проводят измерение сопротивления изоляции относительно шины земли. Но если в кабеле жил немного, а это так чаще всего в бытовой практике и случается, быстрее, наверное, будет проверить каждый их проводов отдельно. На примере показана последовательность контроля изоляции для фазного провода С. Но она же соблюдается и на всех остальных. Итак, первый делом по правилам проверки следует снять с провода возможное наведенное напряжение. Для этого к его оголённому концу присоединяется переносное заземление.
Следующим шагом к этой же точке подсоединяется зажим контрольного измерительного провода мегомметра.
Далее, переносное заземление снимается, и производится замер сопротивления изоляции. В зависимости от модели это выполняется или вращением рукоятки индуктора в течение 10÷15 секунд, или нажатием на кнопку «TEST». Показания фиксируются в журнале или просто сравниваются с допустимым значением, чтобы можно было судить об исправности изоляции провода.
Теперь необходимо снять с протестированной жилы возможное накопившееся емкостное напряжение. Для этого, не снимая пока зажима контрольного провода, сюда же вновь подключают переносное заземление.
И вот только теперь по правилам можно убрать щуп (зажим) контрольного измерительного провода и считать проверку жилы завершенной. Далее, переносное заземление переставляется на следующий провод, подлежащий проверке, и вся последовательность операций повторяется. И так – пока не будут проверены все провода кабеля.
Далее, начинается проверка взаимной изолированности проводов кабеля на предмет возможного короткого замыкания. Поступают, например, следующим образом. Один измерительный провод цепляют на зачищенный конец жилы защитного заземления РЕ. А затем последовательно проводят замеры сопротивления изоляции, устанавливая второй щуп поочередно на концах всех остальных жил. На иллюстрации не показано, но следует помнить, что если тестируется протяженная линия, то никогда не лишним будет после каждого замера коснуться кончиков проверенной пары проводов переносным заземлением. После измерений (при их положительных результатах) жила РЕ считается полностью проверенной.
Далее, таким же образом поступают с жилой N – на ней закрепляется один зажим, а вторым проводится проверка оставшихся фазных жил. Как уже наверное понятно, следующим шагом станет проверка изоляции между проводом А и, поочередно, В и С. И Наконец, останется только последний вариант – замер сопротивления изоляции между жилами В и С. Таким образом, все возможные сочетания проверены. И если результаты положительные, то к изоляции кабельной линия претензий нет.

В принципе, все участки домашней проводки можно протестировать, опираясь на два рассмотренных подхода. Например, непосредственно на распределительном щите все отходящие от него линии проверяются на возможный пробой на землю. А затем каждая из них – и на вероятность короткого замыкания.

Некоторые измерения проще и удобнее произвести по месту установки приборов. Например, проверка розетки (розеточной группы) будет заключаться в поочерёдном замере сопротивления изоляции между клеммой РЕ и контактами нуля и фазы. А затем – между нулем и фазой. Итого – три замера. Если же розеточная линия не предполагает наличия заземления, то и вовсе требуется один замер – между L и N.

Далее будет для большей наглядности можно продемонстрировать два примера практической работы с мегомметром.

Пример замера сопротивления изоляции обычного шнура питания

Итак, требуется убедиться в надежности изоляции шнура питания (это может быть и просто отрезок кабеля или провода.

ИллюстрацияКраткое описание выполняемой операции
Для работы будет использоваться вот такой современный электронный мегомметр UT-505.
Весь комплект – сам мегомметр, измерительные провода со щупами и зажимами, адаптер питания, размещается в удобном чехле.
Сам прибор несколько больше по размерам, чем обычный мультиметр. Но для мегомметров он считается очень даже компактным. Кстати, как можно увидеть, в нем имеются и функции мультитестера – предусмотрена возможность замера постоянного или переменного напряжения, измерения сопротивлений в полном диапазоне значений. Для работы в режиме мультиметра предусмотрена отдельная пара гнезд для подключения измерительных проводов – она расположена слева. Справа же – гнезда для работы в режиме мегомметра.
В комплекте – два качественных гибких измерительных провода, красный и черный. По мере необходимости на их конец можно присоединить или зажим-«крокодильчик»…
…или щуп с удобной изолированной рукояткой.
Органы управления прибором. Подробно на всех останавливаться не будем – у разных моделей мегомметров они могут отличаться. В данном случае нас больше интересует рукоятка переключения режимов работы – она при тестировании изоляции должна быть установлена на требуемое значение калиброванного напряжения. В данной модели предусмотрено пять таких позиций – 50, 100, 250, 500 и 1000 вольт. Для работы в условиях обычных электросетей этого вполне достаточно. Кроме того, «базовые» значения можно несколько изменять в сторону увеличения и уменьшения кнопками «вверх» и «вниз». Ну и хорошо выделяется на общем фоне крупная кнопка «TEST». Именно ею запускается измерение.
Задача – проверить качество изоляции шнура питания на предмет возможного короткого замыкания. На измерительные провода надеваются зажимы-«крокодильчики» — с ними будет в данном случае удобнее. Концы проводов подключаются к соответствующим правым гнездам прибора. Затем зажим устанавливается на один контактный штырь вилки шнура…
…а затем аналогичным образом коммутируется и второй провод – ко второму штырю вилки.
Переключатель режимов работы прибора перестанавливается в положение тестового напряжения в 1000 вольт.
При желании или необходимости можно несколько повысить или понизить калиброванное напряжение кнопками со стрелками вверх и вниз. Так, оператор посчитал необходимым в данном примере повысить напряжение до 1200 вольт. Его значение показывается на дисплее.
По готовности к замеру осталось только нажать кнопку его запуска — «TEST».
Спустя несколько секунд на дисплее появляется замеренное значение сопротивления изоляции. А точнее – в этом примере и на этом приборе показывается, что сопротивление составило более 20 гигаом (˃ 20.0 GΩ). Это во много раз превышает допустимый минимум, то есть короткого замыкания на проверенной паре проводов можно не опасаться. Аналогичным образом можно сразу поочередно протестировать эти провода с жилой защитного заземления, то есть провести еще два замера. Вот тогда будет твердая уверенность в том, что шнур полностью безопасен и пригоден для дальнейшей эксплуатации. Пример со шнуром взят для упрощения восприятия. Но аналогичным образом тестируются на короткое замыкание и линии скрытой домашней проводки.
Пример замера сопротивления изоляции обмоток трёхфазного асинхронного двигателя

Одна из распространенных причин выхода таких двигателей из строя – пробой обмоток через изоляцию на корпус. Что, кстати, может представлять немалую опасность для людей. Поэтому подобные силовые приводы также регулярно тестируются на качество изоляции. Пример показан в таблице ниже. А использоваться будет ставшая уже своеобразной «классикой» модель мегомметра ЭСО202/2-Г, которая до сих пор выпускается и пользуется спросом.

ИллюстрацияКраткое описание выполняемых операций
Предстоит проверить этот двигатель. Мегомметр готовится к работе – вынимается из сумки-чехла.
Шкала прибора. Если точнее, то здесь две шкалы. Первая, расположенная снизу, позволяет измерить сопротивление от нуля до 50 МОм.  (Если ближе к реальности – то зона точных измерений все же начинается примерно от 500 кОм) и выше. Отсчет у первой шкалы ведется справа-налево. Вторая, верхняя шкала проградуирована слева направо, и данные по ней считываются в диапазоне от 50 МОм до 10 ГОм.
На лицевой панели корпуса прибора имеются два переключателя. Левым  устанавливается шкала, по которой будут сниматься показания, в зависимости от ожидающихся значений. При проверке сопротивления изоляции начинать замеры лучше сразу со второй шкалы, и лишь если получаемое значение меньше нижней границы диапазона (50 МОм) переходят на первую. Правый переключатель — ответственный за установку значения калиброванного проверочного напряжения. В данной модели, как видно, три позиции – 500, 1000 и 2500 вольт.
Гнезда-разъемы для подключения измерительных проводов. Про их «распиновку» уже говорилось выше.
Подключаются провода. Одинарный – к гнезду «З» (или минус), второй, со сдвоенным концом – в гнезда «L (+)» и «Э» в соответствии с нанесенными на штекерах указателями.
На электродвигателе снимается крышка коммутационной коробки. Видны винтовые клеммы для подключения трех фаз.
Зажим-«крокодил» провода, идущего от разъема мегомметра «З», крепится на корпусе электродвигателя. Можно установить его на соответствующую клемму, или же непосредственно на металлический корпус, если отсутствие краски или других загрязнений гарантирует надежный контакт.
Устанавливаются переключатели в нужное положение — на вторую шкалу и на напряжение 500 вольт (хотя, конечно, надежнее было бы проверить на уровне в 1000 вольт).
Щуп или зажим-«крокодил» второго, контрольного провода устанавливается на клемму одной из обмоток. Последовательность проверки фаз значения не имеет. Если используется щуп, то работу лучше проводить с помощником, так как одному и удерживать контакт, и вращать рукоятку индуктора – неудобно, да и небезопасно.
Начинают вращать рукоятку генератора напряжения. Частота вращения – не менее 2 оборотов в секунду. Стрелка на шкале прибора начинает менять свое положение. В определенный момент зажигается сигнальная лампочка «ВН» - «Высокое напряжение». Это означает, что необходимый уровень калиброванного напряжения достигнут.
Но вращение при этом не прекращают до тех пор, пока положение стрелки не стабилизируется – и только потом снимают показания. В данном примере она «зашкалила» за максимальное значение. То есть сопротивление изоляции проверяемой обмотки выше 10 ГОм. Отличный результат! Щупы разряжают взаимным касанием одного к другому. А затем аналогичным образом проверяют последовательно вторую и третью обмотки относительно корпуса. Если все нормально, то за их изоляцию можно не беспокоиться.
Даже такой мегомметр, не имеющий функции мультитестера, позволяет сразу провести проверку и целостности «звезды». То есть – проводимость обмоток между собой. Для этого левый переключатель переводят на первую, нижнюю шкалу.
«Крокодил» синего провода устанавливается на одну из фазных клемм двигателя.
Щуп второго провода – на одной из оставшихся клемм.
Вращают рукоятку динамо-машины, наблюдают за показаниями прибора. Задействована нижняя шкала, то есть показывается сопротивление менее О МОм. Конкретное значение в данном случае неважно – совершенно очевидно, что проводимость между этими двумя обмотками есть, в них нет обрыва. То, что требовалось доказать!
Затем тестируется аналогичным образом вторая пара обмоток…
...и, наконец, третья. Все возможные варианты проверены, и если результаты положительные, то «звезда» двигателя в полном порядке. А итогом по обеим стадиям проверки становится закономерный вывод – по электротехнической части двигатель полностью пригоден к эксплуатации.

*  *  *  *  *  *  *

Безусловно, все варианты использования мегомметра показать сложно. А учитывая современное многообразие моделей – и вовсе невозможно. Значит, руководствоваться работе придется прилагаемой к прибору инструкцией. Но принципы проведения замеров и требования по обеспечению безопасности – существенных отличий не имеют.

В завершение публикации, чтобы несколько расширить информацию – небольшой видеообзор мегомметра MS5203 MASTECH.

Видео: Как работают с электронным мегомметром MS5203 MASTECH

stroyday.ru

Для чего нужен мегаомметр - Всё о электрике в доме

Что такое мегаомметр и как им пользоваться для измерения изоляции?

Мегаомметр – прибор для измерения больших сопротивлений, а точнее для измерения сопротивления изоляции. Мегаомметр состоит из генератора напряжения, измерителя электрической величины, специальных выходных клемм. В комплект прибора входят соединительные провода со щупами. Иногда для удобства измерений на щупы надеваются зажимы типа «крокодил».

Для чего нужен мегаомметр

Генератор напряжения мегаомметра приводится в действие либо специальной вращающейся рукояткой, либо работает от внешнего или внутреннего источника питания и генерирует напряжение при нажатии специальной кнопки. Всё зависит от вида мегаомметра.

Напряжение, которое способен генерировать мегаомметр, имеет стандартную величину. Обычно это 500В, 1000В, 2500В. Также есть мегаомметры с испытательным напряжением 100В и 250В.

Суть работы мегаомметра заключается в следующем. При вращении рукоятки обычного мегаомметра или при включении кнопки электронного мегаомметра на выходные клеммы прибора подаётся высокое напряжение, которое через соединительные провода прикладывается к измеряемой цепи или к электрооборудованию. В процессе замера на приборе можно наблюдать значение измеряемого сопротивления. При измерении значение сопротивления может достигать нескольких килоОм, мегаОм или равняться нулю.

Техника безопасности при работе с мегаомметром

Т.к. мегаомметры способны генерировать напряжение до 2500В, то к работе с ними допускаются только подготовленные и хорошо обученные правилам техники безопасности работники.

  • Допускается пользоваться только исправными и поверенными приборами. Во время измерения сопротивления изоляции запрещается прикасаться к выходным клеммам мегаомметра, к оголённой части соединительных проводов (концы щупов) и к неизолированным металлическим частям измеряемой цепи (оборудования) т.к. эти узлы во время измерения находятся под высоким напряжением.
  • Измерение сопротивления изоляции запрещается производить, если не проверено отсутствие напряжения, к примеру, на жилах электрического кабеля или на токоведущих частях электроустановки. Проверку наличия или отсутствия напряжения выполняют индикатором, тестером или указателем напряжения.
  • Также не разрешается производить измерения, если не снят остаточный заряд с электрооборудования. Остаточный заряд можно снимать при помощи изолирующей штанги и специального переносного заземления путём кратковременного его присоединения к токоведущим частям. В процессе измерений необходимо снимать остаточный заряд после каждого замера.

Проверка работоспособности мегаомметра

Даже если используемый мегаомметр прошёл испытания и поверку, необходимо произвести проверку его работоспособности непосредственно перед работами по замеру сопротивления изоляции. Для этого сначала подключаются соединительные провода к выходным клеммам. Затем эти провода закорачивают и проводят измерение.

При закороченных проводах значение сопротивления должно равняться нулю. Это будет видно на шкале или на дисплее, в зависимости от вида прибора. При закороченных соединительных проводах также проверяется целостность этих проводов.

Далее производится замер при раскороченных проводах. Если прибор исправен, то величина сопротивления изоляции в этом случае будет равняться «бесконечности» (если мегаомметр старого образца), или будет принимать пусть и большое, но фиксированное значение (если прибор электронный с цифровым дисплеем).

Изучение проверяемой схемы измерения

Перед тем, как выполнять измерение мегаомметром, необходимо изучить электрическую цепь, в которой будут производиться замеры. В электрической цепи могут присутствовать электрические приборы, электрические аппараты и другое электрическое и электронное оборудование, которое не рассчитано на выходное напряжение, которое генерирует мегаомметр. По этой причине необходимо данное оборудование защитить от воздействия напряжения мегаомметра. Для этого нужно выполнить действия по заземлению, отключению или извлечению оборудования из схемы измеряемой цепи.

Измерение мегаомметром

В настоящее время наряду с современными цифровыми мегаомметрами часто используются приборы старого образца, выпущенные ещё в советское время. Работа и с тем и с другим видом приборов в принципе мало чем отличается, хотя и присутствуют некоторые отличия в работе.

Общее то, что изначально подключаются соединительные провода к выходным клеммам (зажимам) мегаомметра. Затем выбирается величина испытательного напряжения. Для этого на приборах старого образца переключатель выходного напряжения ставится в положение 500В, 1000В или 2500В.

Стоит отметить, что некоторые приборы способны генерировать только одно значение напряжения.

На цифровых мегаомметрах необходимое испытательное напряжение выбирается специальными клавишами на дисплее.

Следующее действие – подсоединение соединительных проводов к измеряемой цепи (электрический кабель, электродвигатель, ошиновка, силовой трансформатор) и непосредственно замер сопротивления изоляции. Замер производится в течение одной минуты.

Некоторые отличия при работе с приборами разного вида:

  1. В отличие от цифрового прибора обычный мегаомметр при замерах должен устанавливаться горизонтально на ровной поверхности. Это требуется для того, чтобы при вращении ручки мегаомметра не было большой погрешности, а стрелка прибора показывала только истинное значение.
  2. Снятие показаний на обычном мегаомметре происходит по положению стрелки на шкале, у цифрового мегаомметра для этого есть цифровой дисплей.

Документальное оформление результатов измерений

В процессе измерения сопротивления изоляции все измеренные значения фиксируются и затем заносятся в специальный протокол измерений и испытаний, который подписывается и скрепляется печатью.

Как проводить измерения мегаомметром

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье.

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

Для чего нужен мегаомметр

Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Для чего нужен мегаомметр

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Для чего нужен мегаомметр

Один из вариантов современных мегаомметров

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).

Для чего нужен мегаомметр

Как пользоваться мегаомметром: правила электробезопасности

  • Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
  • После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
  • После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
  • Работать в перчатках.
  • Правила не очень сложные, но от их выполнения зависит ваша безопасность.

    Как подключать щупы

    На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

    Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.

    Для чего нужен мегаомметр

    Щупы для мегаомметра

    На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

    Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

    • К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
    • К жиле и «земле», если проверяем «пробой на землю».

    Для чего нужен мегаомметр

    Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой

    Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

    Процесс измерения

    Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

    Измерение проводят на нагретой отключенной плите не реже 1 раза в год

    Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

    Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

    Для чего нужен мегаомметр

    Как проводить измерения мегаомметром

    После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

    Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

    Измерение сопротивления изоляции кабеля

    Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

    Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

    Для чего нужен мегаомметр

    Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

    Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

    Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

    Для чего нужен мегаомметр

    Если жил много, перед тем как пользоваться мегаомметром, жилы зачищают от изоляции и скручивают в жгут

    Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

    Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

    Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

    Проверить сопротивление изоляции электродвигателя

    Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

    Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

    МЕГАОММЕТР — прибор для измерения большого сопротивления, главным образом сопротивления изоля ции [1, 2].

    Ранее для обозначения такого прибора использовались термины меггер. мегомметр. Терминологическими стандартами эти термины отнесены к недопустимым.

    Название прибора мегаомметр образовано из:

    — частицы Мега. используемой для обозначения кратных единиц измерения;

    — единицы обозначения сопротивления Ом ;

    — част и сложных слов – метр( от древне-греческого μετρεω — измеряю).

    В практике настроечных работ используют переносные мегаомметры, применяемые как средство технологического оснащения для измерений в обесточенном объекте настройки (ОН) и стационарные мегаомметры, которыми измеряют сопротивление изоляции при наличии напряжения в сети. Стационарные мегаомметры одновременно являются и ОН.

    Мегаомметры как средство техно логического оснащения.

    В связи с тем что переносные мегаомметры представляют собой универсальные средства измерения, для каждого ОН необходимо выбирать мегаомметры по пределу измерения и номинальному напряжению (общие правила см. Выбор средств измерения). Учитывая необходимость выявления дефектов изоляции, следует выбирать мегаомметр с наибольшим по параметрам изоляции напряжением, но не превышающим 80 % напряжения, которым испытывают электрическую прочность изоляции данного ОН. Одновременно нужно принимать во внимание, что мегаомметр имеет большое внутреннее сопротивление и мягкую нагрузочную характеристику (рис. 1).

    Рис. 1 Нагрузочная характеристика мегаомметра

    Поэтому чем меньше измеряемое сопротивление изоляции, тем меньшее напряжение прикладывается к изоляции и тем менее вероятно выявление в ней дефектов.

    Как правило, для ОН с номинальным напряжением до 42 В, от 42 до 100 В, от 100 до 380 В, от 380 до 1000 В применяют мегаомметры на номинальное напряжение соответственно. 100, 250, 500 и 1000 В.

    Пределы измерения наиболее распространенных мегаомметров на пределе измерения:

    При измерении сопротивления изоляции с одинаковым успехом можно применять как индукторные мегаомметры с ручным приводом, так и безындукторные мегаомметры оснащенные статическим преобразователем напряжения.

    Для определения абсорбции коэффициента целесообразнее использовать безындукторные мегаомметры, оснащенные реле времени, фиксирую щими моменты отсчитывания показаний.

    Сопротивление изоляции проводов соединительных при измерении сопротивления изоляции силовых трансформаторов должно быть не менее предела измерения мегаомметра, а для всех остальных изделий — не менее 100 МОм.

    В противном случае поступают так, как сказано в ст. Сопротивление изоляции.

    Перед измерением необходимо проверить мегаомметр, для чего переключатель пределов устанавливают в положение «МОм» и замыкают выводы прибора накоротко.

    Вращая рукоятку индуктора мегаомметра (нажав кнопку «Вкл» у безындукторного мегаомметра), определяют совпадение стрелки с нулевой отметкой шкалы.

    Затем размыкают выводы и повторяют действия. У исправного мегаомметра стрелка должна совпадать с отметкой шкалы ∞

    На пределе «кОм» стрелка мегаомметра должна устанавливаться в противоположных точках шкалы, указанных выше для предела «МОм» . Предельно допускаемые отклонения стрелки от указанных точек составляют ± 1 мм.

    Перед присоединением соединительных проводов необходимо выполнить все технические и организационные мероприятия, в частности:

    1. Отключить напряжение с ОН и принять меры, исключающие его подачу во время использования мегаомметра.

    2. Снять заряд, накопившийся в ём кости изоляции и помехозащитных конденсаторах путем наложения переносного заземления (о продолжительности наложения заземления см. Изоляция электрическая). Измерения должны производиться двумя специалистами.

    Мегаомметр как объект настройки.

    Чаще всего стационарные мегаомметры измеряют сопротивление изоляции по принципу наложения постоянного напряжения на напряжение сети.

    Как правило, они состоят из следующих блоков:

    — источника постоянного напряжения;

    — показывающего измерительного прибора, включаемого оператором;

    — блока непрерывного контроля изоляции с переключателем уставок срабатывания.

    На стройка стационарных мегаомметров состоит из следующих технологических операций и переходов:

    — проверки функционирования (ПФ) блока источника постоянного

    контроля работоспособности измерительного прибора;

    — ПФ блока непрерывного контроля изоляции.

    Визуальный контроль мегаомметра помимо указанного в соответствующей статье, включает проверку целости пломб и наличия клейма поверителя, определение годности мегаомметра на данный момент с учетом того, что к началу HP может пройти не более половины срока до очередной поверки.

    ПФ источника пост, напряжения производится одновременно с КР измерительного прибора.

    КР измерительного прибора осуществляют при замкнутом и разомкнутом входе мегаомметра, аналогично описанному выше для переносных мегаомметров, а также при подключении данной цепи не к выводу сети, а непосредственно на резистор с известным сопротивлением, значение которого соответствует одному из оцифрованных делений шкалы прибора.

    Требования к совпадению стрелки с делениями шкалы те же, что и для переносных мегаомметров.

    ПФ блока непрерывного контроля сопротивления изоляции состоит в подключении ко входу мегаомметра резистора с сопротивлением, равным номинальному значению уставки с учетом допуска.

    При настройке стационарных мегаомметров, используемых в сетях постоянно-переменного тока, т. е. сетей, содержащих полупроводниковые приборы (диоды, транзисторы, тиристоры), следует учитывать возможность отклонения стрелки прибора за пределы крайних точек шкалы (0 или ∞ ) вследствие неправильного выбора типа мегаомметра при проектировании сети.

    1. Захаров О.Г.Словарь-справочник по настройке судового электрооборудования. Л. Судостроение, 1987, 216 с.

    2. К вопросу об областях применения индукторных и безындукторных мегомметров//Алеева Л.М. Бабаев В.И. Иванов Е.А. и др.// Судовая электротехника и связь, 1972, вып. 54 С. 3

    3. Контроль и измерение сопротивления изоляции и ёмкости судовых электрических сетей//Карпиловский Л.Н. Лебедев В.С. и др. Л. 1979

    4. Минин Г.П. Мегаомметр. М. Энергия, 1966

    52. Словарь-справочник судового электромонтажника. Л. Судостроение, 1990, 392 с.

    © ЗАХАРОВ О.Г. 2010-2014, правка 2015, 2016. 2017

    Для чего нужен мегаомметрДля чего нужен мегаомметр

    Источники: http://aquagroup.ru/articles/chto-takoe-megaommetr-i-kak-im-polzovatsya-dlya-izmereniya-izolyacii.html, http://stroychik.ru/elektrika/kak-polzovatsya-megaommetrom, http://maximarsenev.narod.ru/slovar2/meg/meg.htm

    electricremont.ru


    Каталог товаров
      .