интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Как рассчитать емкость гасящего конденсатора простого блока питания. Формула напряжение конденсатора


Как рассчитать емкость гасящего конденсатора простого блока питания

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.Сложная - подходит для расчета при произвольном выходном напряжении.Простая - подходит в ситуациях, когда выходное напряжение не более 10% от входного. I - выходной ток нашего БПUвх - напряжение сети, например 220 ВольтUвых - напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.С - собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения - радиопульт с питанием 5 Вольт + реле на 12 Вольт.Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных - 2,2мкФ, ну или "по импортному" - 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:1. Бросок тока при включении может сжечь диодный мост.2. При выходе из строя конденсатора может быть КЗ3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:1. Резистор R1 последовательно с конденсатором2. Предохранитель 0.5 Ампера.3. Резистор R2 параллельно конденсатору.4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим - небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.Ток - 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов - 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:1. Напряжение конденсатора2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой "простой" блок питания и решить, нужен ли он.В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БПНапример HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку. Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике - Начинающим.

www.kirich.blog

Конденсаторы

Электрическая емкость

      При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q.

  . (5.4.1) 

      Коэффициент пропорциональности С называют электроемкостью – физическая величина, численно равная заряду, который необходимо сообщить проводнику для того, чтобы изменить его потенциал на единицу.

  . (5.4.2) 

      Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

      Если потенциал поверхности шара

  (5.4.3) 

то

  (5.4.4) 

      По этой формуле можно рассчитать емкость Земли. Если диэлектрическая проницаемость среды ε = 1 (воздух, вакуум) и  то имеем, что CЗ = 7·10–4 Ф или 700 мкФ.

      Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10–9 Ф и 1пкФ (пикофарада) = 10–12 Ф.

      Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции.

      Конденсатор – это два проводника, называемые обкладками, расположенные близко друг к другу.

      Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

      Конденсаторы бывают плоские, цилиндрические и сферические.

      Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

      Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

  (5.4.5) 

      Помимо емкости каждый конденсатор характеризуется Uраб (или Uпр.) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

      Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

      1) Параллельное соединение конденсаторов (рис. 5.9):

Рис. 5.9

      В данном случае общим является напряжение U:

     .

Суммарный заряд:

Результирующая емкость:

      Сравните с параллельным соединением сопротивлений R:

.

      Таким образом, при параллельном соединении конденсаторов суммарная емкость

.

Общая емкость больше самой большой емкости, входящей в батарею.

      2) Последовательное соединение конденсаторов (рис. 5.10):

      Общим является заряд q.

Рис. 5.10

            или    , отсюда

  (5.4.6) 

      Сравните с последовательным соединением R:

      Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

Рис. 5.11

Напряжение между обкладками:

где  – расстояние между пластинами.

Так как заряд , то

  . (5.4.7) 

      Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

      Из (5.4.6) можно получить единицы измерения ε0:

  (5.4.8) 

.

2. Емкость цилиндрического конденсатора

      Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

где λ – линейная плотность заряда,R1 иR2 – радиусы цилиндрических обкладок,l– длина конденсатора, .

Рис. 5.12

Тогда, так как , получим

  (5.4.9) 

      Понятно, что зазор между обкладками мал:  то есть

Тогда

  (5.4.10) 

3. Емкость шарового конденсатора (рис. 5.13)

Рис. 5.13

      Из п. 3.6 мы знаем, что разность потенциала между обкладками равна:

Тогда, так как , получим

.

      Это емкость шарового конденсатора, где R1 и R2 – радиусы шаров.

      В шаровом конденсаторе    – расстояние между обкладками. Тогда

  (5.4.11) 

      Таким образом, емкость шарового конденсатора с достаточной степенью точности можно рассчитать так же, как и емкость плоского, и цилиндрического конденсаторов.

ens.tpu.ru

Соединения конденсаторов. Энергия электрического поля конденсатора.

Соединения конденсаторов .

Параллельное соединение конденсаторов

 

Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора

 

Параллельное соединение конденсаторов

общая емкость больше емкости любого из параллельно соединенных конденсаторов

Параллельное соединение конденсаторов

Вывод: При параллельном соединении конденсаторов

  • заряды складываются,
  • напряжения одинаковые,
  • емкости складываются.

Т.о.,  общая емкость больше емкости любого из параллельно соединенных конденсаторов

Параллельное соединение конденсаторов

Последовательное соединение конденсаторов

 

Производят только одно соединение, а две оставшиеся обкладки - одна от конденсатора С1 другая от конденсатора С2 - играют роль обкладок нового конденсатора.

 

Последовательное соединение конденсаторов

 общая емкость меньше емкости любого из последовательно соединенных конденсаторов

Последовательное соединение конденсаторов

Вывод: При последовательном соединении конденсаторов

  • напряжения складываются,
  • заряды одинаковы,
  • складываются величины, обратные емкости.

   Т.о.,  общая емкость меньше емкости любого из последовательно соединенных конденсаторов.

Последовательное соединение конденсаторов

Энергия электрического поля конденсатора.

Под  энергией электрического поля конденсатора будем понимать энергию одной его обкладки, находящейся в поле, созданном другой  обкладкой. Тогда: Энергия электрического поля конденсатора

 Формулы справедливы для любого конденсатора.

Пример: С=2мкФ; U=1000В.

t=10-6c.W=1 Дж  - опасно для жизни!

Энергия электрического поля конденсатора

Энергия электрического поля конденсатора

Плотность энергии.

 плотность энергии (энергия единицы объема) - плотность энергии (энергия единицы объема).

Формула справедлива для полей любых конденсаторов и, кроме того, для полей, меняющихся со временем (неэлектростатических).

Плотность энергии

плотность энергии (энергия единицы объема)

www.eduspb.com

Расчет электролитического конденсатора в сетевом выпрямителе



Расчет сглаживающего конденсатора в сетевом выпрямителе.

Входной выпрямитель является неотъемлемым элементом большинства преобразователей, питающихся от переменного сетевого напряжения. После диодного моста напряжение на конденсаторе будет иметь вид пилы, верхняя точка которой равна амплитудному напряжению сети (минус падение напряжения на диодах моста, что несущественно для устройств, питающихся от 220В), а нижняя зависит от емкости конденсатора и тока потребления нагрузки выпрямителя. В этой статье приведен пример расчета емкости сглаживающего конденсатора выпрямителя. Более полная информация приведена в статье А.И. Колпакова.

 

В качестве примера приведен расчет конденсатора для реального преобразователя, разработка которого была доведена до практического воплощения,  Pвых=1200Вт (выходное напряжение 60В, ток 20А, КПД около 90%)

 

Исходные данные для расчета:

Uвх = 220В       (напряжение сети)

f = 50Гц             (частота сетевого напряжения)

Задаваемые параметры:

Umin =260В     (минимальное напряжение - задается минимальное значение пилообразного напряжения на конденсаторе)

Iнагр = 5.13А           (ток потребления нагрузки выпрямителя, если известна мощность нагрузки, то ток можно вычислить как I=Pвх/Uмин, в моем случае Pвх=Pвых/КПД, т.е I=(1200/0.9)/260=5.13А )

  1. Вычисляется время заряда конденсатора (в течение которого ток потребляется от сети). Так как напряжение изменяется по синусоидальному закону, используем для расчета формулу тригонометрии:

    t(зар) = (arccos(Umin/Umax))/(2*pi*f)

    Для синусоиды Umax = Uвх*1.41=220*1.41= 310 В (амплитудное сетевое напряжение), т.е.

    t(зар) = (arccos(260/310))/(2*3.141*50) = 0.00183 c

  2. Вычисляется время разряда конденсатора:

    t(раз) = T-t(зар)

    в двухполупериодном выпрямителе T = (1/f)/2 = 1/50/2=0.01с (частота сети в двухполупериодном выпрямителе удваивается)

    t(раз) = 0.01-0.00183 = 0.0082 с

  3. Находится емкость конденсатора, на которой за время t(раз) при токе нагрузки Iнагр напряжение с Umax уменьшится до Umin:

      C = Iнагр*dt/dU,

     в нашем случае dt это  t(раз), а dU является разница (Umax-Umin)

    C = 5.13*0.0082/(310-260) = 0.00084Ф = 840 мкФ

  4. Находим пиковый зарядный ток:

    Ipic = C*dU/dt,

    где dU = Umax-Umin, а dt - это время заряда конденсатора, т.е. t(зар)

    Ipic = 0.00084*(310-260)/0.00183 = 23А

  5. Находим среднеквадратичное значение импульсного тока через конденсатор по формуле:

    Irms = √(I(зар)²+I(разр)²),

    где  I(зар)-среднеквадратичный ток через конденсатор на цикле заряда, а I(разр) - среднеквадратичный ток через конденсатор на цикле разряда.

    Считаем, что ток заряда конденсатора имеет треугольную форму, тогда

    I(зар) = Ipic*√((t(зар)/T)/3) = 23*√((0.00183/0.01)/3) = 5.7A

    На интервале разряда через конденсатор течет ток нагрузки, поэтому

    I(разр) = Iнагр*t(раз)/T = 5.13*0.0082/0.01 = 4.2А

    Итак,  Irms = √(5.7²+4.2²) = 7.1А

    Полученное  Irms используется при выборе конденсатора (для электролитических конденсаторов обычно указывается допустимое значение импульсного тока для частоты 100Гц). Если у выбранного конденсатора допустимое значение импульсного тока меньше, необходимо набирать конденсаторы с меньшей емкостью и соединять в параллель исходя из условия: суммарная емкость не меньше рассчитанной, а ток, приходящийся на каждый из конденсаторов (ток по конденсаторам с одинаковой емкостью разделится равномерно), не более допустимого.

     

Расхождение теоретического расчета с практикой.

В заключение скажу, насколько вышеизложенная теория разошлась с практикой, и решайте сами, стоит ли применять эту методику.

Суммарная реальная емкость конденсаторов в моем преобразователе составила 1020мкФ, при этом измеренные осциллографом параметры были следующие:

  • Umin   равнялось примерно 265-275В (близко к расчетному)

  • t(зар) составляло около 3мс (приличная погрешность - по расчету 1.8мс, а учитывая, что емкость выше расчетной, должно быть еще меньше)

  • Ipic составило 21А (близко к расчетному)

www.trzrus.ru

электрическая ёмкость, рабочее напряжение и напряжение пробоя.

Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Емкость

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад .

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой:

где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице),

— электрическая постоянная, численно равная 8,854187817.....* 10 -12(эта формула справедлива, лишь когда d много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Рабочее напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Напряжение пробоя

Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора.

Напряжение пробоя - это то напряжение при котором происходит пробой.

malishev.info


Каталог товаров
    .