интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Катушка индуктивности. Катушки индуктивности


3. Факторы, влияющие на индуктивность катушки | 14. Катушки индуктивности | Часть1

3. Факторы, влияющие на индуктивность катушки

Факторы, влияющие на индуктивность катушки

На индуктивность катушки оказывают влияние следующие основные факторы:

Число витков провода в катушке: При прочих равных условиях, увеличение числа витков приводит к увеличению индуктивности; уменьшение числа витков приводит к уменьшению индуктивности.

Пояснение: чем больше количество витков, тем больше будет магнитодвижущая сила для заданной величины тока.

 

inductivnost17

 

Площадь поперечного сечения катушки: При прочих равных условиях, катушка с большей площадью поперечного сечения будет иметь большую индуктивность; а катушка с меньшей площадью поперечного сечения - меньшую индуктивность.

Пояснение: Катушка с большей площадью поперечного сечения оказывает меньшее сопротивление формированию магнитного потока для заданной величины магнитодвижущей силы.

 

inductivnost18

 

Длина катушки: При прочих равных условиях, чем больше длина катушки, тем меньше ее индуктивность; чем меньше длина катушки, тем больше ее индуктивность.

Пояснение: Чем больше длина катушки, тем большее сопротивление она оказывает формированию магнитного потока для заданной величины магнитодвижущей силы.

 

inductivnost19

 

Материал сердечника: При прочих равных условиях, чем больше магнитная проницаемость сердечника, вокруг которого намотана катушка, тем больше индуктивность; чем меньше магнитная проницаемость сердечника - тем меньше индуктивность.

Пояснение: Материал сердечника с большей магнитной проницаемостью способствует формированию большего магнитного потока для заданной величины магнитодвижущей силы.

 

inductivnost20

 

Приблизительное значение индуктивности любой катушки можно найти по следующей формуле:

 

inductivnost21

 

Следует понимать, что данная формула дает только приблизительные цифры. Одной из причин такого положения дел является изменение величины магнитной проницаемости при изменении напряженности магнитного поля (вспомните нелинейность кривой В/Н для разных материалов). Очевидно, если проницаемость (µ) в уравнении будет непостоянна, то и индуктивность (L) также будет в некоторой степени непостоянна. Если гистерезис материала сердечника будет существенным, то это непременно отразится на индуктивности катушки. Разработчики катушек индуктивности пытаются минимизировать эти эффекты, проектируя сердечник таким образом, чтобы его намагниченность никогда не приближалась к уровням насыщения, и катушка работала в более линейной части кривой B/H.

Если катушку сделать таким образом, что любой из вышеперечисленных факторов у нее можно механически изменить, то получится катушка с регулируемой величиной индуктивности или вариометр. Наиболее часто встречаются вариометры, индуктивность которых регулируется количеством витков или  положением сердечника (который перемещается внутри катушки). Пример вариометра с изменяемым количеством витков можно увидеть на следующей фотографии:

 

inductivnost22

 

Это устройство использует подвижные медные контакты, которые подключаются к катушке в различных точках ее длины. Подобные катушки, имеющие воздушный сердечник, применялись в разработке самых первых радиоприемных устройств.

Катушка с фиксированными значениями индуктивности, показанная на следующей фотографии, представляет собой еще одно раритетное устройство, использовавшееся в первых радиостанциях. Здесь вы можете увидеть несколько витков относительно толстого провода, а так же соединительные выводы:

 

inductivnost23

 

А это еще одна катушка индуктивности, так же предназначенная для радиостанций. Для большей жесткости ее провод намотан на керамический каркас:

 

inductivnost24

 

Многие катушки индуктивности обладают небольшими размерами, что позволяет монтировать их непосредственно на печатные платы. Посмотрев внимательно на следующую фотографию, можно увидеть две расположенные рядом катушки:

 

inductivnost25

 

Две катушки индуктивности расположены справа в центре этой платы и имеют обозначения L1 и L2. В непосредственной близости от них находятся резистор R3 и конденсатор С16. Показанные на плате катушки называются "торроидальными", так как их провод намотан вокруг сердечника, имеющего форму тора.

Как резисторы и конденсаторы, катушки индуктивности могут выполняться в корпусе для поверхностного монтажа (SMD). На следующей фотографии представлено несколько таких катушек:

 

inductivnost26

 

Две индуктивности здесь расположены справа в центре платы. Они представляют собой маленькие черные чипы с номером "100", а над одной из них можно увидеть обозначение L5.

www.radiomexanik.spb.ru

Катушка индуктивности — Традиция

Материал из свободной русской энциклопедии «Традиция»

Катушка индуктивности на материнской плате компьютера. Обозначение на электрических принципиальных схемах.

Катушка индуктивности — свёрнутый в спираль изолированный проводник, обладающий значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Такая система способна запасать магнитную энергию при протекании электрического тока.

Катушка индуктивности обычно представляет собой спираль из одножильного или многожильного изолированного провода, намотанного на цилиндрический, тороидальный или прямоугольный каркас из диэлектрика. Также бывают и бескаркасные катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, универсальная).

Для увеличения индуктивности применяют сердечники из ферромагнитных материалов: электротехнической стали, пермаллоя, карбонильного железа, ферритов. Также сердечники используют для изменения индуктивности катушек в небольших пределах.

Свойства катушки индуктивности[править]

Катушка индуктивности в электрической цепи хорошо проводит постоянный ток и в то же время оказывает сопротивление переменному току, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением величина которого равна: \(~R_L = \omega L\), где \(L~\)— индуктивность катушки, \(\omega~\)— угловая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

При протекании тока катушка запасает энергию, равную работе, которую необходимо совершить для установления текущего тока \(I~\). Величина этой энергии равна $$ E_\mathrm{coxp} = {1 \over 2} L I^2 $$

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой $$ \varepsilon = -L{dI \over dt}$$

Характеристики катушки индуктивности[править]

Индуктивность[править]

Основным параметром катушки индуктивности является её индуктивность, которая определяет, какой поток магнитного поля создаст катушка при протекании через неё тока силой 1 ампер. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, квадрату числа витков намотки и магнитной проницаемости сердечника.

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек. $$L = \sum_{i=1}^N L_i$$

При параллельном соединении катушек общая индуктивность равна $$L = \frac{1}{\sum_{i=1}^N 1/L_i}$$

Сопротивление потерь[править]

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых сопротивление катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь \(~R_{\Pi OT}\). Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране. $$~R_{\Pi OT} = r_w + r_d +r_s + r_e$$

Потери в проводах[править]

Потери в проводах вызваны тремя причинами:

  • Во-первых, провода обмотки обладают омическим сопротивлением.
  • Во-вторых, сопротивление провода обмотки переменному току возрастает с ростом частоты, что обусловлено скин-эффектом, суть которого состоит в том, что ток протекает не по всему сечению проводника, а по кольцевой части поперечного сечения.
  • В третьих, в проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии провода, прилегающей к каркасу, в результате чего сечение, по которому протекает ток, принимает серповидный характер, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике[править]

Потери в диэлектрике обусловлены тем, что между соседними витками катушки существует паразитная ёмкость, что приводит к утечкам переменного тока между витками.

Потери в сердечнике[править]

Потери в сердечнике складываются из потерь на вихревые токи, потерь на гистерезис и начальных потерь.

Потери в экране[править]

Потери в экране обусловлены тем, что ток, протекающий по катушке, индуцирует ток в экране.

Добротность[править]

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна $$ Q = \frac{\omega{}L}{R_{\Pi OT}} $$

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида "универсаль", применением посеребрёного провода, применением многожильного провода вида "литцендрат".

Температурный коэффициент индуктивности (ТКИ)[править]

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. $$ TKL = \frac{\Delta L}{L \Delta T} $$

Разновидности катушек индуктивности[править]

Контурные катушки индуктивности  Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность и добротность. Катушки связи  Такие катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы и коллектора и т. д. К таким катушкам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи. Вариометры  Это катушки, индуктивность которых можно изменять в процессе эксплуатации для перестройки колебательных контуров. Они состоят из двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. Дроссели  Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включаются в цепях питания усилительных устройств. Предназначены для защиты источников питания от попадания в них высокочастотных сигналов. На низких частотах они используются в фильтрах цепей питания и обычно имеют металлические сердечники.

Применение катушек индуктивности[править]

Применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п..
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов.
  • Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы.
  • Для радиосвязи - излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна).
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах перемещением (вытаскиванием) сердечника.

Внешние ссылки[править]

traditio.wiki

Катушка индуктивности - это... Что такое Катушка индуктивности?

Обозначение на электрических принципиальных схемах

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки,  — текущее время,  — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

↔ , где ↔ ↔  ; ↔  ; ↔ ↔

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где  — магнитная постоянная  — относительная магнитная проницаемость материала сердечника (зависит от частоты)  — площадь сечения сердечника  — длина средней линии сердечника  — число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны. Катушки связи, или трансформаторы связи Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции). Вариометры Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода. Дроссели Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех. Сдвоенный дроссель Сдвоенные дроссели Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.[2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

Применение катушек индуктивности

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

Примечания

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 13 мая 2011.

dik.academic.ru

Индуктивности катушка - это... Что такое Индуктивности катушка?

Катушка индуктивности на материнской плате компьютера.

Обозначение на электрических принципиальных схемах.

Катушка индуктивности — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Такая система способна запасать магнитную энергию при протекании электрического тока.

Устройство

Устройство обычно представляет собой винтовую, спиральную или винтоспиральную катушку из одножильного или многожильного изолированного провода, намотанного на цилиндрический, тороидальный или прямоугольный каркас из диэлектрика или плоскую спираль, волну или полоску печатного или другого проводника. Также бывают и бескаркасные катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, "универсал"). Намотка "универсал" имеет меньшую паразитную ёмкость.

Для увеличения индуктивности применяют сердечники из ферромагнитных материалов: электротехнической стали, пермаллоя, карбонильного железа, ферритов. Также сердечники используют для изменения индуктивности катушек в небольших пределах..

Свойства катушки индуктивности

Катушка индуктивности в электрической цепи хорошо проводит постоянный ток и в то же время оказывает сопротивление переменному току, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением величина которого равна: , где — индуктивность катушки, — угловая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

При протекании тока катушка запасает энергию, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, которая определяет, какой поток магнитного поля создаст катушка при протекании через неё тока силой 1 ампер. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, квадрату числа витков намотки и магнитной проницаемости сердечника.

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек.

При параллельном соединении катушек общая индуктивность равна

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых сопротивление катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране.

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Во-первых, провода обмотки обладают омическим сопротивлением.
  • Во-вторых, сопротивление провода обмотки переменному току возрастает с ростом частоты, что обусловлено скин-эффектом, суть которого состоит в том, что ток протекает не по всему сечению проводника, а по кольцевой части поперечного сечения.
  • В третьих, в проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии провода, прилегающей к каркасу, в результате чего сечение, по которому протекает ток, принимает серповидный характер, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике обусловлены тем, что между соседними витками катушки существует паразитная ёмкость, что приводит к утечкам переменного тока между витками.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на гистерезис и начальных потерь.

Потери в экране

Потери в экране обусловлены тем, что ток, протекающий по катушке, индуцирует ток в экране.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида "универсаль", применением посеребрёного провода, применением многожильного провода вида "литцендрат".

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки.

Разновидности катушек индуктивности

Контурные катушки индуктивности  Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность и добротность. Катушки связи  Такие катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы и коллектора и т. д. К таким катушкам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи. Вариометры  Это катушки, индуктивность которых можно изменять в процессе эксплуатации для перестройки колебательных контуров. Они состоят из двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника. Дроссели  Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включаются в цепях питания усилительных устройств. Предназначены для защиты источников питания от попадания в них высокочастотных сигналов. На низких частотах они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Сдвоенные дроссели  две намотанных встречно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны при тех же габаритных размерах.

Применение катушек индуктивности

Применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности

  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п..
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов.
  • Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы.
  • Для радиосвязи - излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна).
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах перемещением (вытаскиванием) сердечника.

Смотри также

Wikimedia Foundation. 2010.

dic.academic.ru

Катушка индуктивности - это... Что такое Катушка индуктивности?

Обозначение на электрических принципиальных схемах

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки,  — текущее время,  — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

↔ , где ↔ ↔  ; ↔  ; ↔ ↔

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где  — магнитная постоянная  — относительная магнитная проницаемость материала сердечника (зависит от частоты)  — площадь сечения сердечника  — длина средней линии сердечника  — число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны. Катушки связи, или трансформаторы связи Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции). Вариометры Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода. Дроссели Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех. Сдвоенный дроссель Сдвоенные дроссели Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.[2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

Применение катушек индуктивности

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

Примечания

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 13 мая 2011.

dikc.academic.ru

Катушки индуктивности | Основы электроакустики

Катушки индуктивности

 

Катушки индуктивности применяют в качестве элементов коле­бательных контуров, дросселей и для связи одних цепей с другими.

Катушка индуктивности, которая служит для разделения посто­янного и переменного токов или токов разных частот, называется дросселем. Индуктивное сопротивление (Ом) катушки зависит от частоты и определяется по формуле Xi. — 2nfLt  где f — частота, Гц; L — индуктивность, Гн. Одна и та же катушка представляет собой разное сопротивление для токов разных частот. Для постоянного тока сопротивление любой катушки очень мало. Каждая катушка характеризуется индук­тивностью, добротностью, стабильностью и собственной емкостью.

Катушки с малой индуктивностью изготовляют без сердечника с небольшим числом витков. Для увеличения индуктивности катушку выполняют многослойной и вводят сердечник из ферромагнитного материала. Потери энергии в катушке должны быть как можно меньше. Поэтому ее стремятся выполнить так, чтобы получить наибольшую индуктивность при малом активном сопротивлении. Отношение индуктивного сопротивления катушки к активному сопротивлению на — дан­ной частоте называется добротностью катуш­ки и определяется по формуле Qil=Xtlfsa Индуктивность и другие параметры ка­тушки не должны меняться под влиянием внешних причин, т. е. катушка должна обла­дать стабильностью. Собственная (междувитковая) емкость катушки понижает ее доброт­ность и уменьшает стабильность

У однослойной катушки при сплошной намотке (виток к витку) индуктивность (мкГн) можно определить по формулегде w — число витков; l — длина намотки, см; D — диаметр катуш­ки, см. Для уменьшения собственной, емкости витки катушки наматыва­ют не вплотную, а на некотором расстоянии один от другого (на­мотка с принудительным шагом). Многослойные катушки выполняют простой намоткой «внавал» или специальной («универсалы»). Индуктивность (мкГн) многослойной хатушки можно определить по формулегде dcf — средний диаметр намотки, см; w — число витков; I — длина намотки, см; t — толщина намотки, см.

Для уменьшения собственной емкости многослойную катушку выполняют из отдельных секций. Секционированные катушки при­меняют в качестве контурных катушек и дросселей высокой частоты. Малую собственную емкость имеют многослойные катушки с намот­кой «универсалы», при которой провод зигзагом переходит с одного края катушки на другой Для устранения влияния электромагнитного поля катушки на соседние детали и, наоборот, внешних полей на катушку ее закры­вают металлическим экраном. Для высокочастотных катушек экран изготовляют из меди или алюминия толщиной 0,4 — 0,5 мм. Экран уменьшает индуктивность и добротность катушки и увеличивает ее собственную емкость. Чем ближе расположен экран к виткам катупь ки, тем сильнее изменяются ее параметры. Чтобы влияние экрана было небольшим, его диаметр и длину берут в два раза больше диаметра и длины намотки. Для низкочастотных катушек применят ют экраны из ферромагнитных материалов, например из листовой стали толщиной 0,5 — 1,5 мм. Для увеличения добротности и уменьшения габаритов катушки применяют сердечники из ферромагнитных материалов. Высокочас­тотные катушки имеют сердечники из карбонильного железа. Доб­ротность катушек с таким сердечником равна 400 — 500, а без сер­дечника — не более 200.

Для контурных катушек длинных и средних волн используют броневые сердечники. Низкочастотные дроссели имеют сердечники из листовой электротехнической стали. Толщину стальных листов берут 0,2 — 0,5 мм для дросселей, используемых в цепях звуковых частот, и около 0,5 мм — в Цепях переменного тока с частотой 50 Гц.

Индуктивность катушки возрастает с увеличением числа и диа­метра витков при их сближении, что учитывают при изготовлении катушки. Введение внутрь катушки сердечника из магнитодиэлектрика также увеличивает ее индуктивность. Если сердечник выполнен из диамагнитного материала, например латуни, то при его введении индуктивность катушки уменьшится. То же произойдет, если внутрь катушки ввести короткозамкнутый виток. На практике чаще всего индуктивность изменяют, перемещая сердечник внутри катушки. Катушка, индуктивность которой можно изменять в больших пределах, называется вариометром. Чаще всего вариометр состоит из двух катушек, взаимная индуктивность которых может меняться. Вариометры применяют главным образом в передатчиках для на­стройки колебательных контуров и подбора связи между контурами.

 

audioakustika.ru

Общие сведения о катушках индуктивности

Применяемые в низкочастотных усилителях трансформаторы могут подразделяться на две основные категории: силовые или сетевые трансформаторы и сигнальные трансформаторы, используемые в качестве согласующих, выходных, либо повышающих, например, для картриджей звукоснимателей с подвижной катушкой. Совершенно аналогично катушки индуктивности могут предназначаться для работы в цепях прохождения сигнала, например в различных фильтрах, либо же они могут быть мощными дросселями, используемыми в высоковольтных источниках питания. Основной особенностью этих компонентов схем является применение в них магнитных материалов. Они представляют последнюю группу идеальных пассивных компонентов схем (резисторы, конденсаторы и катушки индуктивности, включая трансформаторы). В отличие от резисторов и конденсаторов, катушки индуктивности и трансформаторы, как правило, не являются промышленными изделиями, а изготавливаются вручную. Именно по этой причине многие разработчики стараются всячески избегать их применения. Такой подход нельзя признать разумным, так как он серьезно ограничивает возможности проектирования схем.

Катушка индуктивности запасает энергию магнитного поля. Прохождение тока любой величины по проводнику всегда сопровождается возникновением магнитного поля вокруг проводника. Поэтому проводник обладает индуктивностью. Можно увеличить индуктивность, свернув провод в спираль, или намотав его в виде катушки, а если внутрь такой катушки поместить железный сердечник (магнитопровод), то индуктивность возрастет многократно. Эта зависимость может быть приближенно выражена следующим соотношением:

в котором L — индуктивность,

μ0 — магнитная проницаемость вакуума, в системе СИ равна 4π·10-7 Гн/м,

μr— относительная магнитная проницаемость магнитного материала

сердечника,

А — площадь поперечного сечения магнитопровода,

I — длина магнитопровода,

N — количество витков катушки.

Относительная магнитная проницаемость, μr, является характеристикой магнитных свойств материала, и можно провести некоторую аналогию с ранее уже упоминавшейся относительной диэлектрической проницаемостью, характеризующей диэлектрические свойства диэлектриков. Относительная магнитная проницаемость имеет различные значения и может меняться от 1 для воздуха до примерно 5500 для железа. Длина магнитопровода отсчитывается по замкнутому контура от какой-то начальной точки, а площадь поперечного сечения магнитопровода просто принимается равной площади сечения магнитного сердечника. Поэтому, может показаться, что вышеприведенное уравнение без особых трудностей может быть использовано для расчета индуктивности.

К сожалению, параметр μr сильно зависит от плотности магнитного потока, на длину магнитопровода могут сильно повлиять воздушные зазоры, а часть магнитного потока рассеивается в окружающей среде. Каждая из этих проблем будет проанализирована по отдельности несколько позже, а сейчас надо просто признать, что очень часто оказывается просто невозможным точно рассчитать значение индуктивности катушки. Поэтому на практике зачастую приходится строить всевозможные предположения, добавлять лишние витки, измерять индуктивность в условиях, максимально близким к условиям реальной работы, а затем удалять витки катушки, пока не будет получена требуемая величина индуктивности.

При каждом обсуждении свойств магнитных материалов, обычно используется зависимость, которая называется кривой (начальной) намагниченности. Данная кривая выражает зависимость результирующей магнитной индукции поля, В, от изменения величины напряженности магнитного поля, Н, иногда для простоты называемой зависимостью В-Н (рис. 5.10). В целях дальнейшего изложения следует прежде всего отметить, что относительная магнитная проницаемость m пропорциональна градиенту (или углу наклона) данной кривой, а так как градиент изменяется при изменении напряженности магнитного поля, то это означает, что будет изменяться и μ.

Кривая намагничивания: непостоянство угла наклона ведет к 
 изменению магнитной проницаемости материала

Рис. 5.10 Кривая намагничивания: непостоянство угла наклона ведет к изменению магнитной проницаемости материала

Катушка индуктивности без магнитного сердечника

Можно полностью исключить проблему, связанную с изменением параметра m при изменении напряженности магнитного поля, если использовать катушку, в которой отсутствует сердечник, изготовленный из магнитного материала. Катушка индуктивности без магнитного сердечника (воздушная катушка индуктивности) характеризуется постоянным значением индуктивности при изменении величины сигнала, следовательно, такие катушки не вызывают искажений, что делает их особо популярными для использования в схемах кроссоверов высококачественных громкоговорителей. Определить площадь, через которую проходит магнитный поток, для данного случая достаточно сложно, так как теоретически магнитный поток распространяется в бесконечность, точно также невозможно точно определить и длину «магнитопровода». Тем ни менее, для катушек с различной геометрией были предложены приближенные соотношения, из которых ниже приводится формула для наиболее интересного, с практической точки зрения, случая оптимального (то есть наименьшего) значения сопротивления воздушной катушки, обмотка которой выполнена из медного провода. Формулы для приближенного расчета были предложены А. Н. Тайлом (A.N.Thiele):

в которых (рис. 5.11), R — сопротивление обмотки, Ом,

L — Индуктивность, мкГн,

d — диаметр провода, мм,

N — количество витков,

с — обобщенный параметр каркаса, связывающий его внешний и внутренний диаметры, а также длину слоя намотки,

l — длина провода, м.

Относительные размеры бобины, используемой для намотки воздушной катушки 
индуктивности (в соответствии с приведенной формулой Таила)

Рис. 5.11 Относительные размеры бобины, используемой для намотки воздушной катушки индуктивности (в соответствии с приведенной формулой Таила)

Формула приводится с числовыми коэффициентами для частного случая, так как провод для катушки имеет стандартизованные значения диаметра, а величина сопротивления катушки не оказывает большого влияния на получаемый результат.

Если сопротивление будет отличаться от необходимого значения, следует использовать провод с другим поперечным сечением.

Естественно было бы выполнять все расчеты с использованием персонального компьютера, поэтому ниже приводится программа, написанная на языке QBASIC (хотя основное уравнение может быть с не меньшим успехом решено с использованием широкоформатных таблиц).

CLS

L = 1

PRINT "This program designs air-cored copper"

PRINT "wire coils according to the Thiele"

PRINT "formulae. L is in micro henries, d (wire"

PRINT "diameter) is in mm"

PRINT

PRINT "To quit, input L = 0."

PRINT

DO WHILE L > 0

INPUT "Lf; L

IF L = 0 THEN END

INPUT "L’; L

R = ((8.01*10^(-3)*(L*3/d*8)^(l/5))100)\l)/100

N = (((10.2 *(L^2/d^2)^(1/5)) *100)\D/100

с = ((d * N^(l/2)/0.841)*100\l)/100

Q = (((0.188*(L *с)^(1/2))*100\1)/100

PRINT

PRINT "You need"; N; "turns on a core of"; 2*c; "ram in diameter,"; c; "mm thick."

PRINT "It will use"; Q; "meters of wire, and"

PRINT "will have a resistance of"; R; "Ohms."

PRINT

LOOP

Эксперименты вскоре показали, что катушки индуктивности без магнитного сердечника имеют высокое сопротивление, и что они очень большие по своим размерам. Проблема сопротивления остается общей для всех катушек индуктивности и является основной причиной, определяющей неидельность их характеристик. Применение воздушных катушек индуктивности не ограничивается только кроссоверами громкоговорителей, но они также широко применяются в выходных фильтрах цифро-аналоговых преобразователей (ЦАП), в которых сопротивление обмотки не является определяющим фактором. Также катушки без сердечников получили широкое применение в радиочастотной технике.

Следует отметить, что в связи с используемыми упрощающими допущениями (не учитывается эффективность намотки, изменения диаметра провода и т. д.), использование данной формулы не позволяет получить точные результаты. В силу этого, рекомендуется при расчетах предусмотреть 5% увеличение параметров, а затем удалять витки с катушки, измеряя значение индуктивности с использованием измерительного моста.

В большом количестве измерительных мостов используется генератор, имеющий собственную частоту 1 кГц. При измерении индуктивности воздушных катушек относительно высокое значение сопротивления может подавить влияние индуктивной составляющей, в силу чего при измерениях с использованием мостовой схемы можно получить неверный результат. Если возможно для питания схемы моста использовать внешний источник переменного тока, то рекомендуется применять максимальное значение частоты, которое допускается использовать производителями измерительных мостов (как правило, частота составляет 20 кГц), что позволит более точно выполнить необходимые измерения.

Броневые сердечники с зазором

Одним из путей уменьшения сопротивления без внесения заметных искажений является использование катушки, в которой имеется магнитный сердечник с зазором. Магнитный сердечник с зазором значительно увеличивает индуктивность по сравнению с воздушной катушкой индуктивности. Однако так как воздушный зазор образует сравнительно высокое сопротивление для распространения магнитного потока, то он приглушает изменения в относительной магнитной проницаемости магнитного сердечника, имеющего низкое значение сопротивления магнитному потоку, в силу чего индуктивность катушки становится более стабильной. При увеличении величины зазора величина индуктивности снижается, и при увеличении зазора до бесконечно большого значения опять будет наблюдаться предельный случай катушки индуктивности без магнитного сердечника. Подобная конструкция была много лет назад использована отделом исследований Британской радиовещательной корпорации (Би-би-си) в катушках индуктивности кроссоверов пассивных громкоговорителей.

Катушка индуктивности с магнитным сердечником, имеющим зазор, может получиться совершенно непреднамеренно. Большое количество ферритовых сердечников, используемых для небольших катушек индуктивностей, изготавливаются в виде двух половинок, которые устанавливаются снаружи катушки и сопрягаются друг с дружкой наворачиванием половинок. Наличие пыли на сопрягаемых поверхностях приводит к увеличению зазора, и если половинки сердечника во время измерений индуктивности катушки плотно прижать одну к другой, то можно будет получить значительное увеличение индуктивности.

Если по индуктивности будет протекать постоянный ток, то очень важно, чтобы постоянный ток не вызвал переход материала сердечника в область насыщения, так как в этом случае значение индуктивности резко уменьшится, а сердечник будет сильно разогреваться. Катушки индуктивности, в которых сердечники изготовлены из железа и по катушкам которых протекают постоянная составляющая тока, обязательно имеют воздушные зазоры, для того, чтобы обеспечить максимальное значение индуктивности при максимальном значении переменного тока. При этом следует учитывать, что так как в области воздушного зазора происходит рассеяние магнитного потока, вызванного протеканием переменной составляющей, такие катушки индуктивности могут сильно влиять на соседние цепи схемы, вызывая в них паразитные наводки.

Собственная емкость катушек индуктивности

Если обмотка катушки индуктивности содержит большое количество витков, и существует разность потенциалов между отдельными витками и слоями витков, то следует ожидать, что катушка тесла будет иметь некоторую емкость, которая будет включена параллельно индуктивности самой катушки (рис. 5.12).

Эквивалентная схема замещения реальной катушки индуктивности

Рис. 5.12 Эквивалентная схема замещения реальной катушки индуктивности

Таким образом, возникает хорошо знакомая цепь с параллельным резонансом а это означает, что как только частота превысит резонансную, катушка индуктивности перестанет вести себя как индуктивность, а начнет проявлять свойства конденсатора. Самый простой способ определить величину такой паразитной емкости, это собрать тестовую схему (рис. 5.13).

Использование фигур Лиссажу для определения частоты 
собственного резонанса катушки индуктивности

Рис. 5.13 Использование фигур Лиссажу для определения частоты собственного резонанса катушки индуктивности

В осциллографе необходимо произвести переключение в режим работы с использованием и вертикального, и горизонтального входов «XY». При изменении частоты генератора получаемые на экране осциллографа фигуры Лиссажу будут изменяться от эллипса до прямой линии. Как раз та частота, при которой будет наблюдаться прямая линия, и будет соответствовать резонансной частоте катушке индуктивности.

 

Если необходимо, то можно будет рассчитать значение шунтирующей емкости, используя нижеприведенное выражение:

Мощные дроссели (катушки фильтров выпрямителей и т. п.), предназначенные для небольших ламповых усилителей, имеют, как правило, индуктивность 10—15 Гн и рассчитаны на токи 100—250 мкА. Для таких дросселей резонансная частота составляет от 3 до 12 кГц. На частотах, превышающих значение резонансной, дроссели не могут обеспечить эффективный барьер для шумов, генерируемых при выпрямлении переменного тока, или для ВЧ шумов, поступающих по сети питания.

Вопросы применения мощных дросселей будут рассмотрены позже.

 

tubeamplifier.narod.ru


Каталог товаров
    .