Вольт (русское обозначение: В; международное: V) — в Международной системе единиц (СИ) единица измерения электрического потенциала, разности потенциалов, электрического напряжения и электродвижущей силы. Названа в честь итальянского физика и физиолога Алессандро Вольты (1745—1827), который изобрёл первую электрическую батарею — вольтов столб и опубликовал результаты своих экспериментов в 1800 году. Разность потенциалов между двумя точками равна 1 вольту, если для перемещения заряда величиной 1 кулон из одной точки в другую над ним надо совершить работу величиной 1 джоуль. Вольт также равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы вольт пишется со строчной буквы, а её обозначение — с прописной. Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием вольта. Например, обозначение единицы измерения напряжённости электрического поля «вольт на метр» записывается как В/м. 1 В = (1/300) ед. потенциала СГСЭ[1]. Вольт (В, V) может быть определён либо как электрическое напряжение на концах проводника, необходимое для выделения в нём теплоты мощностью в один ватт (Вт, W) при силе протекающего через этот проводник постоянного тока в один ампер (A), либо как разность потенциалов между двумя точками электростатического поля, при прохождении которой над зарядом величиной 1 кулон (Кл, C) совершается работа величиной 1 джоуль (Дж, J)[2]. Выраженный через основные единицы системы СИ, один вольт равен м² · кг · с−3 · A−1. С 1990 года вольт стандартизирован посредством измерения с использованием нестационарного эффекта Джозефсона, при котором для привязки к эталону используется константа Джозефсона, зафиксированная 18-й Генеральной конференцией по мерам и весам как[3]: где e — элементарный заряд, h — постоянная Планка Этим методом величина вольта однозначно связывается с эталоном частоты, задаваемым цезиевыми часами: при облучении матрицы, состоящей из нескольких тысяч джозефсоновских переходов, микроволновым излучением на частотах от 10 ГГц до 80 ГГц, возникает вполне определённое электрическое напряжение, с помощью которого калибруются вольтметры[4]. Эксперименты показали, что этот метод нечувствителен к конкретной реализации установки и не требует введения поправочных коэффициентов[5]. Единица измерения «вольт» была введена в 1861 году комитетом электрических эталонов, созданным Уильямом Томсоном. Её введение было связано с текущими нуждами инженерной физики. 1 июня 1898 года имперским законом в Германии 1 вольт был установлен как «законная» единица измерения ЭДС, равная ЭДС, возбуждающей в проводнике сопротивлением 1 ом ток силой 1 ампер[7]. В Международную систему единиц (СИ) вольт введён решением XI Генеральной конференцией по мерам и весам в 1960 году одновременно с принятием системы СИ в целом[8]. Впоследствии 1 вольт обычно определялся через единицу энергии джоуль и единицу заряда кулон. Десятичные кратные и дольные единицы образуются с помощью стандартных приставок СИ. wikiredia.ru Вольт (русское обозначение: В; международное: V) — в Международной системе единиц (СИ) единица измерения электрического потенциала, разности потенциалов, электрического напряжения и электродвижущей силы. Разность потенциалов между двумя точками равна 1 вольту, если для перемещения заряда величиной 1 кулон из одной точки в другую над ним надо совершить работу величиной 1 джоуль. Вольт также равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт. Единица названа в честь итальянского физика и физиолога Алессандро Вольта (1745–1827), который изобрёл вольтов столб, первую электрическую батарею. 1 В = (1/300) ед. потенциала СГСЭ[1]. Вольт (В, V) может быть определён либо как электрическое напряжение на концах проводника, необходимое для выделения в нём тепла мощностью в один ватт (Вт, W) при силе протекающего через этот проводник постоянного тока в один ампер (A), либо как разность потенциалов между двумя точками электростатического поля, при прохождении которой над зарядом величиной 1 кулон (Кл, C) совершается работа величиной 1 джоуль (Дж, J)[2]. С 1990 года вольт стандартизирован посредством измерения с использованием нестационарного эффекта Джозефсона, при котором для привязки к эталону используется константа Джозефсона, зафиксированная 18-й Генеральной конференцией по весам и измерениям как[3]: где e — элементарный заряд, h — постоянная Планка Этим методом величина вольта однозначно связывается с эталоном частоты, задаваемым цезиевыми часами: при облучении матрицы, состоящей из нескольких тысяч джозефсоновских переходов, микроволновым излучением на частотах от 10 до 80 ГГц, возникает вполне определённое электрическое напряжение, с помощью которого калибруются вольтметры[4]. Эксперименты показали, что этот метод нечувствителен к конкретной реализации установки и не требует введения поправочных коэффициентов[5]. Единица измерения «вольт» была введена в 1861 году комитетом электрических эталонов, созданным Уильямом Томсоном. Её введение было связано с текущими нуждами инженерной физики. 1 июня 1898 года имперским законом в Германии 1 вольт был установлен как «законная» единица измерения ЭДС, равная ЭДС, возбуждающей в проводнике сопротивлением 1 ом ток силой 1 ампер[6]. Впоследствии 1 вольт обычно определялся через единицу энергии джоуль и единицу заряда кулон. Десятичные кратные и дольные единицы образуются с помощью стандартных приставок СИ. dic.academic.ru Вольт (русское обозначение: В; международное: V) — в Международной системе единиц (СИ) единица измерения электрического потенциала, разности потенциалов, электрического напряжения и электродвижущей силы. Названа в честь итальянского физика и физиолога Алессандро Вольты (1745—1827), который изобрёл первую электрическую батарею — вольтов столб и опубликовал результаты своих экспериментов в 1800 году. Разность потенциалов между двумя точками равна 1 вольту, если для перемещения заряда величиной 1 кулон из одной точки в другую над ним надо совершить работу величиной 1 джоуль. Вольт также равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы вольт пишется со строчной буквы, а её обозначение — с прописной. Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием вольта. Например, обозначение единицы измерения напряжённости электрического поля «вольт на метр» записывается как В/м. 1 В = (1/300) ед. потенциала СГСЭ[1]. С 1990 года вольт стандартизирован посредством измерения с использованием нестационарного эффекта Джозефсона, при котором для привязки к эталону используется константа Джозефсона, зафиксированная 18-й Генеральной конференцией по мерам и весам как[3]: где e — элементарный заряд, h — постоянная Планка Этим методом величина вольта однозначно связывается с эталоном частоты, задаваемым цезиевыми часами: при облучении матрицы, состоящей из нескольких тысяч джозефсоновских переходов, микроволновым излучением на частотах от 10 ГГц до 80 ГГц, возникает вполне определённое электрическое напряжение, с помощью которого калибруются вольтметры[4]. Эксперименты показали, что этот метод нечувствителен к конкретной реализации установки и не требует введения поправочных коэффициентов[5]. Десятичные кратные и дольные единицы образуются с помощью стандартных приставок СИ. ru-wiki.org А ток — в амперах. Вполне очевидная вещь, не правда ли? Физику все в школе проходили. 😉 Иными словами, электрическое напряжение — это практически то же самое, что магнитный ток, а электрический ток — магнитное напряжение. И измеряют магнитное напряжение (в статье это называется магнитодвижущей силой, по аналогии с электродвижущей) в амперах, а магнитный ток в вольтах (если быть совсем уж точным, то в вольт-секундах, хотя электрический ток и магнитный поток — несколько разные вещи). Поехали дальше. Все мы привыкли к тому, что электрическая ёмкость измеряется в фарадах. Ну, знаете это, конденсатор на пять микрофарад?.. А между тем, есть система единиц СГС (сантиметр-грамм-секунда, в отличие от общепринятой теперь системы СИ, в которой основными единицами являются метр, килограмм и та же самая секунда), в которой электрическая величина — ёмкость, измеряется вполне линейной единицей — сантиметр. А дело тут вот в чём. Ёмкость, при прочих равных условиях, зависит только от геометрии проводника. Если взять для примера классический плоский конденсатор (а к нему можно привести проводник любой формы), то ёмкость его будет прямо пропорциональна площади пласти apashenko.wordpress.com Иными словами, электрическое напряжение - это практически то же самое, что магнитный ток, а электрический ток - магнитное напряжение. И измеряют магнитное напряжение (в статье это называется магнитодвижущей силой, по аналогии с электродвижущей) в амперах, а магнитный ток в вольтах (если быть совсем уж точным, то в вольт-секундах, хотя электрический ток и магнитный поток - несколько разные вещи). Поехали дальше. Все мы привыкли к тому, что электрическая ёмкость измеряется в фарадах. Ну, знаете это, конденсатор на пять микрофарад?.. А между тем, есть система единиц СГС (сантиметр-грамм-секунда, в отличие от общепринятой теперь системы СИ, в которой основными единицами являются метр, килограмм и та же самая секунда), в которой электрическая величина - ёмкость, измеряется вполне линейной единицей - сантиметр. А дело тут вот в чём. Ёмкость, при прочих равных условиях, зависит только от геометрии проводника. Если взять для примера классический плоский конденсатор (а к нему можно привести проводник любой формы), то ёмкость его будет прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами. Вот и получается, что ёмкость - метр умножить на метр и разделить на метр - в результате вполне линейная величина - метр (как было уже сказано, в СГС - сантиметр). Ну, а теперь самое интересное. Мы с вами уже решили, что расстояние иногда измеряется в годах (световых, правда), а теперь, в качестве домашнего задания, расскажите-ка, где и когда (или кто) напряжение меряют в паскалях. Метки: Термины, Физика apashenko.livejournal.com Вольт (русское обозначение: В; международное: V) — в Международной системе единиц (СИ) единица измерения электрического потенциала, разности потенциалов, электрического напряжения и электродвижущей силы. Названа в честь итальянского физика и физиолога Алессандро Вольты (1745—1827), который изобрёл первую электрическую батарею — вольтов столб и опубликовал результаты своих экспериментов в 1800 году. Разность потенциалов между двумя точками равна 1 вольту, если для перемещения заряда величиной 1 кулон из одной точки в другую над ним надо совершить работу величиной 1 джоуль. Вольт также равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы вольт пишется со строчной буквы, а её обозначение — с прописной. Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием вольта. Например, обозначение единицы измерения напряжённости электрического поля «вольт на метр» записывается как В/м. 1 В = (1/300) ед. потенциала СГСЭ[1]. Вольт (В, V) может быть определён либо как электрическое напряжение на концах проводника, необходимое для выделения в нём теплоты мощностью в один ватт (Вт, W) при силе протекающего через этот проводник постоянного тока в один ампер (A), либо как разность потенциалов между двумя точками электростатического поля, при прохождении которой над зарядом величиной 1 кулон (Кл, C) совершается работа величиной 1 джоуль (Дж, J)[2]. Выраженный через основные единицы системы СИ, один вольт равен м² · кг · с−3 · A−1. ru-wiki.ru Единица измерения ЭДС — вольт — представляет собой ту электродвижущую силу, которая необходима, чтобы заряд з [c.261] Единицей измерения разности потенциальной энергии электронов в двух различных точках пространства является вольт. Для того чтобы между двумя точками пространства возник электрический ток, между ними должно существовать некоторое напряжение. Для определения напряжения электрического поля используется механический эквивалент потенциальной энергии, единицей измерения которого является джоуль эта единица энергии измеряется работой, которую необходимо выполнить, чтобы на пути длиной 1 м придать телу массой 1 кг ускорение 1 м/с . Вольт представляет собой напряжение между двумя точками электрического поля, при перемещении между которыми заряда в 1 Кл выполняется работа в [c.285] В системе СИ производной единицей энергии является джоуль (Дж). Однако в спектроскопии традиционно используется электрон-вольт (эВ), так как джоуль является слишком большой величиной и его неудобно применять в качестве единицы измерения атомных [c.357] В настоящей книге в качестве единицы измерения э. д. с. используется величина, которая раньше называлась абсолютным вольтом. Интернациональный вольт более не применяется. Данные, полученные до 1948 г., могут быть легко приведены к современной шкале, так как Е (абс. в) = 1,00033 Е (инт. в). [c.225] Соотношения между единицами энергии. При вычислении термодинамических свойств веществ на основании использования экспериментальных результатов спектроскопических, калориметрических, масс-спектрометрических и иных исследований приходится иметь дело с количествами энергии, выраженными в различных единицах. Традиционной единицей измерения энергии при калориметрических исследованиях является калория, в то время как традиционными единицами энергии при спектроскопических исследованиях — обратный сантиметр, а при масс-спектрометрических исследованиях — электрон-вольт. В механике издавна укоренились в качестве основных единиц энергии эрг и джоуль = 10 эрг. Однако если соотношения между обратным сантиметром и эргом и электронвольтом и эргом определяются лишь значениями основных физических постоянных, так как [c.956] С целью ввести в книгу как можно меньше понятий некоторые из них сознательно не использовались, например, электродви-жуш,ая сила (э. д. с.), которая выражает сродство, т. е. свободную энтальпию реакции (изобарно-изотермический потенциал) АО, но не в килокалориях, а в вольтах (электронвольтах). Естественно, возникает вопрос, зачем только из-за замены единиц измерения вводить новое название для данного понятия. Подтверждением правильности такого подхода служит тот факт, что использование понятия э. д. с. в настояш,ей книге, в том числе и в разделе термодинамики, ни разу не оказалось необходимым. Устаревшее понятие деполяризация также было опущено. Это понятие предполагает, что возникновение любого потенциала кинетически зависит от установления потенциала водородного электрода при соответствующем давлении водорода. Это термодинамически неопровержимое предположение, которое не принимает во внимание прямой электронный обмен при протекании окислительно-восстановительных реакций, в действительности очень затормозило развитие электрохимической кинетики. [c.19] Практическая единица измерения напряженности электрического поля — это вольт на 1 сантиметр в см). Соотношение между этой единицей и электростатической единицей (эл. ст. ед. на 1 см) выражается следующим образом [c.50] Х/3/2 2 единицы измерения 1 В = 1 кг м /(с -А) = =1 Дж/(А с) =1 Вт/А.] Единица измерения электрического потенциала, вольт, есть разность потенциалов между двумя точками проводящей проволоки, по которой проходит ток 1 ампер, когда мощность, рассеиваемая на участке между этими точками, составляет 1 ватт. Знак э. д. с. определяется в соответствии с правилом, согласно которому положительный заряд должен двигаться от большего потенциала к меньшему. Э. д. с. гальванического элемента — это разность электрических потенциалов между двумя кусками металла одного и того же состава, представляющих собой концы цепи проводящих фаз. Например, в элементе Даниэля (см.) [c.228] Единицей измерения энергии радиоактивного излучения является электрон-вольт (эв), т. е. энергия, приобретаемая электроном при прохождении им ускоряющего поля с напряжением в1 вольт. [c.411] Если в стакан, содержащий раствор электролита, поместить два платиновых электрода и присоединить их к источнику электричества, то через раствор потечет ток. Сила его определяется как приложенным напряжением Е, так и сопротивлением Я той части раствора, которая заключена между электродами. Это отношение математически выражается законом Ома 1=Е1Я, где / —сила тока в амперах, —напряжение в вольтах и сопротивление в омах. Электропроводность Ь определяется как величина, обратная сопротивлению, так что 1 — Е1. Единицей измерения электропроводности является обратный ом ом или л[c.12] Основная единица измерения электрического напряжения — вольт (е). Вольт — это электрическое напряжение на концах проводника с сопротивлением в один ом, вызывающее протекание по нему тока величиной, равной одному амперу. Э. д. с. и напряжение измеряют в вольтах. В вольтах измеряют напряжение генераторов постоянного тока, возбудителей, питающей сети переменного тока, напряжение нз гальванических ваннах, выпрямителях в гальванотехнике (на шунтах) напряжение измеряют также и в милливольтах (1 б = 1000 мв). Напряжение измеряют вольтметром. Вольтметр включают в электрическую цепь параллельно нагрузке. [c.17] Единицей измерения энергии атома является электрон-вольт (ае). Вольты могут служить мерой скорости движения электронов [c.146] Принято выражать теплоту или энергию этих реакций в килокалориях на грамм-моль. Поскольку в настоящей статье рассматриваются электронные переходы, энергия будет выражаться в электрон-вольтах (эв). Эта единица измерения равна той энергии, которую приобретает электрон при движении в электрическом поле с разностью потенциалов в 1 в. Один электрон-вольт на молекулу эквивалентен 23,06 ккал на 1 грамм-моль. [c.153] При любых количественных исследованиях необходимо знать количество энергии, поглощенной облученным образом. Согласно рекомендациям Международной комиссии радиологических единиц и измерений [35], приняты следующие термины и единицы измерения. Поглощенная доза излучения равна количеству энергии, сообщенной образцу ионизирующими частицами в расчете на единицу массы облученного вещества. Эта величина обычно выражается в радах или электрон-вольтах на 1 г (в джоулях на 1 кг в системе СИ). Один ряд эквивалентен 100 эрг/г, или 10" Дж/кг, или [c.122] В атомной физике за единицу измерения энергии принят электрон-вольт (эв)—работа, которая производится электрическим полем при перемещении одного электрона между точками, разность потенциалов которых равна 1 в [c.239] Мерой связи электрона в атоме или ионе является ионизационный потенциал, представляющий собой энергию, которую необходимо затратить для удаления электрона из атома или иона. Различают первый ионизационный потенциал (/,) —энергию, требующуюся для удаления первого, наиболее слабо связанного в атоме электрона второй ионизационный потенциал .,)—энергию,, требующуюся для отрыва второго электрона—уже от однозарядного положительного иона элемента третий ионизационный потенциал и т. д. до / . Экспериментально энергию ионизации определяют путем удаления электронов из атомов, находящихся в разреженном газе или паре данного вещества. Величина ионизационного потенциала может выражаться в любых единицах измерения работы и энергии чаще всего ее выражают в электрон-вольтах. Один электрон-вольт (зб) равен той кинетической энергии, которую приобретает электрон, пробегающий электрическое поле с разностью потенциалов в 1 в 1 5в равен 1,602- эргов, или 3,83- 10-- кал. Если энергия ионизации одного атома равна 1 эв, то энергия ионизации грамм-атома равна при этом 23 062,4 кал, или 23,062 Ккал. [c.25] Единицей измерения электрического напряжения является вольт (в). 1 в — это электродвижущая сила, которую необходимо приложить к проводнику сопротивлением 1 ом, чтобы через него проходил ток 1 а. [c.199] Необходимо, однако, отметить, что для некоторых электродов, например платинового, в щелочных растворах перенапряжение в зависимости от концентрации щелочи не подчиняется уравнению замедленного разряда. Поэтому возникла необходимость в экспериментальной проверке скорости процесса разряда, что и было осуществлено Б. В. Эршлером, П. И. Долиным и А. Н. Фрумкиным, которые показали, что в некоторых случаях удается подобрать такие условия, когда при измерении скорости суммарной электрохимической реакции можно непосредственно измерять скорость одного этапа реакции, например разряда иона с переходом его в адсорбированный атом. Для этого платиновый электрод в определенном интервале потенциалов покрывают адсорбированными атомами водорода количество этих атомов на единице поверхности платинового электрода зависит от потенциала электрода. По мере увеличения анодной поляризации количество их убывает. При потенциале на одну десятую вольта положительнее, чем потенциал обратимого водородного электрода, выделение молекулярного водорода практически прекращается таким образом, можно полагать, что по сравнению с другими процессами оно не играет существенной роли. Если теперь такому электроду сообщить через раствор некоторое количество электричества, то единственно возможной электродной реакцией становится реакция разряда ионов водорода с переходом их в адсорбированные атомы. Дальнейшие стадии — образование молекул водорода — здесь не могут протекать. Для определения скорости процесса разряда удобнее применять переменный ток различной частоты. В самом деле, если электрод включить в цепь переменного тока, то он будет вести себя подобно конденсатору, т. -в. электроду будет эквивалентна электрическая схема, в котором емкость с и омическое сопротивление R включены параллельно. [c.322] Для измерения электрических и магнитных единиц ГОСТом 8033-56 рекомендована абсолютная практическая система единиц МКСА. Она соответствует системе СИ и в ней используются общепринятые электрические и магнитные единицы (ампер, вольт, ом, кулон, фарада, генри, вебер). Система дана для рационализированной формы уравнений электромагнитного поля, вследствие чего из наиболее важных и часто применяемых уравнений этого поля исключается множитель 4я. При [c.587] Использование аналоговой вычислительной техники строится на принципе, согласно которому переменные дифференциального уравнения процесса выражаются в единицах напряжения (вольтах), являющихся машинными переменными, а независимая переменная уравнения выражается через время, так как электрический процесс интегрирования машинных переменных развивается во времени. Аналоговые машины не производят дискретного счета они производят непрерывные измерения напряжения, передаваемые на приборы и осциллограф. [c.84] В спектроскопии для измерений мощности, энергии и других характеристик излучения обычно пользуются не фотометрическими единицами, а энергетическими. Фотометрические величины связаны с энергетическими через функцию видности, которая отлична от нуля только в видимой части спектра. Поэтому в области длин волн короче 3600 и длиннее 7000 Л такие понятия как люмен, люкс, стильб, теряют смысл. Тем не менее понятия яркость, световой поток, освещенность сохраняются в спектроскопии и для ультрафиолетовой и для инфракрасной областей, несмотря на утрату их первоначального значения, связанного с визуальным восприятием. Однако в качестве единиц при спектроскопических измерениях используются либо единицы системы СИ или СГС, либо принятые в атомной физике электрон-вольты при измерении энергии термов, число квантов в секунду при измерении величины светового потока и др. Ниже приводятся основные величины, с которыми нам придется иметь дело, и их обозначения. [c.11] Сравним мысленно прохождение электрического тока по проволоке с точением воды в трубке. Количество воды измеряется в литрах или кубических метрах количество электричества обычно измеряют в кулонах или эл.ст.ед. Скорость течения или поток воДы, т.е. количество ее, проходящее в данной точке трубки в единицу времени, измеряют в литрах в секунду или в кубических метрах в секунду силу электрического тока измеряют в амперах (кулонах в секунду) или в эл.ст.ед. в секунду. Скорость движения воды в трубке зависит от разности давления на концах трубки это давление выражается в килограммах на квадратны11 сантиметр. Сила электрического тока в проволоке зависит от электрической разности давления или от разности потенциалов (падения напряжения) между концами проволоки, обычно измеряемой в вольтах или эл.ст.ед. Единица измерения количества электричества (кулон) и единица измерения электрического потенциала (вольт) были приняты произвольно но международному соглашению. [c.57] В атомной физике поступают аналогично. Здесь масштабом для измерения энергии связи электронов в оболочке атома служит энергия свободных электронов, которые ускоряются с помощью электрического по ля. В качестве единицы энергии принимается такая энергия, которую приобретает один электрон, проходя разность потенциалов 1 в. Эта единица, как уже говорилось во Введении , называется электронвольтом эё). Она является подходящей единицей измерения энергии для атомной оболочки, так как по порядку величины совпадает с энергиями связи электронов в оболочке атома. Как будет видно в дальнейшем, энергия связи частиц в ядре атома, грубо говоря, в миллион раз больше. По этой причине в ядерной физике применяют единицу измерения в миллион раз большую, чем 1 эв, т. е. 10 эв (или один мегаэлектронвольт — Мэе). Это такая энергия, которую приобретает один электрон, проходя разность потенциалов 1 Мв (один миллион вольт). Для измерения энергии рентгеновых лучей часто используют единицу, которая в 1000 раз больше 1 эв, т. е. 1000 эв или 1 кэв. Верхняя граница шкалы используемых в физике энергий в последнее время поднимается вс выше. [c.10] Единица измерения Джоуль Эрг Калория термохими- ческая Калория междуна- родная см - атм Электрон- вольт Киловатт-час [c.565] Единицы работы и мощности. Механическая работа выражается в килограмметрах (расстояние, умноженное на силу), кубометр-атмосферах (произведение рУ), литр-атмосферах и других подобных единицах, которые еще не упоминались выше. Механическая мощность будет выражаться в единицах работы, деленной на время, или в килограмметрах в минуту, литр-атмосферах в час и т. д. Лошадиная сила произвольно определяется равной 75 кгм/час. Поскольку сила, умноженная на время, равна работе, работа часто выражается в единицах мощность—время, например лошадиная сила-час. Электрическая работа будет выражаться в вольт-кулонах (называемых также джоулями ) или вольт-эквивалентах (эквивалент основан на электрохимических законах Фарадея и равен числу кулонов, отвечающих 1 грамм-эквиваленту иона), а мощность — в вольт-кулонах в секунду или вольт-амперах, обычно называемых ваттами . Аналогично механической работе электрическая работа может также выражаться в ватт-часах и других подобных единицах. В табл. II Приложения даются переводные коэфициенты для различных единиц энергии ). Эквиваленты мощности будут такими же, за исключением различных единиц измерения, которые могут быть использованы в различных случаях. [c.68] Величина L носит название коэфициента самоиндукции последний зависит от расположения проводника. Проводник обладает самоиндукцией, равной 1 генри, если на его концах при равномерном изменении тока в 1 А/сек возбуждается электродвижущая сила, равная 1 вольту, или если ток в 1 ампер в окружающем проводник пространстве вызывает поток, равный 1 Vs. Единицы измеренил и размерности см. табл. 1, стр. 708. Величина коэфициента самоиндукции. Соленоид [c.730] Применяя принцип суперпозиции, можно условно считать молекулярную э. д. с. го и молекулярные токи г, равными нулю в состоянии абсолютного нуля. Тогда все энергетические изменения в наднулевой области можно описать через изменение Е и 1. При этом условии усредненная молекулярная э. д. с. оказывается тождественной температуре, а градус термодинамической шкалы температур будет пропорционален единице измерения электрического потенциала (вольту). [c.302] Эксплуатационные характеристики лазеров. Прежде чем приступить к описанию некоторых эксплуатационных характеристик лазеров, полезно познакомиться с тем, каким образом связаны единицы измерения физических величин в квантовой электронике. На рис. УП. 5 приведена номограмма, которую следует использовать для определения соотношений между единицами измерения параметров лазеров и других приборов оптического и ИК-Диапа-зонов. К числу таких единиц относятся ангстрем, электрон-вольт, терагерц и волновое число. [c.443] Основной единицей измерения энергии радиоактивного излучения является электрон-вольт эв), т. е. энергия, приобретаемая электроном при прохождении им ускоряющего поля с напряжением в 1 в. Электрон-вольт соответствует 1,6-10 эрг на одну частицу или фотон и 23,06 ккал на их грамм-молекулярное число (6,02-10 ). Значительно чаще приходится применять в миллион раз большую единицу — мегаэлектрон-вольт (Мэе). [c.525] При теоретическом рассмотрении спектральных данных часто бывает необходимо переходить от Длин волн или частот к энергиям и наоборот. Основное уравнение, связывающее частоту и длину волны монохроматического излучения с энергией, полученной граммолекулой поглощающёго вещества, имеет вид E=Nh f=Nh / K, где N—число Авогадро. Энергия N квантов излучения частоты v носит название единицы Эйнштейна. Энергия часто выражается в электрон-вольтах эта единица измерения выражает энергию, приобретаемую электроном в поле с разностью потенциалов в 1 в. Молекула, поглощающая излучение частоты V, получает V электрон-вольт энергии, причем eF=Av, где е—заряд электрона. [c.13] В системе СИ энергию измеряют в джоулях (1 Дж = = 1 кг-м с ). В спектроскопии для измерения энергии фотонов обычно используют внесистемную единицу — электрон-вольт (1 эВ = 1,6022-10Дж). [c.331] В системе СИ энергию измеряют в джоулях (1 Дж = 1 кгм-с ). В спектроскопии дня измерения энфгии элекгромапшпшх квантов обычно используют внесистемщто единицу— электрон-вольт (1 эВ=1,6022-10 Дж). [c.199] chem21.infoСправочник химика 21. Напряжение измеряется в вольтах
Вольт (единица измерения) Википедия
Определение
Определение на основе эффекта Джозефсона
Шкала напряжений
Исторический экскурс
Кратные и дольные единицы
Кратные Дольные величина название обозначение величина название обозначение 101 В декавольт даВ daV 10−1 В децивольт дВ dV 102 В гектовольт гВ hV 10−2 В сантивольт сВ cV 103 В киловольт кВ kV 10−3 В милливольт мВ mV 106 В мегавольт МВ MV 10−6 В микровольт мкВ µV 109 В гигавольт ГВ GV 10−9 В нановольт нВ nV 1012 В теравольт ТВ TV 10−12 В пиковольт пВ pV 1015 В петавольт ПВ PV 10−15 В фемтовольт фВ fV 1018 В эксавольт ЭВ EV 10−18 В аттовольт аВ aV 1021 В зеттавольт ЗВ ZV 10−21 В зептовольт зВ zV 1024 В иоттавольт ИВ YV 10−24 В иоктовольт иВ yV применять не рекомендуется Примечания
Вольт - это... Что такое Вольт?
Определение
Определение на основе эффекта Джозефсона
Шкала напряжений
Исторический экскурс
Кратные и дольные единицы
Кратные Дольные величина название обозначение величина название обозначение 101 В декавольт даВ daV 10−1 В децивольт дВ dV 102 В гектовольт гВ hV 10−2 В сантивольт сВ cV 103 В киловольт кВ kV 10−3 В милливольт мВ mV 106 В мегавольт МВ MV 10−6 В микровольт мкВ µV 109 В гигавольт ГВ GV 10−9 В нановольт нВ nV 1012 В теравольт ТВ TV 10−12 В пиковольт пВ pV 1015 В петавольт ПВ PV 10−15 В фемтовольт фВ fV 1018 В эксавольт ЭВ EV 10−18 В аттовольт аВ aV 1021 В зеттавольт ЗВ ZV 10−21 В зептовольт зВ zV 1024 В йоттавольт ИВ YV 10−24 В йоктовольт иВ yV применять не рекомендуется Примечания
Вольт — WiKi
Определение
Определение на основе эффекта Джозефсона
Шкала напряжений
Исторический экскурс
Кратные и дольные единицы
Кратные Дольные величина название обозначение величина название обозначение 101 В декавольт даВ daV 10−1 В децивольт дВ dV 102 В гектовольт гВ hV 10−2 В сантивольт сВ cV 103 В киловольт кВ kV 10−3 В милливольт мВ mV 106 В мегавольт МВ MV 10−6 В микровольт мкВ µV 109 В гигавольт ГВ GV 10−9 В нановольт нВ nV 1012 В теравольт ТВ TV 10−12 В пиковольт пВ pV 1015 В петавольт ПВ PV 10−15 В фемтовольт фВ fV 1018 В эксавольт ЭВ EV 10−18 В аттовольт аВ aV 1021 В зеттавольт ЗВ ZV 10−21 В зептовольт зВ zV 1024 В иоттавольт ИВ YV 10−24 В иоктовольт иВ yV применять не рекомендуется Примечания
Напряжение измеряется в вольтах | apashenko
Напряжение измеряется в вольтах - apashenko
А ток - в амперах. Вполне очевидная вещь, не правда ли? Физику все в школе проходили. ;)А теперь посмотрим на это немножко с другой стороны. Как вы понимаете, я сейчас говорил об электрических величинах. А между тем, есть ещё, правильно, магнитные. Все мы помним из курса школьной физики, что электрическое и магнитное поля неразрывно связаны друг с другом, и всё это вместе называется?.. Верно, электромагнитное поле. Особенностью электромагнитного поля, в частности, является то, что его составляющие - электрическое и магнитное поля - везде и всегда перпендикулярны друг другу. Причём "перпендикулярность" эта не только пространственная, но и временная. Или, говоря по-научному, волны электрической и магнитной составляющих поля сдвинуты по фазе на пи пополам. А если по простому, то со временем электрическое поле становится магнитным, а магнитное - электрическим. И так постоянно чередуются.Вольт Википедия
Определение[ | код]
Определение на основе эффекта Джозефсона[ | код]
Вольт единица измерения - Справочник химика 21
Единицей электрического потенциала в Международной системе единиц и практической единицей измерения потенциала является вольт (в) — разность электрических потенциалов между двумя точками электрического поля, при перемещении ме жду которыми заряда в 1 к соверщается работа в 1 дж (1 ед, эл. напр. СГС = 3- 10 в). [c.388]
Поделиться с друзьями: