интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

7.2. Разность потенциалов, электродвижущая сила, напряжение. Напряжение это разность потенциалов


Потенциал. Разность потенциалов.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

  - энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

- следствие принци­па суперпозиции полей (потенциалы складываются алгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

 Разность потенциалов

 

Напряжение — разность значений потенциала в начальной и конечной точках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Единица разности потенциалов

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

1. Вектор напряженности направлен в сторону уменьшения потенциала.

2. Электрическое поле существует, если существует разность потенциалов.

3. Единица напряженности: -Напряженность поля равна

Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величи­на, равная

Поток вектора магнитной индук­ции Фв через произвольную поверхность S равен

Теорема Гаусса для поля В: поток век­тора магнитной индукции через любую замкнутую поверхность равен нулю:

полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,

Проводники в электростатическом поле. Электроемкость уединенного проводника.

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться. Переме­щение зарядов (ток) продолжается до тех пор, пока не установится равновесное рас­пределение зарядов, при котором электро­статическое поле внутри проводника обра­щается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напря­женность поля во всех точках внутри проводника равна нулю:

Е = 0.

По гауссу

Величину

С = Q/ф

называют электроемкостью (или просто емкостью) уединенного проводника. Ем­кость уединенного проводника определяет­ся зарядом, сообщение которого провод­нику изменяет его потенциал на единицу.

Емкость проводника зависит от его размеров и формы, но не зависит от мате­риала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциа­ла. Сказанное не противоречит формуле, так как она лишь показывает, что емкость уединенного проводника прямо пропорциональна его заряду и обратно пропорциональна потенциалу.

Единица электроемкости — фарад (Ф): 1Ф

studfiles.net

7.2. Разность потенциалов, электродвижущая сила, напряжение.

Величина, равная работе сторонних сил по переносу единичного положительного заряда по данному участку цепи называется электродвижущей силой (ЭДС), на данном участке

Падение напряжения (или просто напряжение) на данном участке цепи называется величина, численно равная работе, совершаемой электрическими и сторонними силами при перемещении по данному участку единичного положительного заряда

7.3. Закон Ома.

Сила тока на однородном участке цепи пропорциональна падению напряжения на участке

здесь R − электрическое сопротивление проводника, которое зависит от его формы, размеров и свойств материала, из которого изготовлен проводник.

Для однородного цилиндрического проводника

7.4. Работа, мощность и тепловое действие тока. Закон Джоуля-Ленца.

Мощность, развиваемая током на этом участке

Форма выделяемой при этом энергии зависит от природы физических факторов, обуславливающих падение потенциала.

Это может быть и механическая работа (электродвигатель), и магнитная энергия, и тепловая энергия.

Если падение потенциала происходит на оммическом сопротивлении проводника, то вся энергия выделяется в виде тепла с мощностью

Это выражение называется закон Джоуля−Ленца.

8.1. Законов Ома и Джоуля-Ленца в дифференциальной форме (вывод).

Закон Ома в дифференциальной форме

В изотропном проводнике направление векторов j и E совпадают. Выделим в проводнике трубкутока (поверхность, образованную линиями тока) в проводнике. Пусть площадь сечения ее dS а длина dl.

Ток через площадку dS будет

С другой стороны

или в векторном виде получаем соотношение, называемое законом Ома в дифференциальной форме

Дифференциальная форма закона Джоуля−Ленца

Применим закон Джоуля−Ленца к малому цилиндру длиной dl и площадью сечения dS, тогда получим

Введем удельную мощность тока, равную количеству тепла, выделившемуся в единице объема в единицу времени

Отсюда, используя закон Ома , получаем закон Джоуля−Ленца в дифференциальной форме

Можно также записать этот закон несколько в ином виде

9.1. Магнитное поле. Вектор магнитной индукции.

По аналогии с полевой трактовкой кулоновского взаимодействия, возникновение силы Ампера можно представить следующим образом: ток I1 рождает в окружающем пространстве магнитное поле; это магнитное поле действует на постоянные магниты или движущиеся заряды (ток I2).

Существование магнитного поля убедительно доказал в серии своих опытов по ориентирующему действию поля тока на магнитные стрелки Эрстед (1820 г.). Из опытов Эрстеда следует, что магнитное поле имеет направленный характер и, следовательно, должно характеризоваться векторной величиной. Эту величину называют магнитной индукцией и обозначают символом B.

Опыт показывает, что для магнитного поля, так же как и для электрического, справедлив принцип суперпозиции.

Вектор магнитной индукции B в данной точке поля совпадает по направлению с силой, которая действует на северный полюс бесконечно малой магнитной стрелки, помещенной в эту точку.

studfiles.net

Что такое разность потенциалов

Во многих случаях для того, чтобы правильно уяснить суть вопроса, касающегося электротехники, необходимо точно знать, что такое разность потенциалов.

Определение разности потенциалов

Общее понятие состоит в электрическом напряжении, образованном между двумя точками, и представляющем собой работу электрического поля, которую необходимо совершить для перемещения из одной точки в другую положительного единичного заряда.

Таким образом, в равномерном и бесконечном электрическом поле положительный заряд под воздействием этого поля будет перемещен на бесконечное расстояние в направлении, одинаковым с электрическим полем. Потенциал конкретной точки поля представляет собой работу, производимую электрическим полем при перемещении из этой точки положительного заряда в точку, удаленную бесконечно. При перемещении заряда в обратном направлении, внешними силами производится работа, направленная на преодоление электрической силы поля.

Разность потенциалов на практике

Разность потенциалов, существующая в двух различных точках поля, получила понятие напряжения, измеряемого в вольтах. В однородном электрическом поле очень хорошо просматривается зависимость между электрическим напряжением и напряженностью электрического поля.

Точки с одинаковым потенциалом, расположенные вокруг заряженной поверхности проводника, полностью зависят от формы этой поверхности. При этом разность потенциалов для отдельных точек, лежащих на одной и той же поверхности имеет нулевое значение. Такая поверхность проводника, где каждая точка обладает одинаковым потенциалом носит название эквипотенциальной поверхности.

Когда происходит приближение к заряженному телу, происходит быстрое увеличение потенциала, а расположение эквипотенциальных поверхностей становится более тесным относительно друг друга. При удалении от заряженных тел, расположение эквипотенциальных поверхностей становится более редким. Расположение электрических силовых линий всегда перпендикулярно с эквипотенциальной поверхностью в каждой точке.

В заряженном проводнике все точки на его поверхности обладают одинаковым потенциалом. То же значение имеется и во внутренних точках проводника.

Проводники, имеющие различные потенциалы, соединенные между собой с помощью металлической проволоки. На ее концах появляется напряжение или разность потенциалов, поэтому вдоль всей проволоки наблюдается действие электрического поля. Свободные электроны начинают двигаться в направлении увеличения потенциала, что вызывает появление электрического тока.

Падение потенциала вдоль проводника

electric-220.ru

Потенциал, разность потенциалов (напряжение) | Техника и Программы

June 4, 2011 by admin Комментировать »

Потенциал является энергетической характеристикой электрического поля.

Потенциал численно равен работе, которую надо совершить, чтобы положительный заряд в один кулон переместить из бесконечности или с поверхности земли в данную точку электрического поля.

Пример: заряд в один кулон переместили из бесконечности или с поверхности земли в данную точку электрического поля при этом была совершена работа в пять джоулей.

Значит потенциал в данной точке равен пяти единицам потенциала.

Единицей потенциала является Вольт (В).

Потенциал равен одному вольту (В), если при перемещении заряда в один кулон из бесконечности или с поверхности земли в данную точку электрического поля совершена работа в один джоуль (Дж) .

Разность потенциалов (напряжение) .

Напряжением называется разность потенциалов двух точек электрического поля. Напряжение также измеряется в вольтах. Наряду с основными единицами в практике принято пользоваться их долями или многократно увеличенными значениями :

0,000001В называется микровольтом мкВ ( одна миллионная вольта, 10-6)

0,001В называется милливольт мВ (одна тысячная вольта, 10-3)

1000 В называется киловольт 103

Если точки электрического поля имеют одинаковые потенциалы, то напряжение между этими точками равно нулю .

nauchebe.net

1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом

1.8.1. Потенциал и разность потенциалов электрического поля

Так как потенциальная энергия системы электрических зарядов пропорциональна величинам зарядов, то, при помещении в одну и ту же точку поля различных по величине зарядов, будет изменяться потенциальная энергия.

Однако отношение потенциальной энергии системы зарядов к величине помещаемого в данную точку поля электрического заряда остается постоянным, следовательно, оно может служить характеристикой электрического поля.

Потенциальную энергию положительного единичного заряда, помещенного в данную точку поля, называют потенциалом электрического поля . Потенциал электрического поля

. (1.31)

Если поле создано положительным точечным зарядом q, то

, (1.32)

где q – величина заряда, создающего электрическое поле;

r – расстояние от центра заряда до рассматриваемой точки поля.

Потенциал электрического поля системы точечных зарядов равен алгебраической сумме потенциалов полей, создаваемых отдельно взятым зарядом системы:

, (1.33)

где qi – величина i-го заряда;

ri – расстояние от i-го заряда до рассматриваемой точки поля.

Из выражения (1.31)

W = q. (1.34)

Так как работа сил электрического поля равна убыли потенциальной энергии, т.е.

A1,2 = - W = W1 - W2 = q(1 - 2), (1.35)

то

. (1.36)

При q = q+ = 1

. (1.37)

Таким образом, разность потенциалов между двумя точками поля, численно равна работе, которую совершают силы электрического поля по перемещению положительного единичного заряда из одной точки поля в другую.

При перемещении положительного единичного электрического заряда из данной точки поля в бесконечность

A1, = W1 - W = q1,

а

. (1.38)

Если q = q+ = 1, то

. (1.39)

Следовательно, потенциал электрического поля численно равен работе сил электрического поля по перемещению положительного единичного заряда из данной точки поля в бесконечность.

Потенциал и разность потенциалов электрического поля являются его энергетическими характеристиками. В системе СИ потенциал и разность потенциалов измеряются в вольтах.

Один вольт – это потенциал такой точки электрического поля, находясь в которой заряд в 1 Кл обладает потенциальной энергией, равной 1 Дж.

1.8.2. Связь напряженности электрического поля с его потенциалом

Каждая точка электрического поля характеризуется напряженностью и потенциалом (силовой и энергетической характеристиками). Между ними должна существовать связь, которую можно установить исходя из следующих соображений.

Элементарная работа, совершаемая силами электрического поля по перемещению электрического заряда на расстояние dl,

dA = =F∙dl∙cos = Fl∙dl = qEl∙dl.

Работа совершается за счет убыли (уменьшения) потенциальной энергии:

dA = - dW = - qd.

Следовательно, имеем

qEldl = - qd.

Отсюда

, (1.40)

где характеризует быстроту изменения потенциала в данном направлении l и называется градиентом потенциала;

l – произвольно выбранное направление.

В векторной форме

E = - grad . (1.41)

Знак "минус" означает, что вектор напряженности электрического поля направлен в сторону убывания потенциала.

Проинтегрировав формулу d = - Eldl, получим

;

.

Откуда

, (1.42)

где d = lcos - расстояние между точками 1 и 2 поля.

В векторной форме выражение (1.41), можно представить так:

. (1.43)

Зная теорему Остроградского-Гаусса и связь между напряженностью и потенциалом электрического поля, можно по известной величине определить неизвестную.

studfiles.net

19. Эдс, разность потенциалов и напряжение.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (н епотенциальных) сил висточниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил (). В замкнутом контуре () тогда ЭДС будет равна:

, где — элемент длины контура.

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

Электрическое напряжение между двумя точками электрической цепи или электрического поля, равно работе электрического поля по перемещению единичного положительного заряда из одной точки в другую. В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд; в этом случае Э. н. между двумя точками совпадает с разностью потенциалов между ними.

Если поле непотенциально, то напряжение зависит от того пути, по которому перемещается заряд между точками. Непотенциальные силы, называются сторонними, действуют внутри любого источника постоянного тока (генератора, аккумулятора, гальванического элемента и др.). Под напряжением на зажимах источника тока всегда понимают работу электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника; в этом случае Э. н. равно разности потенциалов на зажимах источника и определяется законом Ома: U = IR—E, где I — сила тока, R — внутреннее сопротивление источника, а E — его электродвижущая сила (эдс). При разомкнутой цепи (I = 0) напряжение по модулю равно эдс источника. Поэтому эдс источника часто определяют как Э. н. на его зажимах при разомкнутой цепи.

В случае переменного тока Э. н. обычно характеризуется действующим (эффективным) значением, которое представляет собой среднеквадратичное за период значение напряжения. Напряжение на зажимах источника переменного тока или катушки индуктивности измеряется работой электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника или катушки. Вихревое (непотенциальное) электрическое поле на этом пути практически отсутствует, и напряжение равно разности потенциалов.

Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Наименование и обозначение производной единицы СИ:

международное – volt, V

русское – вольт, В

Выражение через основные и производные единицы СИ:

1 V = 1 W / A

studfiles.net

Потенциал. Разность потенциалов. Напряжение

К оглавлению...

Электростатическое поле обладает важным свойством: работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Следствием независимости работы от формы траектории является следующее утверждение: работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Свойство потенциальности (независимости работы от формы траектории) электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. А физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля. В Международной системе единиц (СИ) единицей потенциала (а значит и разности потенциалов, т.е. напряжения) является вольт [В]. Потенциал - скалярная величина.

Во многих задачах электростатики при вычислении потенциалов за опорную точку, где значения потенциальной энергии и потенциала обращаются в ноль, удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом: потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Вспомнив формулу для потенциальной энергии взаимодействия двух точечных зарядов и разделив ее на величину одного из зарядов в соответствии с определением потенциала получим, что потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

Потенциал рассчитанный по этой формуле может быть положительным и отрицательным в зависимости от знака заряда создавшего его. Эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при r ≥ R (снаружи от шара или сферы), где R – радиус шара, а расстояние r отсчитывается от центра шара.

Для наглядного представления электрического поля наряду с силовыми линиями используютэквипотенциальные поверхности. Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала. Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы.

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

В этих формулах:

· φ – потенциал электрического поля.

· ∆φ – разность потенциалов.

· W – потенциальная энергия заряда во внешнем электрическом поле.

· A – работа электрического поля по перемещению заряда (зарядов).

· q – заряд, который перемещают во внешнем электрическом поле.

· U – напряжение.

· E – напряженность электрического поля.

· d или ∆l – расстояние на которое перемещают заряд вдоль силовых линий.

Во всех предыдущих формулах речь шла именно о работе электростатического поля, но если в задаче говорится, что «работу надо совершить», или идет речь о «работе внешних сил», то эту работу следует считать так же, как и работу поля, но с противоположным знаком.

pdnr.ru


Каталог товаров
    .