интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Формула вектора магнитной индукции. Формула индукции магнитного поля


Формула индукции магнитного поля, B

Направлением вектора магнитной индукции считают направление на север магнитной стрелки, которая может свободно вращаться в магнитном поле. Такое же направление имеет положительная нормаль к замкнутому контуру, по которому течет ток. Положительная нормаль имеет направление, совпадающее с направлением перемещения правого винта (буравчика), если его вращают по направлению тока в контуре.

Модуль вектора магнитной индукции можно установить, используя силу, которая действует на проводники с током, помещенные в магнитное поле (силу Ампера). Тогда модуль вектора \overline{B} равен частному от деления максимальной силы (F_{max}), с которой магнитное поле оказывает воздействие на отрезок проводника с током (I) к произведению силы тока на длину проводника (\Delta l):

    \[B=\frac{F_{max}}{I\Delta l} \qquad(1)\]

Рассматривая силу Лоренца, которая действует на заряженную частицу, движущуюся в магнитном поле, получают формулу для магнитной индукции в виде:

    \[B=\frac{F_L}{qv\sin \alpha \ } } \qquad(2)\]

где F_L – модуль силы Лоренца; q – заряд частицы, движущейся со скоростью v в магнитном поле; \alpha – это угол между векторами \overline{v} и \overline{B}. Направления {\overline{F}}_L, векторов \overline{v} и \overline{B} связаны между собой правилом левой руки.

Формулой, которая определяет величину вектора магнитной индукции в данной точке магнитного поля, считают так же следующее выражение:

    \[B=\frac{M_{max}}{p_m} \qquad(3)\]

где M_{max} – максимальный вращающий момент, действующий на рамку, которая обладает магнитным моментом p_m, равным единице, если нормаль к рамке перпендикулярна направлению поля. Вращающий момент (M), действующий на контур с током I в однородном магнитном поле можно вычислить как:

    \[M=BIS{\sin \alpha } \qquad(4)\]

где S – площадь, которую обтекает ток I. Следует помнить, что максимальный вращающий момент получается тогда, когда плоскость контура параллельна линиям магнитной индукции поля ({\sin \alpha } =1).

Принцип суперпозиции магнитных полей

Если магнитное поле получается в результат наложения нескольких магнитных полей то, магнитная индукция поля (\overline{B}), может быть найдена как векторная сумма магнитных индукций отдельных полей ({\overline{B}}_i):

    \[\overline{B}=\sum^N_{i=1}{{\overline{B}}_i}\ \qquad(5)\]

Закон Био-Савара-Лапласа, как формула для вычисления величины индукции магнитного поля

Закон Био-Савара – Лапласа является одним из распространенных законов, который позволяет вычислить вектор магнитной индукции (d\overline{B}) в любой точке магнитного поля, создаваемого в вакууме элементарным проводником с током:

    \[d\overline{B}=\frac{{\mu }_0}{4\pi }\frac{I}{r^3}\left[d\overline{l}\overline{r}\right]\ \qquad(6)\]

где I – сила тока; d\overline{l} – вектор элементарный проводник по модулю он равен длине проводника, при этом его направление совпадает с направлением течения тока; \overline{r} – радиус-вектор, который проводят от элементарного проводника к точке, в которой находят поле; {\mu }_0=4\pi \cdot {10}^{-7}\frac{Гн}{м} – магнитная постоянная. Вектор d\overline{B} является перпендикулярным к плоскости, в которой расположены d\overline{l} и \overline{r}, конкретное направление вектора магнитной индукции определяют при помощи правила буравчика (правого винта).

Для однородного и изотропного магнетика, заполняющего пространство, вектор магнитной индукции в вакууме({\overline{B}}_0) и в веществе (\overline{B}), при одинаковых условиях, связывает формула:

    \[\overline{B}=\mu {\overline{B}}_0\ \qquad(7)\]

где \mu – относительная магнитная проницаемость вещества.

Частные случаи формул для вычисления модуля вектора магнитной индукции

Формула для вычисления модуля вектора индукции в центре кругового витка с током (I):

    \[B=\frac{{\mu }_0\mu }{2}\frac{I}{R} \qquad(8)\]

где R – радиус витка.

Модуль вектора магнитной индукции поля, которое создает бесконечно длинный прямой проводник с током:

    \[B=\frac{{\mu }_0\mu }{2\pi }\frac{I}{r} \qquad(9)\]

где r – расстояние от оси проводника до точки, в которой рассматривается поле.

В средней части соленоида магнитная индукция поля вычисляется при помощи формулы:

    \[B={\mu }_0\mu nI\ \left(10\right)\]

где n – количество витков соленоида на единицу длины; I – сила тока в витке.

Примеры решения задач по теме «Индукция магнитного поля»

ru.solverbook.com

Формула магнитной индукции, B

Формулы определяющие величину вектора магнитной индукции получают, используя выражение для силы Ампера, силы Лоренца и применяя понятие вращающего момента.

Формула величины вектора магнитной индукции

Формулой, которая определяет величину вектора магнитной индукции в конкретной точке магнитного поля можно считать следующее выражение:

    \[B=\frac{M_{max}}{p_m} \qquad(1)\]

где M_{max} – максимальный вращающий момент, действующий на рамку, которая обладает магнитным моментом p_m, равным единице, если нормаль к рамке перпендикулярна направлению поля.

При помощи силы Ампера величина вектора магнитной индукции задана как:

    \[B=\frac{1}{I}{\left(\frac{dF}{dl}\right)}_{max} \qquad(2)\]

где модуль \overline{B} равен пределу отношения величины силы (dF), с которой магнитное поле действует на бесконечно малый проводник с током, к силе тока (I) умноженной на длину этого проводника (dl), если длина проводника стремится к нулю. Как известно кроме величины вектор магнитной индукции имеет направление. В данном случае \overline{B} перпендикулярен к направлению силы dF и перпендикулярен направлению элемента проводника. Если рассматривать вращение из конца вектора магнитной индукции по кратчайшему расстоянию от направления силы к направлению тока, оно должно идти против часовой стрелки.

Используя силу Лоренца, получают формулу для магнитной индукции в виде:

    \[B=\frac{F_L}{qv\sin \alpha \ } } \qquad(3)\]

где F_L – модуль силы Лоренца; q – заряд частицы, движущейся со скоростью v в магнитном поле; \alpha – это угол между векторами \overline{v} и \overline{B}. Направления {\overline{F}}_L, векторов \overline{v} и \overline{B} связаны между собой правилом левой руки.

Закон Био-Савара-Лапласа

Данный закон предоставляет нам возможность вычислить вектор магнитной индукции (d\overline{B}) в любой точке магнитного поля, которое создается в вакууме элементарным проводником с током:

    \[d\overline{B}=\frac{{\mu }_0}{4\pi }\frac{I}{r^3}\left[d\overline{l}\overline{r}\right]\ \qquad(4)\]

где I – сила тока; d\overline{l} – вектор элементарный проводник по модулю он равен длине проводника, при этом его направление совпадает с направлением течения тока; \overline{r} – радиус-вектор, который проводят от элементарного проводника к точке, в которой находят поле; {\mu }_0=4\pi \cdot {10}^{-7}\frac{Гн}{м} – магнитная постоянная. Вектор d\overline{B} является перпендикулярным к плоскости, в которой расположены d\overline{l} и \overline{r}, конкретное направление вектора магнитной индукции определяют при помощи правила буравчика (правого винта).

Для однородного и изотропного магнетика, заполняющего пространство, вектор магнитной индукции в вакууме({\overline{B}}_0) и в веществе (\overline{B}), при одинаковых условиях, связывает формула:

    \[\overline{B}=\mu {\overline{B}}_0\ \qquad(5)\]

где \mu – относительная магнитная проницаемость вещества.

Частные случаи формул для вычисления величины вектора магнитной индукции

Формула для вычисления модуля вектора индукции в центре кругового витка с током (I):

    \[B=\frac{{\mu }_0\mu }{2}\frac{I}{R} \qquad(6)\]

где R – радиус витка.

Модуль вектора магнитной индукции поля, которое создает бесконечно длинный прямой проводник с током:

    \[B=\frac{{\mu }_0\mu }{2\pi }\frac{I}{r} \qquad(7)\]

где r – расстояние от оси проводника до точки, в которой рассматривается поле.

В средней части соленоида магнитная индукция поля вычисляется при помощи формулы:

    \[B={\mu }_0\mu nI\ \qquad(8)\]

где n – количество витков соленоида на единицу длины; I – сила тока в витке.

Принцип суперпозиции

Магнитная индукция поля (\overline{B}), которое является наложением нескольких полей, находится как векторная сумма магнитных индукций отдельных полей ({\overline{B}}_i):

    \[\overline{B}=\sum^N_{i=1}{{\overline{B}}_i}\ \qquad(9)\]

Примеры решения задач по теме «Магнитная индукция»

ru.solverbook.com

Магнитная индукция, магнитный поток: определение, формулы, смысл

Магнитная индукция 1Магнитная индукция (обозначается символом В) – главная характеристика магнитного поля (векторная величина ), которая определяет силу воздействия на перемещающийся электрический заряд (ток) в магнитном поле, направленной в перпендикулярном направлении скорости движения.

Магнитная индукция определяется способностью влиять на объект с помощью магнитного поля. Эта способность проявляется при перемещении постоянного магнита в катушке, в результате чего в катушке индуцируется (возникает) ток, при этом магнитный поток в катушке также увеличивается.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

Если же металл попадает под действие переменного магнитного поля (из-за перемещения постоянного магнита внутри катушки — именно перемещения), то заряды начинают двигаться под действием этого магнитного поля.

 В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий магнитного поля.

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Формула магнитной индукцииМагнитная индукция 3

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.

Магнитная индукция. Определение и описание явления.

Магнитная индукция 2

Магнитный поток

Магнитный поток это скалярная величина, которая характеризует действие магнитной индукции на некий металлический контур. 

Магнитная индукция определяется числом силовых линий, проходящих через 1 см2 сечения металла. 

Магнитометры, используемые для ее измерения, называют теслометрами.

Единицей измерения магнитной индукции в системе СИ является Тесла (Тл).

После прекращения движение электронов в катушке сердечник, если он выполнен из мягкого железа, теряет магнитные качества. Если он изготовлен из стали, то он имеет способность некоторое время сохранять свои магнитные свойства.

Магнитная индукция. Определение и описание явления.

pue8.ru

Индукция магнитного поля

Все магниты разделяются между собой по силе своего воздействия. Таким образом, существует определенная величина, которая характеризует степень проявления силы того или иного магнита. Если быть более точными, то данная сила создается не самими магнитами, а их магнитными полями. Само магнитное поле зависит от векторной величины, которая известна, как индукция магнитного поля или просто магнитная индукция.

Формула

Для определения величины электромагнитной индукции используется формула B=F/(I*l), где магнитная индукция В, представляющая собой модуль вектора, определяется, как отношение модуля силы F, воздействующей на проводник с током, расположенным перпендикулярно с магнитными линиями, к значению силы тока I, имеющейся в проводнике и длине l самого проводника.

Зависимость магнитной индукции

На электромагнитную индукцию абсолютно не влияют, ни сила тока, ни длина проводника. Она находится в прямой зависимости и связи, только с магнитным полем. Таким образом, при уменьшении силы тока в проводнике, без изменения каких-либо других показателей, происходит уменьшение не индукции, прямо пропорционально связанной с силой тока, а той силы, с которой магнитное поле воздействует на проводник. При этом, значение самой магнитной индукции остается постоянным. Благодаря этим качествам, электромагнитная индукция выступает в роли количественной характеристики магнитного поля.

Измерение магнитной индукции производится в теслах, по формуле: 1 Тл=1 Н/(А*м). Физическую зависимость этой величины от различных факторов, можно определить в ходе проведения несложного эксперимента. Необходимо взять весы, где на одной стороне прикрепляется проводник, а на другой стороне расположены гири. Проводник находится в постоянном электромагнитном поле, при этом, его масса и вес гирь имеют одинаковое значение.

После уравновешивания весов, по проводнику пропускается электрический ток. Вокруг него происходит образование магнитного поля, определяемое в соответствии с правилом правой руки. В результате, наблюдается взаимодействие полей постоянного магнита и самого проводника. При этом, равновесие весов будет нарушено. Из-за протекания тока, сторона весов с проводником начинает опускаться. Для того, чтобы вычислить силу воздействия поля на этот проводник, нужно уравновесить его с помощью гирь. Сила их тяжести рассчитывается по специальной формуле, и будет равняться силе магнитного поля, воздействующей на проводник с током. Соотношение этой силы с длиной проводника и силой тока является постоянной величиной. Данная количественная характеристика находится в зависимости только от поля и представляет собой ни что иное, как модуль вектора магнитной индукции.

Линии магнитной индукции

Сама индукция магнитного поля характеризуется определенным направлением, представляющим собой линии, отображаемые графически. Эти линии, также получили название магнитных линий, или линий магнитных полей. Так же, как и магнитная индукция, ее линии имеют собственное определение. Они представляют собой линии, к которым проведены касательные во всех точках поля. Эти касательные и вектор магнитной индукции совпадают между собой.

Однородное магнитное поле отличается параллельными линиями магнитной индукции, совпадающими с направлением вектора во всех точках.

Если же магнитное поле является неоднородным, произойдет изменение вектора электромагнитной индукции в каждой пространственной точке, расположенной вокруг проводника. Касательные, проведенные к этому вектору, приведут к созданию концентрических окружностей вокруг проводника. Таким образом, в данном случае, линии индукции будут выглядеть в виде расширяющихся окружностей.

electric-220.ru

Индукция магнитного поля, теория и примеры

Индукция магнитного поля (магнитная индукция, вектор магнитной индукции) (\overline{B}) – это одна из основных физических векторных величины, которые характеризуют магнитное поле. Это силовая характеристика данного поля, отображающая действие поля на заряженную частицу в рассматриваемой точке пространства.

Определения индукции магнитного поля

Индукцию магнитного поля можно определить разными способами: понятие вращающего момента рамки с магнитным моментом, используя закон Ампера, силу Лоренца.

1) Модуль вектора индукции магнитного поля в конкретной точке однородного магнитного поля определен максимальным вращающим моментом (M_{max}), который действует на рамку, обладающую магнитным моментом (p_m), равным единице,, если нормаль к рамке ориентирована перпендикулярно направлению поля:

    \[B=\frac{M_{max}}{p_m} \qquad (1) \]

2) Величина индукции магнитного поля равна пределу отношения силы (dF), с которой действует магнитное поле на элементарный проводник с током, к силе тока (I) умноженной на длину этого проводника (dl), при длине проводника стремящейся к нулю. При этом проводник имеет такое расположение в магнитном поле, что данный предел имеет максимальное значение:

    \[B=\frac{1}{I}{\left(\frac{dF}{dl}\right)}_{max} \qquad (2) \]

\overline{B} направлен перпендикулярно элементу dl, и направлению силы Ампера. Если смотреть из конца \overline{B}, то вращение по кратчайшему расстоянию от направления силы Ампера к направлению силы тока в проводнике должно происходить против часовой стрелки.

3) Исходя из определения силы Лоренца (F_L), величину вектора магнитной индукции найдем как:

    \[B=\frac{F_L}{qv{\sin \alpha}} \qquad (3) \]

где q – заряд частицы, движущейся в магнитном поле; v – скорость движения частицы; \alpha – угол между направлением скорости частицы и вектором поля. Направления силы Лоренца, векторов скорости и магнитной индукции связаны между собой правилом левой руки. Если левую руку расположить так, что в нее входит \overline{B}, четыре вытянутых пальца направить по \overline{v}, то отогнутый на 90o большой палец укажет направление силы, с которой магнитное поле действует на положительно заряженную частицу.

Для однородного изотропного магнетика, заполняющего пространство, вектор магнитной в веществе (\overline{B}) и вектор индукции в вакууме({\overline{B}}_0), при одинаковых условиях, связаны формулой:

    \[\overline{B}=\mu {\overline{B}}_0 \qquad (4) \]

где \mu – относительная магнитная проницаемость вещества.

Суперпозиция магнитных полей

Для магнитного поля справедлив принцип суперпозиции: если присутствует магнитных, то индукция результирующего поля равна векторной сумме отдельных индукций:

    \[\overline{B}=\sum^N_{i=1}{{\overline{B}}_i\left(5\right).}\]

Примеры решения задач

ru.solverbook.com

Формула индукции

В этом разделе мы рассмотрим только три вида индукции: электромагнитную индукцию, индукцию магнитного поля и электрическую индукцию и основные формулы, при помощи которых данные виды индукции вычисляют.

Формула индукции электрического поля

Электрическая индукция (или вектор электрического смещения (\overline{D})) – это одна из основных векторных характеристик электрического поля. Формулой определяющей вектор электрической индукции является выражение:

    \[\overline{D}={\varepsilon }_0\overline{E}+\overline{P} \qquad(1)\]

где \overline{E} – вектор напряженности электрического поля; \overline{P} – вектор поляризации; {\varepsilon }_0 – электрическая постоянная.

Для изотропного вещества индукция электрического поля связана с напряженность это поля как:

    \[\overline{D}={\varepsilon }_0\varepsilon \overline{E} \qquad(2)\]

где \varepsilon – диэлектрическая проницаемость вещества.

Самой распространённой формулой, при помощи которой находят величину вектора индукции электростатического поля, является теорема Остроградского – Гаусса:

    \[\Psi_D=\oint_S{\overline{D}d\overline{S}=\oint_S{D_ndS}=Q} \qquad (3)\]

Поток (\Psi_D) вектора электростатической индукции (\overline{D}) в диэлектрике через произвольную замкнутую поверхность равен сумме свободных зарядов, которые находятся внутри рассматриваемой поверхности. В данной форме теорема Гаусса выполняется и для однородной и изотропной среды, так и для неоднородной анизотропной.

Формула вектора индукции магнитного поля

Модуль вектора \overline{B} равен частному от деления максимальной силы Ампера (F_{max}), с которой магнитное поле оказывает воздействие на отрезок проводника с током (I) к произведению силы тока на длину проводника (\Delta l):

    \[B=\frac{F_{max}}{I\Delta l} \qquad(4)\]

На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца. По величине ее воздействия на заряд также можно установить модуль вектора \overline{B}:

    \[B=\frac{F_L}{qv\sin \alpha \ } } \qquad(5)\]

где F_L – модуль силы Лоренца; q – заряд частицы, движущейся со скоростью v в магнитном поле; \alpha – это угол между векторами \overline{v} и \overline{B}. Направления {\overline{F}}_L, векторов \overline{v} и \overline{B} связаны между собой правилом левой руки.

Формулой, которая определяет величину вектора магнитной индукции в конкретной точке магнитного поля можно считать следующее выражение:

    \[B=\frac{M_{max}}{p_m} \qquad(6)\]

где M_{max} – максимальный вращающий момент, действующий на рамку, которая обладает магнитным моментом p_m, равным единице, если нормаль к рамке перпендикулярна направлению поля.

Основными законами, которыми пользуются чаще всего для расчета магнитных полей, являются: закон Био-Савара-Лапласа и теорема о циркуляции вектора магнитной индукции.

Формула электромагнитной индукции

Если проводник помещен в переменное магнитное поле, то в нем возникает электродвижущая сила – это сущность явления электромагнитной индукции.

Основной закон электромагнитной индукции состоит в следующем: ЭДС электромагнитной индукции (\varepsilon_i) в контуре, помещенном в переменное магнитное поле, равна по величине скорости изменения магнитного потока (\Psi_m), который проходит через поверхность, которую ограничивает рассматриваемый контур. При этом знаки ЭДС и скорости изменения магнитного потока противоположны.

В системе международных единиц (СИ) закон электромагнитной индукции записывают так:

    \[\varepsilon_i=-\frac{d\Psi_m}{dt} \qquad(7)\]

где \frac{d\Psi_m}{dt} – скорость изменения магнитного потока сквозь площадь, которую ограничивает контур. (Часто индекс у магнитного потока опускают и обозначают его Ф). Когда вычисляют ЭДС индукции и магнитный поток, учитывают то, что направление нормали к плоскости контура (\overline{n}) и направление его обода связаны. Вектор \overline{n} должен быть направлен так, чтобы из его конца обход контура проходил против часовой стрелки.

Примеры решения задач по теме «Индукция»

ru.solverbook.com

Формула вектора магнитной индукции

Направление вектора магнитной индукции

Направлением вектора магнитной индукции считают направление, которое показывает северный полюс магнитной стрелки, которая может свободно устанавливаться в магнитном поле. Аналогичное направление имеет положительная нормаль к замкнутому контуру, по которому течет ток. Положительная нормаль имеет направление, совпадающее с направлением перемещения правого винта (буравчика), если его вращают по направлению тока в контуре. При использовании рамки с током или магнитной стрелки можно определить направление вектора \overline{B} в любой точке магнитного поля.

Если магнитное поле создает прямой проводник с током, то магнитная стрелка в любой точке этого поля устанавливается по касательной к окружности, плоскость которой перпендикулярна проводнику, центр находится на оси провода. Направление вектора \overline{B} определяют при помощи правила правого винта (правила буравчика), которое говорит о том, что если поступательное перемещение буравчика совпадает с направлением течения тока в проводнике, то вращение головки винта совпадает с направлением вектора магнитной индукции.

Величина (модуль) вектора магнитной индукции

Магнитное поле оказывать действие на каждый участок проводника с током. Используя силу, действующую на проводник с током (силу Ампера), определяют величину вектора магнитной индукции магнитного поля. Так, модуль вектора \overline{B} равен частному от деления максимальной силы Ампера (F_{max}), с которой магнитное поле оказывает воздействие на отрезок проводника с током (I) к произведению силы тока на длину проводника (\Delta l):

    \[B=\frac{F_{max}}{I\Delta l} \qquad(1)\]

На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца. По величине ее воздействия на заряд также можно установить модуль вектора \overline{B}:

    \[B=\frac{F_L}{qv{\sin \alpha \ } } \qquad(2)\]

где F_L – модуль силы Лоренца; q – заряд частицы, движущейся со скоростью v в магнитном поле; \alpha – это угол между векторами \overline{v} и \overline{B}. Направления {\overline{F}}_L, векторов \overline{v} и \overline{B} связаны между собой правилом левой руки.

Формулой, которая определяет величину вектора магнитной индукции в конкретной точке магнитного поля можно считать следующее выражение:

    \[B=\frac{M_{max}}{p_m} \qquad(3)\]

где M_{max} – максимальный вращающий момент, действующий на рамку, которая обладает магнитным моментом p_m, равным единице, если нормаль к рамке перпендикулярна направлению поля.

Основные формулы, которые служат для вычисления вектора магнитной индукции

Закон Био-Савара-Лапласа

Данный закон предоставляет нам возможность вычислить вектор магнитной индукции (d\overline{B}) в любой точке магнитного поля, которое создается в вакууме элементарным проводником с током:

    \[d\overline{B}=\frac{{\mu }_0}{4\pi }\frac{I}{r^3}\left[d\overline{l}\overline{r}\right]\ \qquad(4)\]

где I – сила тока; d\overline{l} – вектор элементарный проводник по модулю он равен длине проводника, при этом его направление совпадает с направлением течения тока; \overline{r} – радиус-вектор, который проводят от элементарного проводника к точке, в которой находят поле; {\mu }_0=4\pi \cdot {10}^{-7}\frac{Gn}{m} – магнитная постоянная. Вектор d\overline{B} является перпендикулярным к плоскости, в которой расположены d\overline{l} и \overline{r}, конкретное направление вектора магнитной индукции определяют при помощи правила буравчика (правого винта).

Для однородного и изотропного магнетика, заполняющего пространство, вектор магнитной индукции в вакууме({\overline{B}}_0) и в веществе (\overline{B}), при одинаковых условиях, связывает формула:

    \[\overline{B}=\mu {\overline{B}}_0\ \qquad(5)\]

где \mu – относительная магнитная проницаемость вещества.

Принцип суперпозиции

Магнитная индукция поля (\overline{B}), которое является наложением нескольких полей, находится как векторная сумма магнитных индукций отдельных полей ({\overline{B}}_i):

    \[\overline{B}=\sum^N_{i=1}{{\overline{B}}_i}\ \qquad(6)\]

Теорема о циркуляции

В однородном и изотропном веществе циркуляция вектора индукции магнитного поля по любому контуру L равна:

    \[\oint_L{\overline{B}d\overline{l}=\mu {\mu }_0\sum^N_{k=1}{I_k}} \qquad (7)\]

где \sum^N_{k=1}{I_k} – сумма токов проводимости с учетом их знака, которые охвачены рассматриваемым контуром; \mu – магнитная проницаемость вещества. В том случае, если направление обхода контура связано с направлением течения тока при помощи правила правого винта, то ток считают положительным.

В случае непрерывного распределения тока по поверхности S силу тока вычисляют при помощи выражения:

    \[I=\int_S{\overline{j}d\overline{S}} \qquad (8)\]

где d\overline{S} равен по модулю площади элемента поверхности dS;\ \overline{j} – плотность тока.

Примеры частных случаев формул для нахождения вектора магнитной индукции см. раздел «Магнитная индукция формула»

Примеры решения задач по теме «Вектор магнитной индукции»

ru.solverbook.com


Каталог товаров
    .