Здравствуйте, уважаемые читатели сайта sesaga.ru. Основной единицей измерения электрического напряжения является вольт. В зависимости от величины напряжение может измеряться в вольтах (В), киловольтах (1 кВ = 1000 В), милливольтах (1 мВ = 0,001 В), микровольтах (1 мкВ = 0,001мВ = 0,000001 В). На практике, чаще всего, приходится сталкиваться с вольтами и милливольтами. Существует два основных вида напряжений – постоянное и переменное. Источником постоянного напряжения служат батареи, аккумуляторы. Источником переменного напряжения может служить, например, напряжение в электрической сети квартиры или дома. Для измерения напряжения используют вольтметр. Вольтметры бывают стрелочные (аналоговые) и цифровые. На сегодняшний день стрелочные вольтметры уступают пальму первенства цифровым, так как вторые более удобны в эксплуатации. Если при измерении стрелочным вольтметром показания напряжения приходится вычислять по шкале, то у цифрового результат измерения сразу высвечивается на индикаторе. Да и по габаритам стрелочный прибор проигрывает цифровому. Но это не значит, что стрелочные приборы совсем не применяются. Есть некоторые процессы, которые цифровым прибором увидеть нельзя, поэтому стрелочные больше применяются на промышленных предприятиях, лабораториях, ремонтных мастерских и т.п. На электрических принципиальных схемах вольтметр обозначается кружком с заглавной латинской буквой «V» внутри. Рядом с условным обозначением вольтметра указывается его буквенное обозначение «PU» и порядковый номер в схеме. Например. Если вольтметров в схеме будет два, то около первого пишут «PU 1», а около второго «PU 2». При измерении постоянного напряжения на схеме указывается полярность подключения вольтметра, если же измеряется переменное напряжение, то полярность подключения не указывается. Напряжение измеряют между двумя точками схемы: в электронных схемах между плюсовым и минусовым полюсами, в электрических схемах между фазой и нулем. Вольтметр подключают параллельно источнику напряжения или параллельно участку цепи — резистору, лампе или другой нагрузке, на которой необходимо измерить напряжение: Рассмотрим подключение вольтметра: на верхней схеме напряжение измеряется на лампе HL1 и одновременно на источнике питания GB1. На нижней схеме напряжение измеряется на лампе HL1 и резисторе R1. Перед тем, как измерить напряжение, определяют его вид и приблизительную величину. Дело в том, что у вольтметров измерительная часть рассчитана только для одного вида напряжения, и от этого результаты измерений получаются разными. Вольтметр для измерения постоянного напряжения не видит переменное, а вольтметр для переменного напряжения наоборот, постоянное напряжение измерить сможет, но его показания будут не точными. Знать приблизительную величину измеряемого напряжения также необходимо, так как вольтметры работают в строго определенном диапазоне напряжений, и если ошибиться с выбором диапазона или величиной, прибор можно повредить. Например. Диапазон измерения вольтметра составляет 0…100 Вольт, значит, напряжение можно измерять только в этих пределах, так как при измерении напряжения выше 100 Вольт прибор выйдет из строя. Помимо приборов, измеряющих только один параметр (напряжение, ток, сопротивление, емкость, частота), существуют многофункциональные, в которых заложено измерение всех этих параметров в одном приборе. Такой прибор называется тестер (в основном это стрелочные измерительные приборы) или цифровой мультиметр. На тестере останавливаться не будем, это тема другой статьи, а сразу перейдем к цифровому мультиметру. В основной своей массе мультиметры могут измерять два вида напряжения в пределах 0…1000 Вольт. Для удобства измерения оба напряжения разделены на два сектора, а в секторах на поддиапазоны: у постоянного напряжения поддиапазонов пять, у переменного — два. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 200m, 2V, 20V, 200V, 600V. Например. На пределе «200V» измеряется напряжение, находящееся в диапазоне 0…200 Вольт. Теперь сам процесс измерения. Вначале определяемся с видом измеряемого напряжения (постоянное или переменное) и переводим переключатель в нужный сектор. Для примера возьмем пальчиковую батарейку, постоянное напряжение которой составляет 1,5 Вольта. Выбираем сектор постоянного напряжения, а в нем предел измерения «2V», диапазон измерения которого составляет 0…2 Вольта. Измерительные щупы должны быть вставлены в гнезда, как показано на нижнем рисунке: красный щуп принято называть плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;черный щуп называют минусовым или общим и вставляется он в гнездо, напротив которого стоит значок «СОМ». Относительно этого щупа производятся все измерения. Плюсовым щупом касаемся положительного полюса батарейки, а минусовым — отрицательного. Результат измерения 1,59 Вольта сразу виден на индикаторе мультиметра. Как видите, все очень просто. Теперь еще нюанс. Если на батарейке щупы поменять местами, то перед единицей появится знак минуса, сигнализирующий, что перепутана полярность подключения мультиметра. Знак минуса бывает очень удобен в процессе наладке электронных схем, когда на плате нужно определить плюсовую или минусовую шины. Ну а теперь рассмотрим вариант, когда величина напряжения неизвестна. В качестве источника напряжения оставим пальчиковую батарейку. Допустим, мы не знаем напряжение батарейки, и чтобы не сжечь прибор измерение начинаем с самого максимального предела «600V», что соответствует диапазону измерения 0…600 Вольт. Щупами мультиметра касаемся полюсов батарейки и на индикаторе видим результат измерения, равный «001». Эти цифры говорят о том, что напряжения нет или его величина слишком мала, или выбран слишком большой диапазон измерения. Опускаемся ниже. Переключатель переводим в положение «200V», что соответствует диапазону 0…200 Вольт, и щупами касаемся полюсов батарейки. На индикаторе появились показания равные «01,5». В принципе этих показаний уже достаточно, чтобы сказать, что напряжение пальчиковой батарейки составляет 1,5 Вольта. Однако нолик, стоящий впереди, предлагает снизиться еще на предел ниже и точнее измерить напряжение. Снижаемся на предел «20V», что соответствует диапазону 0…20 Вольт, и снова производим измерение. На индикаторе высветились показания «1,58». Теперь можно с точностью сказать, что напряжение пальчиковой батарейки составляет 1,58 Вольта. Вот таким образом, не зная величину напряжения, находят ее, постепенно снижаясь от высокого предела измерения к низкому. Также бывают ситуации, когда при измерении в левом углу индикатора высвечивается единица «1». Единица сигнализирует о том, что измеряемое напряжение или ток выше выбранного предела измерения. Например. Если на пределе «2V» измерить напряжение равное 3 Вольта, то на индикаторе появится единица, так как диапазон измерения этого предела всего 0…2 Вольта. Остался еще один предел «200m» с диапазоном измерения 0…200 mV. Этот предел предназначен для измерения совсем маленьких напряжений (милливольт), с которыми иногда приходится сталкиваться при наладке какой-нибудь радиолюбительской конструкции. Процесс измерения переменного напряжения ни чем не отличается от измерения постоянного. Отличие состоит лишь в том, что для переменного напряжения соблюдать полярность щупов не требуется. Сектор переменного напряжения разбит на два поддиапазона 200V и 600V.На пределе «200V» можно измерять, например, выходное напряжение вторичных обмоток понижающих трансформаторов, либо любое другое находящееся в диапазоне 0…200 Вольт. На пределе «600V» можно измерять напряжения 220 В, 380 В, 440 В или любое другое находящееся в диапазоне 0…600 Вольт. В качестве примера измерим напряжение домашней сети 220 Вольт.Переводим переключатель в положение «600V» и щупы мультиметра вставляем в розетку. На индикаторе сразу появился результат измерения 229 Вольт. Как видите, все очень просто. И еще один момент. Перед измерением высоких напряжений ВСЕГДА лишний раз убеждайтесь в исправности изоляции щупов и проводов вольтметра или мультиметра, а также дополнительно проверяйте выбранный предел измерения. И только после всех этих операций производите измерения. Этим Вы убережете себя и прибор от неожиданных сюрпризов. А если что осталось не понятно, то посмотрите видеоролик, где показано измерение напряжения и силы тока с помощью мультиметра. Как Вы убедились, измерить напряжение мультиметром не так уж и сложно. Главное понимать что, где и как. И в заключении хочу предложить Вам прочитать статью прибор для измерения силы тока, как измерить силу тока мультиметром.Удачи! sesaga.ru Электрическая энергия определяется тремя факторами — напряжением, силой тока и временем его протекания. Единицы измерения электрической энергии по размерности совпадают с единицами измерения тепловой и механической энергии. Все 36 [c.36] Количество использованного тепла q равно расходу мощности Р (в тех же единицах измерения). Как известно, мощность электрического тока связана с напряжением U и сопротивлением R зависимостью [c.367] Измерение э. д. с. Измерение э. д. с. элементов можно производить прн помощи компенсационной установки. Установка состоит из аккумулятора 1 — источника постоянного электрического тока напряжением 1,8 — 2,0 и нормального элемента Вестона 2, который представляет собой Н-образный стеклянный сосуд. В одном колене сосуда налита ртуть, на поверхность которой помещен слой иасты, состоящей из металлической ртути, сернокислой [c.219] Измерение температуры. Температуру измеряют термоэлектрическими приборами, принцип действия которых основан на свойстве спая двух разнородных металлов давать при нагревании электрическое напряжение (термоэлектричество). Две проволоки из разных металлов или различных сплавов спаивают концами вместе, свободные кон-ды соединяют с гальванометром— прибором, измеряющим малые напряжения электрического тока (рис. 32). [c.71] Сопротивление растеканию электрического тока для защитного заземления при питании от сетей с напряжением до 1000 В должно быть не более 4 Ом. Исправность защитного заземления станций катодной защиты проверяют контрольными измерениями и внешним осмотром при пуске станции в эксплуатацию. [c.156] Если взять два проводника из различных металлов (рис. Х1-3) и сварить их в точке 1, а к другим их концам 2 ж 3 присоединить с помощью проводов 4 милливольтметр 5 (прибор, служащий для измерения напряжения электрического тока), то при нагреве точки спая 1 в цепи возникнет электрический ток, вызываемый термоэлектродвижущей силой (т. э. д. с.). Величина т. э. д. с. зависит от материала проводников и от разности температур между точкой спая и неспаянными концами. Чем выше нагрев спая, тем сильнее отклонится стрелка милливольтметра, показывающая сразу искомую температуру, так как шкала его обычно градуируется в градусах Цельсия. - [c.411] Для испытания защитных свойств изоляционных покрытий на металлах в электролитах служит также ячейка, схема которой изображена на рис. 357. Оценку защитных свойств изоляционных покрытий и изменение этих свойств во времени проводят путем регистрации электрического тока, возникающего в паре между изолированным и неизолированным стальными образцами, при наложении на них напряжения Е. На изолированный образец накладывают или катодный, или анодный ток, а также испытывают образцы без воздействия на них тока, накладывая катодную поляризацию только в момент измерения. Появление тока в исследуемой паре дает время электролиту проникнуть к поверхности металла через поры и капилляры покрытия. Изменение тока во времени характеризует скорость разрушения изоляционного покрытия. [c.465] Приложенное напряжение ограничивается пробоем или искрением через слой частиц. Пробивная прочность слоев частиц обычно колеблется от нескольких тысяч В/м до 1000—20 000 кВ/м, причем последние являются более характерными. Так как ток через слой частиц обычно увеличивается несколько быстрее, чем прилагаемое напряжение, измеренное удельное сопротивление будет меньще при более высоких напряжениях. Поэтому измерение удельного сопротивления обычно проводят при напряжении, близком к пробойному, или, по крайней мере, при значениях, соответствующих напряженности электрического поля порядка нескольких киловольт на сантиметр. [c.466] Если же экспериментатор делает подряд все измерения для одного объекта, потом для другого и третьего, то результаты могут включать в себя ошибку, вызванную изменением внешних условий (температура, давление, освещенность и т. п.). Часто на численные значения измеряемых величин может накладываться медленное и плавное изменение (дрейф) характеристик прибора и изучаемой системы, вызванное изменением-температуры прибора и установки в целом, непостоянством напряжения электрических источников тока, влажностью воздуха и т. п. Желательно исключить или свести к минимуму эти влияния. [c.71] Тепловое значение калориметрической системы определяют, вводя в систему точно известное количество теплоты с помощью электрического тока. Для этого используют нагреватель 3, который питается током от стабилизатора напряжения У-1136 или аккумулятора. Нагреватель включают через два ключа К1 и Кг первый К1 служит для переключения стабилизатора на нагрузочное сопротивление или на цепь нагревателей калориметров, а второй служит для переключения питающего напряжения последовательно на одну или другую работающую установку. В цепь нагревателя 3 включен миллиамперметр для измерения силы тока, параллельно включен вольтметр для измерения напряжения на зажимах нагревателя. [c.397] В состав ДПР входят высокотемпературная камера ВК, являющаяся собственно ячейкой детектора, к которой присоединяется выход колонки, и выносной блок ВБ, содержащий ионизационную камеру ИК и сопротивления, участвующие в формировании электрического сигнала. Блок-схема, поясняющая включение детектора и измерение сигнала, приведена на рис. П.54. Блок питания осуществляет подачу стабильного постоянного отрицательного напряжения на один из электродов ионизационной камеры. Ионизационная камера, работая в режиме тока насыщения, формирует стабильный электрический ток в пределах (1,5 — 2,0)-10 А. При изменении концентрации анализируемого вещества в ячейке детектора ВК изменяется электрическое сопротивление и на входе резисторов й, и R[c.127] Сигнал рассогласования между и Гз моделируется так, как показано на рис. Х1-.5. Измеренное рассогласование передается управляющему элементу регулятора механически (посредством пружин и рычагов), электрически (в виде напряжения или тока) или пневматически (давлением сжатого воздуха). Сигнал рассогласования преобразуется управляющим элементом в регулирующее воздействие. [c.252] Если на электроды камеры подать напряжение, то в результате движения свободных электронов и ионов, создаваемых при ионизации газа, в камере возникает электрический ток. Этот ток между электродами камеры может быть измерен (рис. 28). Сила тока будет зависеть только от сечения ионизации молекул газа, если напряженность электрического поля исключает возможность как рекомбинации ионов с электронами, так и ионизации [c.137] При протекании в цепи с черной пленкой постоянного электрического тока она характеризуется лишь активной составляющей сопротивления (проводимостью). Сопротивление черных пленок при малых напряжениях обычно носит омический характер, т. е. ток в цепи линейно зависит от напряжения. Так как сопротивление обычных черных пленок высоко, то для измерения падения напряжения на них используют электрометру с высоким входным сопротивлением. Это требует тщательной экранировки всей электрической цепи и учета возможного вклада различных шунтирующих сопротивлений (сопротивления утечки), нанример, возникающих вследствие неплотного контакта углеводородной фазы и гидрофобной стенки, на отверстии которой образуется пленка. Типичная схема измерения сопротивления черной пленки по постоянному току приведена на рис. 19. [c.71] При измерении по этому методу необходимо заранее знать напряженность электрического поля необходимую для роста пленки при минимальной плотности тока, например 10 мкА/см , позволяющую производить наблюдение, и равновесный потенциал [c.194] Главная проблема, которую необходимо решить при конструировании ячеек - определение оптимального местоположения электродов. Как уже отмечалось выше, при электрохимических измерениях регистрируются изменяющиеся во времени электрический ток или разность потенциалов. Если через ячейку протекает большой ток или она имеет большое сопротивление, то измеряемая разность потенциалов будет зависеть от положения электрода сравнения относительно индикаторного электрода, поскольку ее величина включает в себя падение напряжения в объеме раствора /Лу между этими электродами. При этом следует иметь ввиду, что потенциал индикаторного электрода в дополнение к фактическому потенциалу включает в себя разности потенциалов, возникающие в солевом мостике, в том числе потенциалы жидкостного соединения обоих концов солевого мостика. Необходимо учесть также, что ве- [c.77] Практические измерения по определению опасности коррозии или эффективности катодной защиты являются преимущественно электрическими по своей природе. В принципе вопрос всегда сводится к измерению трех наиболее известных величин в электротехнике напряжения, силы тока и сопротивления. Определение потенциалов металлов в грунте или в растворах электролитов является измерением (не создающим нагрузки на цепь тока) падения напряжения между объектом и электродом сравнения, находящимися в среде с высоким сопротивлением (см. раздел 2.2). [c.81] Эксперимент проводили следующим образом. На никелевый диск и медный электрод, расположенный на дне тигля, подавали напряжение, которое обеспечивало режим предельного тока ( 7 = 0,65 в) и осуществляли измерение величины электрического тока, протекающего через диск. Такие измерения проводили с дисками раз- [c.57] Единицей измерения разности потенциальной энергии электронов в двух различных точках пространства является вольт. Для того чтобы между двумя точками пространства возник электрический ток, между ними должно существовать некоторое напряжение. Для определения напряжения электрического поля используется механический эквивалент потенциальной энергии, единицей измерения которого является джоуль эта единица энергии измеряется работой, которую необходимо выполнить, чтобы на пути длиной 1 м придать телу массой 1 кг ускорение 1 м/с . Вольт представляет собой напряжение между двумя точками электрического поля, при перемещении между которыми заряда в 1 Кл выполняется работа в [c.285] В воде. Калориметр подобного типа калибруется путем пропускания электрического тока через проволочный нагреватель с известным сопротивлением и перевода измеренной электрической энергии в тепловую энергию. Электрическая энергия, как указано выше, определяется произведением напряжения Е на силу тока I и время его протекания с, т. е. E l t. Поскольку, согласно закону Ома, Е = 1R, электрическая энергия, выделяющаяся в нагревателе с сопротивлением R за время f, должна быть равна Pkt. Например, при пропускании тока силой 0,5 А через сопротивление 50 Ом в течение 10 с, выделяется энергия [c.305] Наиболее прямой метод определения электрической подвижности состоит в измерении скорости перемещения границы раздела между двумя растворами электролитов в трубе постоянного поперечного сечения, через которую пропускается электрический ток. Например, если 0,1 М раствор хлористого калия налит в трубу над раствором хлористого кадмия, как показано на рис. 11.3, а, и через трубу пропускают электрический ток i, то ионы калия начнут двигаться вверх по направлению к отрицательному электроду, удаляясь от начальной границы раздела. Их будут сопровождать более медленно движущиеся ионы кадмия, так что в столбе электролита не возникнет разрыва. Поскольку концентрация ионов кадмия над первоначальной границей раздела ( d b) будет вообще отличаться от исходной, образуется зона изменения концентрации хлористого кадмия (на рис. 11.3,6 она заштрихована). Чтобы рассчитать электрическую подвижность ионов калия по скорости их движения в растворе КС1, необходимо знать напряженность электрического поля Е в растворе КС1. Напряженность электрического поля Е равна градиенту электрического потенциала ф со знаком минус. Если электрический потенциал изменяется только в направлении X, то [c.348] Метод квадратно-волновой полярографии впервые применили Баркер и Дженкинс [289]. Этот метод основан на наложении на электродный потенциал переменного напряжения квадратной формы малой амплитуды. Измерению подлежит переменная составляющая электролизного тока в зависимости от потенциала, который меняется, как и в обычной полярографии, линейно во времени. Для устранения емкостной составляющей переменного тока измерение производится в конце каждого полупериода тока, когда двойной электрический слой на поверхности электрода успевает приобрести новый электрический заряд. Согласно Баркеру и Дженкинсу [289], могут быть определены концентрации восстанавливающихся обратимо веществ порядка 2-10 М. Аналитическое применение метода описано в работах [398—401], а его теория — в работе [484]. [c.244] При компьютерной обработке результатов за искомое значение температуры можно принимать ее среднее значение по площади или выбранному участку объекта. Следует иметь в виду, что температура на поверхности фарфоровых покрышек определяется как нагревом обмотки вследствие прохождения электрического тока, так и диэлектрическими потерями в изоляции, которые характеризуются тангенсом угла потерь tg5. Для того, чтобы оценить вклад tg5, следует выполнить тепловизионные измерения без нагрузки, то есть при нахождении объекта только под рабочим напряжением. [c.300] Различают абсолютные коэффициенты Пельтье П и Попределение которого должно проводиться в изотермических условиях температура исследуемого спая должна быть одинаковой при прямом и обратном направлениях тока). Постоянство температуры следует обеспечивать при постоянном отношении плотностей электрического тока и теплового потока, что связано с дополнительными экспериментальными трудностями. Гораздо проще осуществляется измерение коэффициента Пельтье (Пг), при определении которого должны выполняться изоэлектрические условия напряжение на спае должно быть одинаковым при обоих направлениях тока). Измерение коэффициента П , предпочтительнее, чем измерение термоэлектрической способности S, так как величина П стремится к постоянному значению по мере приближения температуры к абсолютному нулю, тогда как величина S при тех же условиях стремится к нулю. Кроме того, по чисто практическим причинам измерение коэффициента П при низких температурах оказывается более точным. В дальнейщем, употребляя символ П при обозначении коэффициента Пельтье, будем иметь в виду величину П ,. [c.603] Процессу деполяризации на полярографической кривой соответствует увеличение тока при определенном напряжении, величина которого зависит от химической природы деполяризатора. При дальнейшем увеличении напряжения рост тока замедляется, он достигает максимального значения, после чего уже не меняется с ростом напряжения. Этот не зависящий от напряжения ток называется предельным, а участок кривой от начала увеличения тока до предельного значения называется полярографической волной. Высота волны соответствует величине предельного тока, измеренного от начала увеличения тока (способы измерения высоты волн см. в гл. VI, разд. 3). По мере увеличения тока деполяризатор в непосредственной близости от электрода расходуется пока его концентрация у поверхности электрода становится равной нулю при этом ток достигает предельного значения. Величина предельного тока определяется только скоростью подачи деполяризатора из раствора к поверхности электрода. Если деполяризатором являются электрически нейтральные молекулы, то такая подача осуществляется только путем диффузии. Предельные токи, величина которых определяется только диффузией, рассмотрены в гл. VI. [c.57] Условность разделения заключается в том, что электрические свойства пластмасс сильно зависят от внешних условий — температуры, влажности, степени ионизации окружающей среды, напряженности электрического поля, силы тока и других. При станд ти-зованных измерениях частота электромагнитного поля — 10 Гц, температура — 20 С, относительная влажность воздуха — 60 %. Образец имеет форму диска диаметром 100 мм. [c.150] Измерения удельных объемного и поверхностного сопротивлений проводят методом измерения токов, проходящих через образец (р или по поверхности образца (р при приложении к нему постоянного по напряжению электрического поля. [c.156] Измерение температуры термоэлектрическими приборами основано на свойстве сплава двух разнородных металлов давать нри нагревании электрическое напряжение (термоэлектричество). Возьмем две проволочки из разных металлов или из различных сплавов, спаяем одни концы этих проволочек вместе, а другие, свободные, соединим с гальванометром — прибором, измеряющим малые напряжения электрического тока (рис. 69). Есл теперь нагреть место спая, то стрелка гальвано- 69. Схема термоэлектри метра отклонится, что указывает на ческого пирометра, возникновение электрического тока различные металлы термопары [c.121] Электрические методы измерения механических параметров. Для измерения механических параметров нпгроко используют электрические методы. Их преимущества — малая инерционность измерительных устройств, что особенно важно при изучении быстро протекающих процессов в машинах, высокая чувствительность, возможность дистанционного измерения, простота хранения и обработки информации. Система измерения в этом случае состоит из датчика, преобразующего измеряемый импульс в электрический сигнал, усилителя электрического сигнала (напряжения или силы тока), измерительного устройства, включающего регистрирующие приборы (различные самописцы или осциллографы). По нрннцину работы [c.20] Теоретические исследования поведения органических веществ в неводных растворах при наложении неоднородного электрического поля [117, 118] позволяют объяснить поведение частиц твердых углеводородов петролатума в таком поле. При сравнительно малых напряженностях электрического поля вследствие поляризации двойного слоя частицы движутся в область большего градиента потенциала. При увеличении напряженности, когда происходит поляризация материала частиц, возникает пондеромотор-наясила, которая изменяет направление частиц в зависимости от диэлектрической проницаемости дисперсной фазы и дисперсионной среды. Измерения при помощи моста переменного тока Р-570 на частоте 1000 Гц показали, что диэлектрическая проницаемость дисперсионной среды больше, чем дисперсной фазы (2,00 и 1,93 [c.189] Для определения электропроводности по методу ASTMD3114 отбирают не менее 1 л пробы топлива в канистру с эпоксидным покрытием или в стеклянную бутыль. Тару, предназначенную для отбора пробы топлива, тщательно подготавливают — промывают последовательно горячей водой, холодной дистиллированной водой, ацетоном, хлороформом, продувают сухим азотом, ополаскивают несколько раз исследуемым топливом и затем отбирают пробу. Хранить пробы топлива отобранные для измерения электропроводности, не рекомендуется. Основным узлом прибора для определения по методу ASTMD3114 является электродная ячейка. В стакан из нержавеющей стали емкостью 250 мл помещены цилиндрические электроды. Расстояние между стенкам электродов должно быть не менее 1 мм. Электропроводность топлива измеряют при напряженности электрического поля от 0,8 до 1,6 В/мм. Переключением клеммы на ячейку от батареи подается напряжение 1,5 В, и в этот момент на приборе фиксируется величина электрического тока, проходящего через ячейку. Электропроводность топлива рассчитывают по закону Ома [c.130] При наладке катодной защиты. После окончания строительства i монтажа катодной защиты перед включением ее под напряжение тщательно лроверяют все элементы, производят измерение сопротивлений растекания анодного И защитных заземлений, переходного сопротивления защищаемое сооружение—земля, полного сопротивления цепи и полученные данные заносят в паспорт. Подают напряжение переменного тока на выпрямитель, включают нагрузку и, регулируя напряжение и ток источника защиты, устанавливают эффективную полноту катодной защиты по миллиамперметру в электрической цепи диод—миллиамперметр— 1И0Д. С этой целью наблюдают за показанием стрелки в процессе регулирования, [c.123] Измерение б производят при напряженности электрического поля ие менее 1 кв1мм при 20, 70 и 90 С на мосте переменного тока (Р-525) или любого другого прибора, обеспечивающего измерения tg б в соответствующих пределах при заданием напряжении и пригодного для работы с трехэлектродной схемой. Применяемые приборы должны иметь пределы измерения, перекрывающие значения измеряемой величины tg б примерно в 2 раза. [c.216] Хотя электропроводность растворов электролитов рассматривается только в гл. 16, ее предварительное обсуждение позволяет понять суть экспериментального метода определения данных, с помощью которых вычисляются значения констант и К . Чистая вода является плохим проводником электрического тока, но растворы Na l или какого-либо другого типично ионного вещества очень хорошо проводят ток. Растворы слабых электролитов занимают промежуточное положение между плохими и хорошими проводниками электрического тока, так как частичная ионизация этих веществ способна обеспечить лишь слабую или не слишком больщую электропроводность. Принцип действия приборов, предназначенных для измерения электропроводности, основан на том, что наличие электрического потенциала вызывает протекание тока, сила которого связана с потенциалом и сопротивлением R проводящей среды законом Ома Напряжение (вольты) = [c.266] Величину 2= РоС называют удельным акустическим (волновым) сопротивлением среды. Она имеет важнейшее значение для описания распространения, излучения и отражения упругих волн. Выражение (2.7) иногда называют акус -тическим законом Ома. В самом деле, если поставить в соответствие электрическому напряжению акустическое давление, электрическому току - колебательную скорость, электрическому сопротивлению - удельное акустическое сопротивление, то можно сопоставить электрический закон Ома и = Ш п акус-. тический закон Ома р = vZ. В соответствии с этой аналогией единица измерения 2 получила название акустического Ома (1 акОм = 1 кг/(м с)). [c.35] chem21.info ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ С ПОМОЩЬЮ ЦИФРОВОГО АВОМЕТРА Измерение переменного напряжения - исследуем трансформатор Пример исследования трансформатора с помощью ширпотребовского китайского авометра. Для опытов был взят широко распространенный, среди начинающих радиолюбителей трансформатор ТВК 110 (трансформатор кадровой развертки, от ламповых черно - белых телевизоров). Этот трансформатор популярен тем что, несмотря на свою простоту, он имеет достаточную мощность, и две вторичных обмотки, включенных последовательно (не путайте именно две обмотки, а не одну обмотку со средним отводом) что достаточно для построения блоков питания с разными пределами постоянного напряжения, в том числе и регулируемых. О доступности данного трансформатора я думаю говорить излишне, хотя повторюсь. ТВК, можно взять за копейки на любой барахолке или помочь соседу, дедушке, вынести с 5 - го этажа старый телевизор на мусор и там его разобрать, я думаю он вам еще и деньги заплатит. Нужно иметь ввиду, что трансформаторы ТВК имеют несколько модификаций, поэтому величины напряжения на вторичных обмотках могут отличаться. Собственно для чего мы и будем учиться измерять напряжение. Вариант схемы трансформатора с включением вольтметра в измеряемую цепь смотрите ниже. Схема подопытного трансформатора ТВК 110. 1). Измерение переменного напряжения одной из вторичных обмоток трансформатора. Переключатель рода работы прибора, и включение в разьемы прибора щупов, должны быть в точности как на фото. В качестве фиксаторов щупов на клемах трансформатора, применяем зажимы типа "крокодил". В этом опыте видно что на одной из обмоток трансформатора 13,2 вольта, 0,2 вольта в нашем случае можно не брать в расчет, потому как каждый прибор имеет погрешность и десятые - сотые доли измерения будут для любого прибора разные. Исходя из этого можно считать что на измеряемой обмотке переменное напряжение 13 вольт, это как раз то, что нужно для блока питания предложенного в качестве практической работы в 9 - ом уроке. Запоминаем вариант включения прибора в измеряемую цепь потому как именно такой вариант вы будете часто использовать для измерения переменного напряжения величиной до 200 вольт. Для измерения сетевого переменного напряжения 220 вольт, переключатель рода работы прибора, необходимо повернуть до отметки 750. Переходим к следующему опыту. 2). Измеряем следующую обмотку. Все аналогично первому опыту, с той разницей что перебрасываем крокодилы на другие клемы трансформатора см. фото. Как видим, на этой обмотке переменное напряжение составило 21,8 вольт. Теоритически на основе этой обмотки можно зделать регулируемый БП с верхним пределом до 20 вольт. Но здесь есть одна особенность, данная обмотка расчитана на значительно меньший предельно допустимый ток, поэтому ее для лабораторного БП использовать нецелесообразно. 3). Измерям напряжение двух обмоток соединенных последовательно, см. схему ниже. Здесь мы видим, что прибор нам показывает суммарное переменное напряжение двух обмоток, что составило около 35 вольт. В отношении изготовления регулируемого блока питания с верхним пределом напряжения 35 вольт, такое включение обмоток нам тоже не подходит, все по той же причине, что максимально допустимый ток одной из обмоток довольно мал около 0,5А. Отсюда и правило: при последовательном соединении двух и более обмоток трансформатора, для достижения нужного значения напряжения и при работе трансформатора на постоянную однотипную нагрузку, обмотки должны иметь одинаковый максимально допустимый ток обмоток или что то же самое, одинаковое сечение провода всех соединяемых вторичных обмоток. Измерение постоянного напряжения В последующих опытах рассмотрим методику измерения постоянного напряжения. В этих опытах вместо диодов я буду использовать диодный мост - КЦ402. Схему подключения диодного моста и измерительного прибора см. ниже. 1). Измерение постоянного напряжения с помощью цифрового прибора. См. фото. При измерении постоянного напряжения, переключатель рода работы измерительного прибора нужно переключить в положение соответствующее измерению постоянного нпряжения. Это необходимо запомнить и в дальнейшем руководствоваться. Положительному полюсу соответствует красный щуп, отрицательному - черный Обратите особое внимание на переключатель рода работы прибора. Сейчас он находится в положении, которое соответствует измерению постоянного напряжения, с максимально допустимым верхним пределом измерения 20в. Если предполагаемое измерямое напряжение будет больше 20в, тогда переключатель рода работы ставят в положение соответствующее верхнему пределу 100в. и т.д. Если вы случайно забыли переключить прибор на больший предел измерения, то в лучшем случае он перейдет в защиту, в худшем выйдет из строя. По прибору видно, что измеренное напряжение составило 12в., хотя на вторичной обмотке трансформатора мы замеряли и было 13в., в чем дело? Фокус здесь в том, что на сопротивлении диодного моста происходит падение напряжения в 1в. Диодный мост КЦ402 составлен из диодов имеющих кремниевую структуру. Если применить германиевые диоды в диодном мосте, падение напряжения будет меньше. При проектировании БП это нужно учитывать. 2). Что же будет если переполюсовать щупы прибора? Собственно говоря в отношении прибора который мы применяем, страшного ничего не произойдет. Он так же будет измерять напряжение, только к показаниям величины напряжения, добавиться еще знак " - ", и погрешность измерений будет немного больше (правда я это сам не так давно заметил, видать все зависит от того, насколько удачно спроектированна схема компаратора и АЦП прибора). По появимшемуся знаку " - " мы можем судить, правильно ли мы подключили полюса источника питания к прибору и тем самым четко определить где в схеме минус и плюс источника питания. Это что касается цифрового прибора, а вот в стрелочном при переполюсовке возникнут проблемы, стрелка будет стремиться отклониться назад и нам будет казаться что она стоит на месте, т. к. ее движение назад ограничено. Хотя по незначительным движениям и отклонениям стрелки можно понять что прибор переполюсован и необходимо поменять щупы местами. В такой ситуации стрелочный прибор может выйти из строя. Аналогичным образом измеряется постоянное напряжение гальванического элемента (батарейка, крона) и если оно намного меньше указанного на корпусе элемента, значит ваша батарейка как в народе говорят, уже подсела или села совсем (на радиолюбительском сленге "здохла"). Измерение сопротивления резистора При измерении сопротивления резистора переключатель рода работы прибора переключают в соответствующее положение, при этом щупы остаются в тех же гнездах, см. фото. Так же положение регулятора зависит от предполагаемой величины измеряемого сопротивления резистора. Например: измеряемый резистор 130 Ом, тогда переключатель рода работы ставим в положение до 200 Ом, если резистор сопротивлением в 1к, тогда переключаем - в положение соответствующее отметке 2000 Ом. и т. д.. ПРЯМОЙ МЕТОД ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЯ ДОБАВОЧНОГО РЕЗИСТОРА ДЛЯ МИКРОАМПЕРМЕТРА И самая, на мой взгляд интересная тема, которая облегчит участь юных радиолюбителей желающих снабдить свой БП индикатором выходного напряжения. Здесь я попытаюсь рассказать что называется на пальцах, методику подбора добавочного резистора к любому имеющемуся в наличии микроамперметру, чтобы превратить его в вольтметр. Методика достаточно проста и даже глядя на ниже представленные фото можно без труда догадаться, что имеется ввиду. Для определения сопротивления добавочного резистора, нам понадобится: переменный резистор сопротивлением 150 - 200 Ком., желательно с линейной функциональной зависимостью (класс - а), микроамперметр который будет использоваться в БП в качестве вольтметра, и источник питания, с максимальным напряжением которое будет измерять наш так называемый вольтметр. В нашем случае это может быть самодельный БП и всем нам знакомый цифровой авометр. В моем случае в качестве вспомогательного вольтметра, использовался встроенный вольтметр лабораторного БП. См. схему, которую необходимо собрать. 1). После того как собрали выше приведенную схему, выкручиваем движок резистора в положение максимального сопротивления, после этого включаем источник напряжения (в нашем случае регулируемый БП). Если у вас БП имеет максимальное напряжение 12в, а минимальное около 1в, то это как раз тот случай, который приводится в моем примере. Далее вращением добавочного переменного резистора добиваемся максимального отклонения стрелки индикатора (максимума показания прибора), см. фото. Это и будет соответствовать напряжению 12в. 2). Далее нужно проверить показания микроамперметра в середине диапазона регулируемого напряжения БП. Выставляем выходное напряжение блока питания в середину диапазона 6в, контролируем это напряжение вспомогательным вольтметром и при этом смотрим, чтобы стрелка микроамперметра находилась приблизительно на среднем участке шкалы прибора. Это и будет соответствовать напряжению 6в. См. ниже фото. 3). И окончательная операция, это контроль минимального напряжения, т. е. уменьшаем напряжение БП до 0в, и контролируем положение стрелки микроамперметра, которая тоже должна отклониться на 0 - ноль или близко к нулю, в зависимости от того какое минимальное напряжение будет на вашем БП (в БП предложенном для практической работы в уроке - 9, минимальное напряжение будет составлять 0,5 - 1в). После того как все проделано, необходимо выпаять переменный резистор из схемы, не вращая движок, и замерять его сопротивление. Далее - остается подобрать постоянный резистор с близким по номиналу значением сопротивления и впаять в схему, либо на любую клемму микроамперметра. Нужно сказать, что такой вольтметр не будет отличаться высокой линейностью по отношению к измеряемому напряжению, но для визуального контроля вполне приемлем. Для более комфортного использования такого прибора, неплохо, было бы аккуратно разобрать микроамперметр (если это позволяет его конструктив), и отградуировать шкалу прибора под свои значения напряжений, например: 1-3-6-9-12в. Это существенно облегчит установку нужного предела напряжения при работе с БП. При разметке делений, шкала как я говорил выше, получится неравномерной, это обусловлено многими факторами. Обсудить на форуме lessonradio.narod.ru Напряжение измеряется
Прибор для измерения напряжения. Как измерить напряжение мультиметром
1. Измерение постоянного напряжения.
2. Измерение переменного напряжения.
Напряжение электрического тока, измерение - Справочник химика 21
Развитие количественных методов анализа исторически тесно связано с созданием новой измерительной техники. Так, возможность разложения света в спектр обусловила появление разнообразных и чрезвычайно ценных оптических методов анализа, дальнейшая разработка которых продолжается и, в настоящее время. В свою очередь, применение этих методов в количественном анализе вызвало необходимость точных электрических способов измерения интенсивности светового потока. Изучение закономерностей электрических процессов и создание точных приборов для измерения силы тока и напряжения стало основой возникновения и развития электрохимических методов анализа. Затем появились термические методы, анализа, основанные на точном измерении температуры с помощью термоэлементов и термисторов, и радиохимические методы анализа, в которых осуществляется чувствительная регистрация радиоактивных излучений. [c.254]
Напряжение электрического тока измеряют в вольтах (в). Прибором для измерения электродвижущей силы и электрического напряжения служит вольтметр. [c.129]Измерение напряжения, тока и сопротивления с помощью авометра
Поделиться с друзьями: