Цифровая маркировка конденсаторов онлайн калькулятор: Калькулятор буквенно-цифровой маркировки конденсаторов

Содержание

Калькулятор емкости последовательного соединения конденсаторов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Калькулятор позволяет рассчитать емкость нескольких конденсаторов, соединенных последовательно.

Пример. Рассчитать эквивалентную емкость двух соединенных последовательно конденсаторов 10 мкФ и 5 мкФ.

Входные данные

C1 фарад (Ф)микрофарад (мкФ)нанофарад (нФ)пикофарад (пФ)

C2 микрофарад (мкФ)

Добавить конденсатор

Поделиться

Поделиться ссылкой на этот калькулятор, включая входные параметры

Twitter Facebook Google+ VK

Закрыть

Выходные данные

Эквивалентная емкость

C микрофарад (мкФ)

Введите значения емкости в поля C1 и C 2, добавьте при необходимости новые поля, выберите единицы емкости (одинаковые для всех полей ввода) в фарадах (Ф), миллифарадах (мФ), микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ) и нажмите на кнопку Рассчитать.

1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.

В соответствии со вторым правилом Кирхгофа, падения напряжения V₁, V₂ and V₃ на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциалов V равна их сумме:

По определению емкости и с учетом того, что заряд Q группы последовательно соединенных конденсаторов является общим для всех конденсаторов, эквивалентная емкость Ceq всех трех конденсаторов, соединенных последовательно, определяется как

или

Для группы из n соединенных последовательно конденсаторов эквивалентная емкость Ceq равна величине, обратной сумме величин, обратных емкостям отдельных конденсаторов:

или

Эта формула для Ceq и используется для расчетов в этом калькуляторе. Например, общая емкость соединенных последовательно трех конденсаторов емкостью 10, 15 and 20 мкФ будет равна 4,62 мкФ:

Если конденсаторов только два, то их общая емкость определяется по формуле

или

Если имеется n соединенных последовательно конденсаторов с емкостью C, их эквивалентная емкость равна

Отметим, что для расчета общей емкости нескольких соединенных последовательно конденсаторов используется та же формула, что и для расчета общего сопротивления параллельно соединенных резисторов.

Отметим также, что общая емкость группы из любого количества последовательно соединенных конденсаторов всегда будет меньше, чем емкость самого маленького конденсатора, а добавление конденсаторов в группу всегда приводит к уменьшению емкости.

Конденсаторы на печатной плате

Отдельного упоминания заслуживает падение напряжения на каждом конденсаторе в группе последовательно соединенных конденсаторов. Если все конденсаторы в группе имеют одинаковую номинальную емкость, падение напряжения на них скорее всего будет разным, так как конденсаторы в реальности будут иметь разную емкость и разный ток утечки. На конденсаторе с наименьшей емкостью будет наибольшее падение напряжения и, таким образом, он будет самым слабым звеном этой цепи.

Выравнивающие резисторы уменьшают разброс напряжений на отдельных конденсаторах

Для получения более равномерного распределения напряжений параллельно конденсаторам включают выравнивающие резисторы. Эти резисторы работают как делители напряжения, уменьшающие разброс напряжений на отдельных конденсаторах. Но даже с этими резисторами все равно для последовательного включения следует выбирать конденсаторы с большим запасом по рабочему напряжению.

Если несколько конденсаторов соединены параллельно, разность потенциалов V на группе конденсаторов равна разности потенциалов соединительных проводов группы. Общий заряд Q разделяется между конденсаторами и если их емкости различны, то заряды на отдельных конденсаторах Q₁, Q₂ and Q₃ тоже будут различными. Общий заряд определяется как

Конденсаторы, соединенные параллельно

По определению емкости, эквивалентная емкость группы конденсаторов равна

отсюда

или

Для группы n включенных параллельно конденсаторов

То есть, если несколько конденсаторов включены параллельно, их эквивалентная емкость определяется путем сложения емкостей всех конденсаторов в группе.

Возможно, вы заметили, что конденсаторы ведут себя противоположно резисторам: если резисторы соединены последовательно, их общее сопротивление всегда будет выше сопротивлений отдельных резисторов, а в случае конденсаторов всё происходит с точностью до наоборот.

Конденсаторы на печатной плате

Автор статьи: Анатолий Золотков

Перевод емкости конденсаторов онлайн

При подключении асинхронного трехфазного электродвигателя на В в однофазную сеть на В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи. На картинке внизу статьи вы увидите обе эти схемы подключения. Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Конденсатор используется неполярный, на напряжение не менее В.




Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Кодовая, цифровая маркировка конденсаторов
  • Конвертер величин
  • Емкость конденсатора: единица измерения
  • Конденсатор в цепи постоянного тока
  • Конденсатор в цепи постоянного тока
  • Онлайн расчет энергии в конденсаторе

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Подбор емкости конденсатора к асинхронному двигателю.

Кодовая, цифровая маркировка конденсаторов



Конденсатор — это компонент электрической цепи, который состоит из двух проводящих обкладок, разделенных слоем диэлектрика. Обычно из них выходит два вывода для включения в электрическую цепь. Особенностью конденсатора является его возможность накапливать энергию, за счет удерживания носителей зарядов в электрическом поле.

Ёмкость конденсатора, единица измерения которой микрофарады, определяет количество запасаемой энергии, а её единица измерения в любом виде — Джоуль.

Интересно то, что формула для расчёта подобна формуле вычисления кинетической энергии:. То есть в вычислениях участвует напряжение и ёмкость. Но вычисление накопленной энергии используется также часто, как определение времени заряда конденсатора.

Это особенно важно при расчете времени коммутации полупроводниковых ключей в электронике, или времени протекания переходных процессов. Такие возможности даёт наш онлайн калькулятор для расчета энергии в конденсаторе:. Для этого в интерфейс нужно внести емкость, напряжение которое к нему прикладывают и сопротивление, через которое происходит заряд. Расчёты и практика показывает, что время заряда не зависит от приложенного напряжения, оно связано с величиной сопротивления цепи.

Даже если нет в схеме резисторов и зарядка происходит от источника питания — ёмкость не зарядится мгновенно, в любом случае есть переходное сопротивление контактов , проводников, источника питания.

То есть, чем больше сопротивление или ёмкость, тем дольше происходит зарядка. Ваш e-mail не будет опубликован. Вы здесь: Главная Калькуляторы. Автор: Александр Мясоедов. Онлайн расчет энергии в конденсаторе. Опубликовано: Добавить комментарий Отменить ответ Ваш e-mail не будет опубликован. Другие статьи по теме Калькулятор маркировки SMD-резисторов.

Конвертер величин

Раздел недели: Символы и обозначения оборудования на чертежах и схемах Техническая информация тут. Перевод единиц измерения величин Таблицы числовых значений Алфавиты, номиналы, единицы тут Математический справочник Физический справочник Химический справочник Материалы Рабочие среды Оборудование Инженерное ремесло Инженерные системы Технологии и чертежи Личная жизнь инженеров Калькуляторы. Поставщики оборудования. Полезные ссылки.

Основной единицей измерения емкости является фарад (Ф). Один фарад – это огромное значение для обычной цепи, поэтому бытовые конденсаторы.

Емкость конденсатора: единица измерения

Калькулятор перевода единиц измерения физических величин. Единицы измерения электроемкости. Калькулятор справочный портал. Избранные сервисы. Кликните, чтобы добавить в избранные сервисы. Миллифарад англ. Перевод единиц измерения. Копировать ссылку.

Конденсатор в цепи постоянного тока

Random converter. Знаете ли вы, что в Древнем Риме существовал налог на человеческую мочу? Всего один щелчок — и вы узнаете почему! Конденсаторы — устройства для накопления заряда в электронном оборудовании. Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:.

В этой статье: Маркировка больших конденсаторов Интерпретация маркировки конденсаторов 23 Источники.

Конденсатор в цепи постоянного тока

Для проводника или для системе проводников, называемая конденсатор ёмкость определяется как отношение величины заряда проводника к потенциалу проводника. Ёмкость обозначается как C. Введите число Фарад F , которое вы хотите преобразовать в текстовое поле, чтобы увидеть результаты в таблице. Кулон на вольт. Здесь Вы можете предложить переводы и исправления ошибок в правописании на вашем родном языке.

Онлайн расчет энергии в конденсаторе

Ёмкость конденсаторов может обозначаться в микрофарадах uF , нанофарадах nF , пикофарадах pF , либо кодом. Данная таблица поможет вам разобраться в одинаковых значениях при различных обозначениях и подобрать аналоги для замены. Магазин Dalincom предлагает большой ассортимент конденсаторов — керамические, электролитические, металлопленочные, пусковые, и др, которые вы можете купить в разделе Конденсаторы. Так-же обратите внимание на наше предложение по оптовым поставкам электролитических конденсаторов. Корзина Вход в аккаунт Пользовательское соглашение. FFC шлейфы и разъемы. Модули для мониторов. Различные платы.

Расчет энергии в конденсаторе сводится к тому, чтобы ввести известные напряжение, сопротивление и емкость. Онлайн-калькулятор.

Категории измерений: Частота Эквивалентная доза Экспозиционная доза Электрическая эластичность Электрический дипольный момент Электрический заряд Электрический ток Электрическое напряжение Электрическое сопротивление Электрической проводимости Энергия Яркость Ёмкость. Прямая ссылка на этот калькулятор: Преобразовать пикофарад в фарад: Введите величину для перевода. После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны.

Конденсатор представляет собой электрическое устройство, которое обладает возможностью накапливать заряд, состоит из обкладок и слоя диэлектрика между ними. Одной из важнейших характеристик прибора является ёмкость. В Международной системе СИ за единицу измерения ёмкости конденсатора принимают фарад:. Международное обозначение — F.

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов.

Следующие калькуляторы делают расчеты параметров разряда и заряда конденсаторов от источника постоянной энергии через сопротивление. Закон Ома гласит, что напряжение на конденсаторе и резисторе будет равно ЭДС источника, таким образом получаем следующую формулу:. Но сила тока и заряд также зависят и от временного интервала. Ведь сначала на нашем конденсаторе нет заряда, а сила тока близится к максимальной, мощность также близиться к максимуму, которая рассеивается на резисторе:. Главная Онлайн калькуляторы Физика Конденсатор в цепи постоянного тока. Конденсатор в цепи постоянного тока.

Следующие калькуляторы делают расчеты параметров разряда и заряда конденсаторов от источника постоянной энергии через сопротивление. Закон Ома гласит, что напряжение на конденсаторе и резисторе будет равно ЭДС источника, таким образом получаем следующую формулу:. Но сила тока и заряд также зависят и от временного интервала. Ведь сначала на нашем конденсаторе нет заряда, а сила тока близится к максимальной, мощность также близиться к максимуму, которая рассеивается на резисторе:.



Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер массы Сухой объем и общие измерения для приготовления пищиКонвертер площадиКонвертер объема и общего измерения для приготовления пищиПреобразователь температурыКонвертер давления, напряжения, модуля ЮнгаКонвертер энергии и работыПреобразователь силыПреобразователь силыПреобразователь времениПреобразователь линейной скорости и скоростиПреобразователь углаЭффективность топлива , расхода топлива и экономии топливаКонвертер чиселКонвертер единиц хранения информации и данныхКурсы обмена валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиПреобразователь угловой скорости и частоты вращенияПреобразователь ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаПреобразователь момента инерцииМомент силыИмпульсПреобразователь крутящего моментаУдельная энергия, теплота сгорания ( на массу) КонвертерУдельная энергия, Теплота сгорания (на объем) КонвертерТемпература Конвертер межфазных интерваловКонвертер коэффициента теплового расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность теплоты, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расхода Конвертер массового потокаКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкости Преобразователь натяженияПреобразователь проницаемости, проницаемости, паропроницаемостиПреобразователь коэффициента пропускания паров влагиПреобразователь уровня звукаПреобразователь чувствительности микрофонаПреобразователь уровня звукового давления (SPL)Преобразователь уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиПреобразователь силы светаПреобразователь освещенностиПреобразователь разрешения цифрового изображенияПреобразователь частоты и длины волныПреобразователь оптической мощности (диоптрий) в фокусное расстояниеОптическая мощность ( Диоптрия) в Увеличение (X) Преобразовать erКонвертер электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь плотности поверхностного зарядаКонвертер объемной плотности зарядаПреобразователь электрического токаПреобразователь линейной плотности токаПреобразователь поверхностной плотности токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимостиПреобразователь выравниванияПреобразователь емкостиПреобразователь индуктивности, дБмГаз GaurверсияConverter of American Wirege Ватт и другие единицы измерения. Преобразователь магнитодвижущей силы. Преобразователь напряженности магнитного поля. Преобразователь радиоактивного распадаПреобразователь радиационного воздействияИзлучение. Конвертер поглощенной дозыКонвертер метрических префиксовКонвертер передачи данныхКонвертер типографских и цифровых изображенийКонвертер единиц измерения объема пиломатериаловКалькулятор молярной массыПериодическая таблица

Экран датчика этой планшеты производится с использованием прогнозируемой технологии емкости

Обзор

Использование для емкости

Конденсаторы — электронные компоненты для хранения электрических зарядов

Markings

Supersccitor Markings

. Емкостные сенсорные экраны

Накладные емкостные сенсорные экраны

Проекционно-емкостные сенсорные экраны

Обзор

Измерение емкости конденсатора номинальной емкостью 10 мкФ с помощью мультиметра-осциллографа.

Емкость – это физическая величина, отражающая способность проводника накапливать заряд. Он находится делением величины электрического заряда на разность потенциалов между проводниками:

C = Q/∆φ

Здесь Q – электрический заряд, который измеряется в кулонах (Кл), а ∆φ это разность потенциалов, которая измеряется в вольтах (В).

Емкость измеряется в фарадах (Ф) в системе СИ. Эта единица названа в честь британского физика Майкла Фарадея.

Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника. Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в один фарад, а емкость металлического шарика с радиусом Земли будет около 710 микрофарад (мкФ).

Поскольку одна фарад является такой большой величиной, используются более мелкие единицы измерения, такие как микрофарад (мкФ), равный одной миллионной фарады, нанофарад (нФ), равный одной миллиардной фарады, и пикофарад (пФ) , что составляет одну триллионную часть фарада.

В расширенной СГС для электромагнитных единиц основная единица измерения емкости описывается в сантиметрах (см). Один сантиметр электромагнитной емкости представляет собой емкость шарика в вакууме радиусом 1 см. Система СГС означает систему сантиметр-грамм-секунда — в ней используются сантиметры, граммы и секунды в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант в 1, что позволяет упростить некоторые формулы и расчеты.

Использование емкости

Конденсаторы — электронные компоненты для хранения электрических зарядов

Электронные символы

Емкость — это величина, относящаяся не только к электрическим проводникам, но и к конденсаторам (первоначально называемым конденсаторами). Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Простейший вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condensare — уплотнять) — двухслойный электронный компонент, используемый для накопления электрического заряда и энергии электромагнитного поля. Простейший конденсатор состоит из двух электрических проводников с диэлектриком между ними. Известно, что любители радиоэлектроники изготавливают подстроечные конденсаторы для своих цепей с эмалированными проводами разного диаметра. Более тонкая проволока наматывается на более толстую. Цепь RLC настраивается на нужную частоту изменением количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

Немного истории

Ученые смогли изготовить конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук изготовили первое конденсаторное устройство, получившее название «лейденская банка». Стенки банки служили диэлектриком, а вода в банке и рука экспериментатора — пластинами-проводниками. Такая банка могла накапливать заряд порядка одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими банками. В них банка заряжалась статическим электричеством с помощью трения. Затем участник эксперимента прикасался к банке и испытывал удар током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них коснулся кувшина. В этот момент все 700 человек в ужасе воскликнули, почувствовав толчок.

«Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мусшенбруком во время его путешествий по Европе и познакомился с его творчеством. Когда Петр Великий учредил Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.

Со временем конденсаторы совершенствовались, их размер уменьшался по мере увеличения емкости. Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.

Существует несколько типов конденсаторов, которые отличаются постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

Примеры конденсаторов

Электролитические конденсаторы в блоке питания.

В настоящее время производится множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.

Обычно емкость конденсаторов колеблется от нескольких пикофарад до нескольких сотен микрофарад. Исключение составляют суперконденсаторы, поскольку их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип работы электрохимических элементов. Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, а иногда они могут заменить гальванические элементы в качестве источника электрического тока.

Второй по важности характеристикой конденсатора является его номинальное напряжение . Превышение этого значения может привести к непригодности конденсатора. Вот почему при построении цепей принято использовать конденсаторы с номинальным напряжением, удвоенным по сравнению с напряжением, приложенным к ним в цепи. Таким образом, даже если напряжение в цепи немного увеличится выше нормы, конденсатор должен быть в порядке, пока увеличение не станет вдвое больше нормы.

Конденсаторы могут быть соединены вместе для создания батарей для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. Параллельное соединение конденсаторов приводит к удвоению общей емкости при неизменном номинальном напряжении.

Третьим наиболее важным свойством конденсаторов является их температурный коэффициент емкости . Он отражает зависимость между емкостью и температурой.

В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, не отвечающие высоким требованиям, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различными температурными коэффициентами емкости.

Маркировка конденсаторов

Подобно резисторам, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Конденсаторы малого размера маркируются тремя или четырьмя цифрами или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — удалить конденсатор из цепи. и провести измерения с помощью мультиметра.

Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и выполняет роль анода. Бумага, пропитанная электролитом, вместе с другой фольгой выполняет роль катода. Алюминиевая фольга травится для увеличения площади поверхности.

Предостережение: конденсаторы могут накапливать очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током крайне важно принять меры предосторожности перед проведением измерений. В частности, важно разряжать конденсаторы, замыкая их выводы проводом, изолированным из высокопрочного материала. В этой ситуации хорошо подошли бы обычные провода измерительного прибора.

Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость на данную единицу веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия. Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно следить за тем, чтобы такой конденсатор был добавлен в цепь правильно, в соответствии с его полярностью.

Полимерные конденсаторы: в этих типах конденсаторов в качестве второй пластины используется полупроводник или органический полимер, который проводит электричество вместо электролитической жидкости. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

3-секционный воздушный переменный конденсатор

Переменные конденсаторы: емкость этих конденсаторов можно изменять механически, регулируя электрическое напряжение или изменяя температуру.

Пленочные конденсаторы: 9 шт.0080 их емкость может составлять от 5 пФ до 100 мкФ.

Существуют и другие типы конденсаторов.

Суперконденсаторы

В наши дни суперконденсаторы становятся все более популярными. Суперконденсатор представляет собой гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году. Это был конденсатор с двойным электрическим слоем и использованием пористого материала, что позволило увеличить емкость из-за увеличенной площади поверхности. Этот подход теперь известен как двухслойная емкость. Электроды были угольными и пористыми. С тех пор конструкция постоянно совершенствовалась, а первые суперконденсаторы появились на рынке в начале 19 века.80-е годы.

Суперконденсаторы используются в электрических цепях в качестве источника электрической энергии. У них есть много преимуществ перед традиционными батареями, в том числе долговечность, малый вес и быстрая зарядка. Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Основным недостатком использования суперконденсаторов является то, что они производят меньшее количество удельной энергии (энергии на единицу веса), имеют низкое номинальное напряжение и большой саморазряд.

В гонках Формулы-1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, аккумуляторе или суперконденсаторах для дальнейшего использования.

Электромобиль A2B производства Университета Торонто. Общий вид

В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменное потребление электроэнергии, таких как MP3-плееры, фонарики, автоматические счетчики коммунальных услуг и другие устройства.

Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономность движения при проблемах с внешним питанием. Суперконденсаторы также используются в некоторых автобусах и электромобилях.

Электромобиль A2B производства Университета Торонто. Под капотом

В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа Университета Торонто совместно с компанией-дистрибьютором электродвигателей Toronto Electric разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным электрическим накопителем. Двигатели этого электромобиля питаются от аккумуляторов, вес которых составляет 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крышу автомобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами посредством сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные экраны, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений. Принципы работы емкостных экранов основаны на том факте, что большое тело проводит электричество. Это большое тело в нашем случае является человеческим телом.

Поверхностно-емкостные сенсорные экраны

Сенсорный экран для iPhone изготовлен с использованием технологии проекционной емкости.

Поверхностный емкостной сенсорный экран выполнен из стеклянной панели, покрытой прозрачным резистивным материалом. Как правило, этот материал очень прозрачен и имеет низкое поверхностное сопротивление. Часто используется сплав оксида индия и оксида олова. Электроды в углах экрана подают слабое колебательное напряжение на резистивный материал. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта протечка фиксируется в четырех углах датчиками и информация отправляется на контроллер, который определяет координаты касания.

Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения так часто, как один раз в секунду, на срок до 6,5 лет. Это соответствует примерно 200 миллионам касаний. Эти экраны имеют высокий, до 90%, коэффициент прозрачности. Из-за своих преимуществ емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года. действовать как изолятор. Тачскрин чувствителен к воздействию элементов, поэтому если он расположен на внешней панели устройства, то используется только в устройствах, защищающих экран от воздействия.

Проекционно-емкостные сенсорные экраны

Помимо поверхностных емкостных экранов существуют также проекционно-емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновение, даже если пользователь носит тонкие перчатки.

Проекционно-емкостные сенсорные экраны также обладают высокой прозрачностью, до 90%. Они прочны и долговечны, что делает их популярными не только в персональных электронных устройствах, но и в устройствах, предназначенных для общественного пользования, таких как торговые автоматы, электронные платежные системы и другие.

Авторы этой статьи: Сергей Акишкин, Татьяна Кондратьева

Вам трудно перевести единицу измерения на другой язык? Помощь доступна! Разместите свой вопрос в TCTerms и вы получите ответ от опытных технических переводчиков в считанные минуты.

Как рассчитать подходящее значение для шумоподавляющего конденсатора?

Задавать вопрос

спросил

Изменено
6 лет, 8 месяцев назад

Просмотрено
5к раз

\$\начало группы\$

Я все еще разбираюсь в аналоговой электронике с моим проектом генератора сигналов. У него есть источник питания 9 В, который я разделил на шины +/- 4,5 В с виртуальной землей операционного усилителя (предмет предыдущего вопроса). Сторона +4,5 В питает ATmega328P, который генерирует 8-битный цифровой сигнал на контактах D0-D7. Эти линии проходят через сеть резисторов R2R для генерации аналогового сигнала в грубом диапазоне 0–4 В. Затем я использую отрицательную шину питания и операционный усилитель, чтобы центрировать сигнал на виртуальной земле 0 В.

Итак, это работает, но сигнал чертовски зашумлен. Я ожидал этого, но не настолько плохо. Это не шум макетной платы, потому что он припаян к реальной плате-прототипу. На положительной и отрицательной шинах относительно мало шума, поэтому я думаю, что шум в основном находится в виртуальной земле. (Я знаю, что «земля» обычно не имеет шума, но это виртуальная земля, а «шум» относится к теоретической точке 0 В, расположенной по центру между линиями +4,5 В и -4,5 В.)

Я измерил шум между виртуальной землей и шиной +4,5 В и использовал функцию БПФ моего осциллографа, чтобы увидеть, есть ли доминирующие частоты. Я не так хорошо читаю это, но ничего не выделяется.

Я пробовал подключать конденсаторы разной емкости к виртуальной земле и шине +4,5 В. Конденсатор на 10 пФ ничего не дал. Но конденсатор на 10 мкФ значительно уменьшил шум!

Ступенчатость возникает из-за 8-битного разрешения сигнала и отсутствия конденсатора для его сглаживания. Я знаю частоту ступенек и частоту формы волны, и, зная сопротивление сети R2R (10 кОм), я смог рассчитать, что конденсатор емкостью 1 нФ отфильтрует ступенчатость, и это так.

Но чего я не понимаю, так это того, как рассчитать номинал конденсатора, необходимый для устранения виртуального шума земли? Я думаю, мне нужен фильтр нижних частот, который просто пропускает мою форму волны. Это фильтр RC, но что такое R? Использую ли я сопротивление моей нагрузки и использую ли его для расчета C?

  • конденсатор
  • шум
  • функциональный генератор

\$\конечная группа\$

4

\$\начало группы\$

R в R-C фильтре — это выходное сопротивление ОУ управляющего вашей виртуальной землей, на интересующих частотах — шумовые частоты.

На низких частотах он будет очень низким (выходной сигнал без обратной связи Z / коэффициент усиления без обратной связи, при условии, что операционный усилитель используется в качестве буфера с единичным усилением), но он будет расти по мере уменьшения усиления с частотой. Ссылка на техническое описание операционного усилителя для получения дополнительной помощи.

Глядя на ваш предыдущий вопрос, вам может просто понадобиться развязать вход операционного усилителя… в этом случае R просто (R1 и R2 параллельно), где R1 и R2 являются делителем напряжения на входе операционного усилителя.

\$\конечная группа\$

3

\$\начало группы\$

Виртуальная земля похожа на источник напряжения с определенным импедансом. Размер конденсатора будет зависеть от этого импеданса и нагрузки на вашу виртуальную землю.

Зашумленная форма волны выглядит так, как будто у вас есть какая-то коммутационная активность, которая загружает вашу виртуальную землю.