интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

1.2. Электрический ток. Плотность тока. Электрическое напряжение. Электрическое напряжение на проводнике это по определению


1.2. Электрический ток. Плотность тока. Электрическое напряжение

Направленное движение свободных заряженных частиц в проводнике под действием электрического поля называется электрическим током. Электриче­ский ток является скалярной величиной, которая равна пределу отношению за­ряда к промежутку времени, когда последний стремится к нулю:

Электрический ток, неизменный по направлению и величине, называется постоянным током.

В проводниках первого рода (металлы) ток образуется свободными электро­нами, поэтому электропроводность их называется электронной. В про­водниках второго рода (расплавленные соли, растворы кислот, щелочей, солей) носителями тока, заряженными частицами, являютсяионы.

Значение постоянного тока определяется количеством электричества или зарядом Q, проходящим через поперечное сечение проводника в 1с:

Размерность тока – ампер (А). 1А– неизменный ток, который, проходя по двум параллельным проводникам бесконечной длины и ничтожно малого круг­лого сечения, расположенным на расстоянии 1м один от другого в вакууме, вы­звал бы между этими проводниками силу, равнуюНна каждый метр длины.

Положительным направлением электрического тока принято условно счи­тать направление движения положительных зарядов от плюса источника элек­трической энергии к минусу. На схеме оно совпадает с направлением ЭДС и ука­зывается стрелкой.

Условиями возникновения электрического тока являются:

1) наличие источника, поддерживающего разность потенциалов между носи­телями зарядов;

2) замкнутость пути, по которому перемещаются заряды.

Количественно ток определяется по показаниям электроизмерительных при­боров – амперметров, где используются тепловое, магнитное и химическое действие тока.

Чтобы судить о степени загруженности проводов электрическим током, вво­дится понятие плотность тока.

Плотность тока δ есть векторная величина, равная пределу отношения тока сквозь элемент поверхности, перпендикулярной направлению движения заряжен­ных частиц к этому элементу, когда последний стремится к нулю:

.

Допускаемая плотность тока, например, в проводах обмоток электрических машин равна 3...7 А/мм2.

Если ток равномерно распределен по сечению проводника, то плотность тока

.

Электрическим напряжениемназывается скалярная величина, равная ли­нейному интегралу напряженности электрического поля. Для электрического поля постоянного тока

, (1.1)

где –напряженность электрического поля; и–потенциалы однородного электрического поля в поперечных сечениях a и b участка проводника.

Размерность напряжения – вольт (В). 1 В – это напряжение между концами проводника, в котором при перемещении положительного заряда 1 кулон (Кл) со­вершается работа в 1 джоуль (Дж).

При расчетах электрических цепей положительные направления токов в элементах цепи в общем случае заранее неизвестны. Поэтому одно из двух воз­можных направлений принимается за положительное и указывается на схеме стрелкой. Это направление выбирают произвольно. Условное положительное направление напряжения на схеме электрической цепи также выбирается произ­вольно и указывается стрелкой. Между зажимами потребителей электрической энергии положительные направления тока и напряжения, как правило, выбира­ются одинаковыми.

На рис. 1.5 а показаны обозначения условных положительных направлений на примере простейшей цепи постоянного тока.

Иногда условные положительные направления напряжения указывают двой­ными индексами . Каждый индекс соответствует точке, обозначенной на схеме. Условное положительное направление напряжения принято от точкиа с первым индексом к точкев со вторым индексом:

.

Так как условные положительные направления тока и напряжения совпа­дают, на схеме достаточно указать только направления токов (рис. 1.5 б). Если на схеме не указывается источник, то между его выходными зажимами обязательно указывается напряжение (рис. 1.5 б). Если в результате расчета электрической цепи ток в элементе электрической цепи получился отрицательным, это озна­чает, что действительное направление тока противоположно принятому направлению.

studfiles.net

Электрический ток — определение и пояснения

Каждому обывателю знакомы на слух электрические величины — ток, напряжение, — от них зависит работа бытовых приборов, но полное понимание определения электротока есть у немногих людей. Показательно сравнение электрического тока с течением реки, только в нем двигаются частицы, имеющие заряд, а в реке — вода. Надо понимать, что ток движется только в одном направлении, для его существования должны быть созданы условия, рассмотрим эти процессы подробней.

Основные определения

Электричество каждый день окружает нас, но что такое электрический ток и связанные с ним величины — понимает не каждый человек, однако они важны для повседневной жизни. Есть несколько толкований понятия электротока:

  1. Принятое в школьном учебнике определение, что электрический ток — это движение частиц, имеющих заряд за счет воздействия на них электрического поля. Частицами являются: протоны, дырки, электроны, ионы.
  2. В электрической литературе высших учебных заведений пишется, что электрический ток это — скорость, с которой заряд изменяется с течением времени. Принимается отрицательный заряд электронов, положительный у протонов и нейтральный у нейтронов.

Схема протекания электротока в цепи:

Схема протекания электротока в цепи Схема протекания электротока в цепи

В электротехнике специалисты отмечают значение такого понятия, как сила тока — это количество частиц, имеющих заряд, которые проходят через сечение проводника с течением времени. Движение тока в проводнике можно описать следующим образом: «…Все токопроводящие материалы имеют внутреннее строение (молекулы, атомы, ядра с вращающимися электронами), когда на материал воздействует химическая реакция, электроны от одного атома перебегают к другому. Создается ситуация, при которой одни атомы испытывают недостаток в электронах, а другие — их избыток, что показывает противоположность заряда. Электроны стремятся к переходу из одного вещества в другое, это движение и есть электрический ток».

Специалисты акцентируют внимание на том, что в этом случае ток течет только до того момента, пока не произойдет уравнивание зарядов в двух веществах.

Для понимания движения тока важно знать определение напряжения — это разность потенциалов, которые берутся в двух точках электрического поля, измеряются в вольтах.

Электрическая энергия

В разных регионах, в частности, и в Украине простой обыватель интересуется: «Що таке електричний струм?», с какой целью он применяется, из чего происходит. Повседневно мы пользуемся электрической энергией, которая представлена переменным током в электрических сетях.

Переменный ток в проводнике — это когда частицы, имеющие заряд за определенный промежуток времени, меняют его по направлению, а также по величине. Графически переменный ток представляется синусоидой. Создается он генераторами, в которых вращаются катушки с проводами и в процессе вращения пересекают магнитное поле. В период вращения катушки могут открываться и закрываться по отношению к магнитному полю, что создает электрический ток, который меняется в проводниках по направлению, а полный цикл проходит за одну минуту.

Электрический ток в генераторах, принцип устройства машин:

Электрический ток в генераторах, принцип устройства машин Электрический ток в генераторах, принцип устройства машин

Вращение генераторов происходит от паровых турбин, имеющих разные источники питания: уголь, газ, атомный реактор, нефть. Далее через систему трансформаторов повышается напряжение тока, через проводники нужного диаметра он переносится без потерь на длительное расстояние. Диаметр провода, по которому проходит ток, определяет его силу и величину, горячими линиями в энергетике называются магистральные линии передачи энергии, есть и заземленные варианты, когда передача электроэнергии происходит под землей.

Где применяется электрический ток?

Именно ток значительно облегчает нам жизнь, создавая комфорт в доме. Он применяется для освещения помещений, улицы, для просушки вещей, в нагревательных элементах электроплиты, в других бытовых приборах и устройствах, выполняет работу подъема гаражных дверей и т.д.

Работа электротока в быту:

Работа электротока в быту Работа электротока в быту

Условия, необходимые для получения электротока

Для существования электротока нужны следующие условия: наличие частиц, имеющих заряд, электропроводный материал, по которому будут двигаться частицы, источник напряжения. Важным условием получения электротока является наличие напряжения, которое определяется разностью потенциалов. Иными словами, сила, создаваемая заряженными частицами отталкивания, в одной точке больше, чем в другой.

Природных источников напряжения не существует, по этой причине вокруг нас равномерно распределяются электроны, но такие изобретения, как батарейки дали возможность накапливать в них электрическую энергию.

Другим важным условием является электрическое сопротивление, или проводник, по которому будут двигаться частицы, имеющие заряд. Материалы, в которых это действие возможно, называются электропроводными, а те, в которых нет свободного движения электронов, — изоляторами. Обыкновенный провод имеет проводящую металлическую жилу и изолирующую оболочку.

Электроток в проводниках

В любом проводнике есть носители электрического заряда, которые приходят в движение под воздействием силы поля, создаваемого электрической машиной.

Металлические проводники переносят заряд при помощи электронов. Чем выше температура проводника и нагрев провода, тем хуже протекает ток, так как в нем начинается хаотическое движение атомов от теплового воздействия, увеличивается сопротивление проводящего материала. Чем ниже температура проводника (в идеале — стремление к нулю), тем меньше его сопротивление.

Движение заряженных частиц в проводнике:

Движение заряженных частиц в проводнике Движение заряженных частиц в проводнике

Жидкости могут проводить электроток при помощи ионов (электролиты). Перемещение происходит к электроду, имеющему противоположный с ионом знак, и, оседая на нем, ионы осуществляют процесс электролиза. Анионы — положительно заряженные ионы, двигающиеся к катоду. Катионы — ионы, имеющие отрицательный заряд, двигаются к аноду. В процессе нагревания электролита уменьшается его сопротивление.

Газ также имеет проводимость, электроток в нем — плазма. Движение происходит при помощи заряженных ионов или свободных электронов, которые получаются в процессе излучения.

Электронно-лучевая трубка — это пример электротока в вакууме от стержня катода к стержню анода.

Электроток в полупроводниках

Для понимания прохождения тока в этом материале дадим ему определение. Полупроводник — промежуточный материал между проводником и изолятором, зависит от удельной проводимости, наличия в нем примесей, температурного состояния и воздействующего на него излучения. Чем ниже температура, тем больше сопротивление полупроводника, свойства его влияют на измерения характеристик. Электроток в полупроводнике — это сумма электронного и дырочного тока.

Когда повышается температура полупроводника, происходит разрыв ковалентных связей от действия тепловой энергии на валентные электроны, образуются свободные электроны, в точке разрыва получается дырка. Она занимается валентным электроном другой пары, а сама перемещается далее в кристалле. Когда свободный электрон встречается с дыркой, между ними происходит рекомбинация, восстановление электронных связей. Когда на полупроводник воздействуют энергией электромагнитного излучения, появляются в нем электронно-дырочные пары.

Возникновение электротока в полупроводнике:

Возникновение электротока в полупроводнике Возникновение электротока в полупроводнике

Законы электрического тока

В электротехнике применяются основные законы, которые дают определение электрического тока. Один из главнейших — закон Ома, особенностью которого является быстрота передачи энергии без изменения ее формы из одной точки в другую.

Закон Ома:

Закон Ома Закон Ома

Этот закон показывает связь между напряжением и силой тока, а также сопротивлением проводника или участка цепи. Сопротивление измеряется в омах.

Работу электротока определяют законом Джоуля-Ленца, который говорит о том, что в любой точке цепи ток выполняет работу.

Звуон Джоуля - Ленца Звуон Джоуля - Ленца

Фарадей открыл магнитную индукцию, а также опытным способом установил, что при пересечении линии магнитной индукции поверхностью замкнутого проводника в нем появляется электроток. Он вывел закон электромагнитной индукции:

Закон электромагнитной индукции Закон электромагнитной индукции

Не замкнутые проводники, пересекающие линии магнитного поля, получают на концах напряжение, что говорит о появлении ЭДС индукции. Если магнитный поток неизменен и пересекает замкнутый контур, то в нем не возникает электротока. ЭДС индукции замкнутого контура, когда меняется магнитный поток, равен модулю его скорости изменения.

Вывод

Когда по проводнику протекает электрический ток, он его нагревает, по этой причине необходимо соблюдать меры безопасности, работая с электрическими приборами и устройствами. Нельзя допускать перегрузки линии передачи энергии, она может нагреться, и возникнет пожар. Электроток всегда движется по пути наименьшего сопротивления.

В момент появления КЗ (короткого замыкания) ток в разы возрастает, происходит моментальное выделение огромного теплового значения, которое плавит металл. Электрический ток может вызвать ожоги на теле человека или животного, но применяется в реанимационных установках, для депрессивных решений и лечения заболеваний.

По правилам электробезопасности ощутимый человеком ток наступает с величины один миллиампер, а опасным для здоровья считается ток с 0,01 ампера, смертельной величиной определена сила тока в 0,1 ампера. Безопасное напряжение для человека — 12-24-32-42 вольта.

Похожие статьи:

domelectrik.ru

Электрическое напряжение

Определение для напряжения в проводнике с током

В том случае если в проводнике есть эклектический ток, значит между любыми двумя его точками, есть разность потенциалов (${\varphi }_1-{\varphi }_2$), которая в электростатике совпадает с напряжением (U). Мы записывали, что:

Однако, для существования постоянного тока в проводнике по мимо кулоновских должны присутствовать сторонние силы, напряженность в данной точке поля в проводнике с током равна:

где $\overrightarrow{E}$ напряженность электрического поля, которая является суммой напряжённости кулоновского поля (${\overrightarrow{E}}_q$) и поля сторонних сил (${\overrightarrow{E}}_{stor}$). Следовательно, напряжение в проводнике с током не будет совпадать с разностью потенциалов.

Напряжением (падением напряжения) $U_{21}$ на участке цепи 1-2 по которому идет ток называется величина, которая равна работе, совершаемой кулоновскими и сторонними силами при перемещении единичного положительного заряда на данном участке:

где $d\overrightarrow{l}$-вектор, численно равный элементу длины проводника и направленный по касательной к проводнику, совпадающий по направлению с вектором плотности тока.

Если подставить в (4) уравнение (2), то мы получим:

где ${{\mathcal E}}_{stor}$ -- электродвижущая сила на участке цепи 1-2, равная:

${\varphi }_1-{\varphi }_2$ -- разность потенциалов электростатического поля в точках 1 и 2, которая равна:

Очевидно, что если цепь замкнута, то

В таком случае для замкнутой цепи, мы получим:

Основной единицей измерения напряжения в системе СИ является вольт -- В.

Связь силы тока и напряжения для участка цепи

Такая физическая величина, как напряжение, фигурирует во многих законах относящихся к электродинамике. Так, одним из немаловажных законов является закон Ома для произвольного участка цепи, который записывается как:

Формула (7) показывает, что напряжение на участке 1-2 равно произведению силы тока, который течет через этот участок на сопротивление этого участка. Часто индексы, которые стоят в формуле (7) у напряжения и сопротивления опускают.

Виды напряжения

На практике выделяют: мгновенное напряжение, амплитудное напряжение, среднее значение напряжения, среднеквадратичное напряжение, средневыпрямленное напряжение.

  • Мгновенное напряжение ($U_m$) -- равно разности потенциалов двух точек проводника с током в заданный момент времени. Данное напряжение является функцией от времени.
  • Амплитудное напряжение ($U_{max}$) -- максимальное значение (по модулю) мгновенного напряжения за период изменений напряжения.
  • Среднее значение напряжения за период колебаний (T) находят как:
  • \[\left\langle U\right\rangle =\frac{1}{T}\int\limits^T_0{U\left(t\right)dt\left(11\right).}\]
  • Среднеквадратичное напряжение вычисляется в соответствии с формулой:
  • \[U_{kv}=\sqrt{\frac{1}{T}\int\limits^T_0{U^2\left(t\right)dt}}\left(12\right).\]

    Для гармонически изменяющегося напряжения выполняется равенство:

    \[U_{kv}=\frac{1}{\sqrt{2}}U_{max}\left(13\right).\]
  • Средневыпрямленное напряжение ($U_v$) определено как:
  • \[U_v=\frac{1}{T}\int\limits^T_0{\left|U(t)\right|}dt\ \left(14\right).\]

    Для гармонически изменяющегося напряжения выполняется равенство:

    \[U_v=\frac{2}{\pi }U_{max}\left(15\right).\]

Напряжение при соединении проводников

При последовательном соединении проводников (рис.1), суммарное напряжение в цепи находится как сумма напряжений:

Рис. 1

При параллельном соединении (рис.2) результирующее напряжение постоянно. Сила тока равна сумме токов в проводниках:

Рис. 2

Пример 1

Задание: На рис.3 изображена замкнутая цепь, которая содержит сопротивление и источник тока ЭДС которого равна $\mathcal E$, внутреннее сопротивление источника r.

Найдите напряжение на внешней цепи, зная параметры источника тока и силу тока в цепи I.

Рис. 3

Решение:

Если цепь замкнута, то ${\varphi }_1={\varphi }_2$. Напряжение на клеммах источника тока (на внешней цепи) равно:

\[{\mathcal E}=IR\ \left(1.1\right),\]

где ${\mathcal E}$ - алгебраическая сумма всех ЭДС в цепи.

Напряжение на внешней цепи, которая задана, равно:

\[U=IR_1(1.2)\]

Если источник ЭДС имеет внутреннее сопротивление r, то для сопротивления всей цепи (R) запишем:

\[R=R_1+r\to R_1=R-r\ \left(1.3\right),\]

где $r$ -- внутреннее сопротивление источника.

Cила тока во внешней цепи, равна:

\[I=\frac{{\mathcal E}}{R_1+r}\left(1.4\right).\]

Подставим в (1.1) формулы (1.4) и (1.3), получим:

\[U=\frac{{\mathcal E}R_1}{R_1+r}=\frac{{\mathcal E}\left(R-r\ \right)}{R_1+r}=\frac{{\mathcal E}R}{R_1+r}-\frac{{\mathcal E}r}{R_1+r}=IR-Ir={\mathcal E}-Ir.\]

Ответ: $U={\mathcal E}-Ir.$

Пример 2

Задание: Как можно измерить ЭДС источника тока?

Решение:

При разомкнутой цепи сила тока в ней равна нулю (I=0), Исходя из результата предыдущего примера в цепи (рис. 3) мы имеем:

\[U={\mathcal E}-Ir\ \left(2.1\right)\]

при I=0 из (2.1) получаем, что:

\[U={\mathcal E}\left(2.2\right).\]

А так как сторонние силы при разомкнутой цепи работы не совершают, то:

\[U={\varphi }_1-{\varphi }_2(2.3).\]

Следовательно, можно записать, что при разомкнутой цепи:

\[{\mathcal E}={\varphi }_1-{\varphi }_2.\]

Ответ: Для того чтобы найти ${\mathcal E}$ источника тока можно измерить разность потенциалов на его клеммах в ситуации, когда цепь не замкнута.

spravochnick.ru

Электрический ток, напряжение. Положительное направление тока, напряжения. Численное определение электрического тока

  1. Электрический ток, напряжение. Положительное направление тока, напряжения. Численное определение электрического тока
Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение. Напряжение - это физическая величина, характеризующая электрическое поле, которое создает ток. Электрический ток и напряжение являются основными величинами, характеризующими состояние электрических цепей. Электрический ток в проводниках представляет явление упорядоченного движения электрических зарядов под действием электрического поля. Под словами ток понимают также интенсивность или силу тока, измеряемую количеством электрического заряда q, прошедшего через поперечное сечение проводника в единицу времени:

где ∆q - электрический заряд, прошедший за время ∆t через поперечное сечение проводника.

Следовательно, ток характеризует скорость изменения заряда во времени.

Численное значение электрического тока I определяется как отношение скорости изменения заряда Δq ко времени t.

I=Δq/t

Единица измерения тока - Ампер (A).

Электрический ток может быть постоянным или переменным.

2.Сопротивление, индуктивность, емкость. Закон Ома для этих элементов.

Электрическое сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления. Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление;

U — разность электрических потенциалов (напряжение) на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

Индуктивность физическая величина, характеризующая магнитные свойства электрической цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пространстве магнитное поле, причём Магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо пропорционален силе тока I : Ф=LI

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. Q-заряд φ- потенциал проводника.

3.Источники напряжения. Идеальные источники, их ВАХ
  1. Источник напряжения представляет собой активный элемент с двумя зажимами, напряжение на котором не зависит от тока, проходящего через источник

Предполагается, что внутри идеального источника напряжения пассивные сопротивление, индуктивность и емкость отсутствуют и, следовательно, прохождение тока не вызывает падения напряжения.

Величина работы, производимой данными сторонними силами по перемещению единицы положительного заряда от отрицательного полюса источника напряжения к положительному по полюсу, называется электродвижущей силой (э.д.с.) источника и обозначается e(t).

ВАХ реальных источников пересекает обе оси координат и эти точки пересечения соответствуют нулевому току через источник и нулевому падению напряжения. Режим с нулевыи током и ненулевым падением напряжения называется холостым ходом, а режим с нулевым падением напряжения и ненулевым током на выходе - коротким замыканием.

Уравнение ВАХ ИЭ представляет собой уравнение прямой линии в координатах U-I. Его можно получить из уравнения прямой линии, проходящей через начало координат I = - Ug = -U/r либо из обратной функции U = -Ir , где r - коэффициент соответствующий котангенсу угла наклона к оси U и имеющий размерность сопротивления, а g = 1/r - тангенс угла наклона с размерностью проводиомсти. Для получения ВАХ ИЭ можно сместить линию I = - Ug на величину тока короткого замыкания

I = -Ug + Iкз = Iкз - Ug = J - Ug

или обратную функцию U = -Ir сместить на величину напряжения холостого хода

U = -Ir + Uхх = Uхх - Ir = E - Ir

4.Электрическая схема, её ветви, узлы, контуры. Последовательное, параллельное, смешанное соединение элементов. Устранимый узел.

Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов рассматриваемой электрической цепи

Ветвь образуется одним или несколькими последовательно соединенными элементами цепи.

Узел - место соединения трех или большего числа ветвей.

Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром

5.Закон Ома для пассивного и активного участка электрической цепи. Применение закона Ома

Закон Ома для пассивного участка электрической цепи.

При протекании электрического тока через сопротивление R, напряжение U и ток I на этом участке связаны между собою согласно закону Ома: Сопротивление R - это коэффициент пропорциональности между током и напряжением.

Закон Ома можно записать через разность потенциалов:

Закон Ома для активного участка электрической цепи.

Закон Ома для активного участка цепи между точками а и в имеет вид:

Напряжение на участке электрической цепи Uab и ЭДС берутся со знаком «плюс», если их направление совпадает с направление протекания тока. Напряжение (разность потенциалов) и источник электродвижущей силы берутся со знаком «минус», если их направление не совпадает с направлением протекания тока.

Пример составления уравнения по закону Ома

Рассмотрим пример решения задачи на составления уравнения по закону Ома для участка линейной электрической цепи с двумя источниками ЭДС.

Пусть в данной электрической цепи направление тока будет из точки "a" в точку "b". Напряжение Uab Направляется всегда из первой буквы ("a") к последней ("b").

Согласно правилу составления уравнения по закону Ома источник ЭДС E1 берем со знаком "плюс", т.к. его направление (направление стрелочки) совпадает с направлением протекающего тока.

Источник ЭДС E2 берем со знаком "минус", т.к. его направление (направление стрелочки) не совпадает с направлением протекающего тока.

Напряжение Uab или разность потенциалов φa - φb берем со знаком "плюс", т.к. его направление совпадает с направление протекающего тока.

Сопротивление R1 и R1 соединены последовательно. При последовательном соединении сопротивлений их эквивалентное значение равно сумме.

В результате составленное уравнение по закону Ома будет иметь вид:

Пусть потенциал в данной задаче потенциал точки "а" равен 10 вольт, потенциал точки "b" = 7 вольт, E1=25 В, E2=17 В, R1=5 Ом, R2=10 Ом. Рассчитаем величину тока:

Полученный ток равен 1 Ампер.

6.Первый и второй законы Кирхгофа. Правило записи второго закона Кирхгофа. Количество независимых уравнений. Применение законов для расчета цепей постоянного тока. Пример.

Первый закон Кирхгофа

алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю.

Устанавливать знаки для входящих и исходящих токов можно произвольно, но обычно придерживаются правила знаков.

Правило знаков: токи, входящие в узел, берутся со знаком "+", а выходящие из узла - со знаком "-".

Второй закон Кирхгофа.

Формулировка: в любом замкнутом контуре алгебраическая сумма падений напряжений на резистивных элементах равна алгебраической сумме эдс.

Перед записью уравнения по второму закону Кирхгофа выбирают направление обхода по замкнутому контуру (по часовой стрелке или против). Здесь так же принято правило знаков.

Количество уравнений Кирхгофа

На практике составляют минимальное количество уравнений. Количество уравнений должно быть равно количеству неизвестных, которые необходимо найти. Неизвестными в данной задаче являются токи. Количество возможных токов равняется количеству ветвей, так как в каждой ветви протекает определенный ток.

Поэтому достаточно сосчитать количество ветвей в схеме, для того чтобы знать, сколько необходимо будет составить уравнений.

Законы Кирхгофа применяют для анализа и расчета разветвленных сложных электрических цепей постоянного и переменного тока. Они позволяют рассчитать электрические токи во всех ветвях. По найденным токам можно рассчитать падение напряжения, мощность и т.д.

7.Баланс мощностей в цепях постоянного тока. Пример расчета.

Баланс мощностей.

Для любой электрической цепи суммарная мощность Ри, развиваемая источниками электрической энергии (источниками тока и ЭДС), равна суммарной мощности Рп, расходуемой потребителями (резисторами).

РR = U×I = R∙I 2 = U 2/R – мощность, рассеиваемая резистором.

РЕ = ±Е∙I – мощность источника ЭДС.

РJ = ± UJ ×J – мощность источника тока.

Мощности, рассеваемые резисторами, всегда положительны, в то время как мощности источников электрической энергии, в зависимости от соотношения направлений падения напряжения и тока в них, могут иметь любой знак. Если направление протекания тока через источник противоположно направлению падения напряжения на нём, то мощность источника положительна, т.е. он отдаёт энергию в электрическую цепь. В противном случае мощность источника отрицательна, и он является потребителем электрической энергии. Следует заметить, что направление падения напряжения всегда противоположно направлению ЭДС, поэтому для источника ЭДС условием положительной мощности является совпадение направлений ЭДС и тока.

8. Метод узловых напряжений. Его применение в схемах с идеальными источниками э.д.с. Пример.

Заключается в опред на основании 1 закона К потенц в узлах эл цепи относ некоторого баз узла. Баз узел в общем случае выбир произвольно, потенциал этого узла =0. Разности потенц- узловым напряжением. Nур=Ny-1-Nэ.д.с.

Узло напр U10=1-0. Полож напряж узл напр указывается стрелкой от рассматро узла к базисному.

Напряжение на ветвях цепи равно, очевидно, разности узловых напряжений концов данной ветви. Например, напряжение ветви 4 равно: U4=I4R4=U10-U20

Уравнения по первому закону Кирхгофа для 1 и 2 узлов соответственно записываются:

Узловое напряжение Отсюда

Из приведенных выражений видно:

Собственная проводим узла равна сумме проводим ветвей, сход в данном узле.

Взаимная проводь равна сумме провод ветвей, соед данные узлы.

собственная провод входит в выражения со знаком «+», а взаимная проводимость – со знаком «-».

Для произв схемы, сод n+1 узлов, сист ур по методу узловых напр имеет вид:

Порядок расчета электрических цепей по методу узловых напряжений:

  1. Выбираем баз узел, где сходится большее кол ветвей. Если имеется ветвь, сод идеальную э.д.с., то базисный узел должен быть концом или началом этой ветви.
  2. Составляется система уравнений для неизвестных узловых напряжений в соответствии с общей структурой этих уравнений (36).
  3. Решая данную систему, находят напряжения узлов относительно базиса.
  4. Токи ветвей определяют по обобщенному закону Ома:
9.Зависимости между сопротивлениями и проводимостями участка цепи.

Пользуясь комплексной формой записи, при заданном комплексном сопротивлении Z = R + jХ некоторого участка цепи находим для того же участка цепи комплексную проводимость . (3.15)

В свою очередь, если задана комплексная проводимость некоторого участка цепи Y = g – jb, то комплексное сопротивление того же участка цепи (3.16)

Выражения (3.15) и (3.16) показывают, что реактивное сопротивление Х и реактивная проводимость b одного и того же участка цепи имеют одинаковый знак.

Кроме того, каждое слагающее проводимости (g и b) зависит как от активного, так и от реактивного сопротивлений, т.е. от R и Х.

Соответственно, каждое слагающее сопротивлений R и Х является функцией активной и реактивной проводимостей g и b.

Соотношения g = l/R и b = 1/х справедливы только в частном случае, когда элемент R, L или С рассматривается в отдельности, например:

10.Метод наложения. Понятия входных и взаимных проводимостей.

ПРИНЦИП НАЛОЖЕНИЯ (для линейных цепей): если в цепи действует несколько источников, то ток в каждой ветви будет равен алгебраической сумме частичных токов, создаваемых каждым источником в отдельности.

АЛГОРИТМ МЕТОДА НАЛОЖЕНИЯ: 1) устраняются все исотчники кроме одного, при этом источники ЭДС закарачиваются, источники тока размыкаются, 2) определяются чатичные токи во всех ветвях, создаваемые данным источником, 3) исключается рассмотренный источник, подключается следующий, определяются частичные токи, создаваемые данным источником, 4) определяются истинные токи в ветвях как алгебраическая сумма частичных токов Ik=Ik’+Ik’’+Ik’’’+…+Ik(c.n), n – число источников. Метод неудобен для расчета цепей с большим количеством источников и неприемлен

для расчета нелинейных цепей, но

незаменим при расчете цепей

несинусоидального тока.

ПОНЯТИЕ О ВХОДНЫХ И ВЗАИМНЫХ ПРОВОДИМОСТЯХ.

Рассмотрим сполошную пассивную цепь, выделим в ней

к-ю ветвь, в которую подключим источник Ek. Если

через к-ю и m-ю ветвь цепь замыкается только

один контурный ток, то выражения для токов будут:

Ik=Ek ∆kk / ∆ = Ek Gkk; Im=Ek ∆km / ∆ = Ek Gkm.

Взаимная проводимость к-й и m-й цепи:

Gkm=Im/Ek=∆km/∆ (величина определяется экспериментально).

Она зависит от параметров цепи, но может быть и определена экспериментально. Только путем измерения тока в пассивной цепи, создаваемого единственной ЭДС включенной в к-ю ветвь. Gkm=Gmk т.к. ∆km=∆mk.

11. Теорема компенсации, доказательство.

В электрической цепи любой пассивный элемент можно заменить эквивалентным источником напряжения, э.д.с. которого равна падению напряжения на данном элементе E=U=IR и направлена навстречу ему.

Справедливость этого утверждения вытекает из того, что любое из слагающих падения напряжений, входящих в уравнения по второму закону Кирхгофа может быть перенесено в другую сторону уравнения с противоположным знаком, т.е. может рассматриваться как дополнительная э.д.с., направленная навстречу току.

Рис. 31. Иллюстрация к теореме компенсации.

Если в ветвь ''ab'' рис.31,а последовательно включить две равные, но противоположно направленные э.д.с. E/=E//=IR, то точки ''a'' и ''d'', ''c'' и ''b'' оказываются соответственно точками одинакового потенциала:

Таким образом, закоротив точки ''a'' и ''d'' и исключив, получим этот участок из ветви «ab», получим схему рис. 31,в. Ток ветви при этом не изменится.

12. Теорема взаимности, доказательство.

Теорема взаимности формулируется следующим образом: для любой линейной цепи ток в k-ветви, вызванный источником ЭДС Еm находящимся в m-ветви, Ik = Emgkm равен току lm в m-ветви, вызванному источником ЭДС Ek (численно равной ЭДС Em), находящимся в k-ветви, Im = Ekgmk.

Для доказательства теоремы взаимности обратимся к рис. 2.15,а. Как и при выводах в § 2.15, выделим две ветви схемы: ветвь k и ветвь m. Включим в ветвь m источник ЭДС Еm, в ветвь k - амперметр А1 для измерения тока Ik. Пусть каждая из ветвей k и m входит соответственно только в k- и m-контуры. Поэтому по методу контурных токов Ik = EmΔkm/Δ. Поменяем местами источник ЭДС и амперметр, т. е. источник ЭДС переместим из ветви m в ветвь k и назовем теперь Ek, а амперметр - из ветви k в ветвь m. В этом случае ток Im = Ek Δmk/Δ.

Так как Ek = Еm, a Δmk = Δkm в силу симметрии определителя системы Δ относительно главной диагонали (см. § 2.13), то ток Ik в схеме рис. 2.15, б равняется току Im в схеме рис. 2.15, в.

При практическом использовании теоремы взаимности важно иметь в виду взаимное соответствие направлений токов и ЭДС в схемах рис. 2.15, б, в.

Так, если ЭДС Ek источника ЭДС, находящегося в k-ветви схемы рис. 2.15, в, направлена согласно с контурным током Ik в схеме рис. 2.15, б, то положительное направление отсчета для тока Im в схеме рис. 2.15, в будет совпадать с положительным направлением контурного тока по ветви m (ЭДС Еm в схеме рис. 2.15, в направлена по Im). 13. Теорема об эквивалентном генераторе напряжения, доказательство.

Теорема об эквивалентном преобразовании источников утверждает, что всякую схему, состоящую из резисторов и источников напряжения и имеющую два вывода, можно представить в виде эквивалентной схемы, состоящей из одного резистора R, последовательно подключённого к одному источнику напряжения U. Представьте, как это удобно. Вместо того чтобы разбираться с мешаниной батарей и резисторов, можно взять одну батарею и один резистор (рис. 1.9). (Кстати, известна ещё одна теорема об эквивалентном преобразовании, которая содержит такое же утверждение относительно источника тока и параллельно подключённого резистора).

Рис. 1.9.

Как определить эквивалентные параметры Rэкв и Uэкв для заданной схемы? Оказывается просто. Uэкв - это напряжение между выводами эквивалентной схемы в её разомкнутом (не нагруженном) состоянии; так как обе схемы работают одинаково, это напряжение совпадает с напряжением между выводами данной схемы в разомкнутом состоянии (его можно определить путём вычислений, если схема вам известна, или измерить, если схема неизвестна). После этого можно определить Rэкв, если учесть, что ток в эквивалентной схеме, при условии, что она замкнута (нагружена), равен Uэкв/Rэкв. Иными словами,

Uэкв = U (разомкнутая схема).

Rэкв = U (разомкнутая схема)/I (замкнутая схема).

14. Цепь с идеальным резистором.

Резистор (англ. resistor, от лат. resisto — сопротивляюсь), — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома: мгновенное значение напряжения на резисторе пропорционально току проходящему через него. На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.

а) Цепь с идеальным резистором R.

Пусть к цепи с резистором R (рис. 41а) приложено переменное напряжение:

Ток и напряжение на зажимах резистора связаны между собой физическим законом Ома, т. Е gvdg

Где уравнения закона Ома для амплитудных и действующих значений функций.15. Преобразование звезды в треугольник

16. Метод контурных токов. Пример.

Он заключается в определении по второму закону Кирхгофа контурных токов. Для каждого контура цепи задают ток, который остается неизменным. В цепи протекает столько контурных токов, сколько независимых контуров в ней содержится. Направление контурного тока выбирают произвольно.

Контурные токи, проходя через узел, остаются непрерывными. Следовательно, первый закон Кирхгофа выполняется автоматически. Уравнения с контурными токами записываются только для второго закона Кирхгофа. Число уравнений, составленных по методу контурных токов, меньше чем по методу законов Кирхгофа. Nур=Nb-Ny+1-Nи.т.

Уравнения, составленные по методу контурных токов, всегда записывают в виде системы. Для схемы рис.28:

Поделитесь с Вашими друзьями:

zodorov.ru

Вопросы и ответы ЭМС - Стр 2

Наводимые при электрическом влиянии напряжения и токи в смежной линии сильно зависят от того, изолирована ли смежная линия от земли или заземлена. Рассматривая только наведенные токи и напряжения, можно говорить о трех характерных режимах работы смежного провода

  1. изолированный от земли смежный провод, в начале и в конце провода ток в нем равен нулю.

  2. 2) провод в начале изолирован, в конце заземлен на заземлитель с очень малым сопротивлением; ток в начале провода равен нулю, напряжение относительно земли в конце провода равно нулю

  3. 3) провод заземлен в начале и в конце, напряжения в начале и в конце относительно земли нулевые. Самым интересным является третий случай

Максимальное напряжение электрического влияния наводится в случае 1, то есть на изолированном от земли смежном проводе. Ток по проводу при этом нулевой, а наводимое напряжение определяется емкостным делителем если смежный провод параллелен контактной сети и полностью расположен в зоне влияния. Наводимое напряжение при этом не зависит от длины провода. Если же смежный провод частично выходит за пределы зоны влияния, то емкость его относительно земли пропорциональна его длинеl, а емкость связи с контактной сетью пропорциональна длине сближения lэ

 Определение наводимых напряжений при электрическом влиянии

При изолированном смежном проводе можно говорить о системе двух проводящих тел (контактная сеть и смежный провод), расположенных над плоской поверхностью проводящей земли. Связи между потенциалами тел и их зарядами в электростатическом варианте описываются первой группой формул Максвелла, которая и используется для определения наведенных напряжений.

Предполагается, что провода системы прямолинейные тонкие, параллельны друг другу и поверхности плоской проводящей земли. Контактную сеть представим одним проводом; можно подойти к задаче и в более строгом варианте с двумя проводами контактной подвески, что приведет только к уточнению коэффициентов.

В соответствии с методом зеркальных изображений влияние земли на распределение потенциалов может быть заменено на влияние дополнительных проводов A' и B', зеркально отображающих контактную сеть A и смежный провод B и имеющих противоположные по знаку заряды -tк и -t на единицу длины проводов по сравнению с зарядами исходной системы.

Для одиночного длинного провода потенциал любой точки пространства определяется, как следствие теоремы Гаусса по известному выражению где τ – заряд на единицу длины провода, r – расстояние от оси провода до точки наблюдения, ε0 – абсолютная диэлектрическая проницаемость воздуха, C – постоянная интегрирования, определяемая принятой точкой нулевого потенциала.

Потенциалы от всех четырех проводов просто суммируются друг с другом в каждой точке, что дает для любой точки M выражение и постоянная интегрирования равна нулю, если принять φ=0 на поверхности земли.

Формула (5) верна и для поверхности проводов (но не внутри их), поэтому из нее можно записать два выражения для потенциалов контактной сети и смежного провода: где потенциальные коэффициенты,

 r и rк - радиусы проводов (для контактной сети - эквивалентный радиус). Поскольку смежный провод считается не заряженным, то τ=0; rB'A= rA'B=D, rAB=d, rA'A=2b

уравнения (6) после деления их друг на друга дают формулу для вычисления напряжения электрического влияния в следующем виде: (7) после учета условия a » b,c и получающегося отсюда упрощения приводит к следующему расчетному выражению (с распространением вывода на переменное напряжение и записью для комплексов действующих значений напряжений): где-константа

По аналогии с формулой (4) необходимо в общем случае добавить сомножитель lэ/l при выходе смежного провода за пределы зоны влияния, а при сложной трассе с n участками параллельного и косого сближения нужно просуммировать отдельные напряжения по участкам (поскольку напряжение провод-земля определяется падением напряжения на емкости провода от суммарного протекающего тока)

Для контактной сети переменного тока 1х25 кВ (контактный провод и несущий трос) k=0.4 для однопутных участков и k=0.6 для двухпутных участков.

Формула (8) позволяет рассчитать напряжение электрического влияния для наихудших условий с точки зрения режима смежного провода по отношению к земле. Надо заметить, что на кабельные линии электрического влияния нет из-за экранирующего действия заземленной оболочки или экрана кабеля.

 Степень опасности наводимого напряжения для человека определяется двумя основными факторами.

Первый фактор – разряд емкости смежный провод-земля при прикосновении человека, стоящего на земле или соприкасающегося с заземленным объектом, со смежным проводом. Эта емкость достаточно велика; так, изолированная секция контактной сети имеет емкость по отношению к земле порядка 0.014 мкФ/км. 

Второй фактор – длительное протекание емкостного тока частотой 50 Гц, определяемое в основном емкостью системы контактная сеть – смежный провод. Опасность наводимого напряжения особенно велика, когда смежный провод подвешен на опорах контактной сети или представляет собой отключенную секцию контактной сети.

При отключении питания контактной сети одного из путей двухпутного участка изолированную незаземленную контактную сеть можно рассматривать как провод, подверженный электрическому влиянию со стороны контактной сети второго пути. Расчет по формуле (8) в этом случае сильно занижает реальное значение наводимого напряжения. Более точные расчеты и реальные измерения показывают, что на отключенной секции контактной сети двухпутного участка наводится около 8 кВ со стороны контактной сети соседнего пути. длиной l отключенной секции:

При заземлении отключенной секции наводимое напряжение падает почти до нуля, а ток, протекающий через точку заземления, определяется емкостью C1 (порядка 0.005мкФ/км) и длиной l отключенной секции: если длина l измеряется в километрах.

С каждого километра отключенной секции будет стекать при заземлении ток порядка 40 мА. При неосторожном касании человеком незаземленной секции контактной сети ток будет практически таким же, поскольку сопротивление тела человека (порядка 1 кОм) много меньше емкостного сопротивления ωС1l системы отключенная секция контактной сети – контактная сеть второго пути.

  1. Магнитное влияние контактной сети на смежные линии.

 Магнитное влияние при разных режимах работы смежной линии

Для анализа влияния режима смежного провода по отношению к земле рассмотрим те же три случая, что и для электрического влияния. Чтобы оставить только магнитное влияние, предположим, что напряжение в контактной сети отсутствует, Uк=0 (короткое замыкание). Емкости связи можно при этом не учитывать, поскольку они обычно существенно меньше емкостей провода на землю.

При изолированном от земли проводе схема замещения составлена двумя одинаковыми ячейками с половинными источниками ЭДС величиной Эти два источника создают два контурных тока, изображенные на рисунке. Как нетрудно видеть, на среднем емкостном элементе суммарный ток равен нулю, следовательно, напряжение на изолированном проводе относительно земли посередине него равно нулю.

Расчетным вариантом для магнитного влияния является случай заземления провода на конце, при котором напряжение в начале равно полной ЭДС в проводе, взятой с противоположным знаком: Данная формула не учитывает экранирующего действия рельсов и других протяженных проводников.

  Взаимная индуктивность между контактной сетью и смежным проводом

Понятие взаимной индуктивности вводится в электротехнике как следствие закона электромагнитной индукции и закона полного тока. Для двух замкнутых контуров из тонких проводов, один из которых (первый) создает магнитное поле, а второй находится в этом поле, так что его площадку пересекает магнитный поток Φ от первого контура, взаимной индуктивностью называют магнитный поток Φ внутри второго контура, создаваемый током 1А первого контура.

При синусоидальных токах во втором контуре при этом наводится ЭДС, равная -jωФ, то есть равная -jωMIк  по определению взаимной индуктивности.

Возможностью простого вычисления ЭДС и определяется ценность величины взаимной индуктивности M.

Формулы для расчета взаимной индуктивности впервые были получены Карсоном и Поллачеком на основе решения задачи об электромагнитном поле провода над плоской поверхностью однородной земли. Гн/км

где ɑ – ширина сближения, м; σ – удельная проводимость земли, См/м; ʄ – частота влияющего тока, Гц.

  1. Экранирующее действие проводников.

Экранирующее действие параллельно расположенных проводников

Экранирующий проводник ничем не отличается от смежного провода: на нем за счет магнитного влияния наводится ЭДС вектор которого отстает от влияющего тока Iк на угол 90о. Эта ЭДС создает в проводнике ток Iэ, отстающий от ЭДС на угол j, несколько меньший 90о, поскольку сопротивление проводника имеет активно-индуктивный  характер.

Величина тока равна где Zoэ=Roэ+jωLoэ – сопротивление 1 км экранирующего проводника, Zкэ= jωMкэ – сопротивление взаимоиндуктивной связи между контактной сетью и экранирующим проводником. Этот ток вполне можно рассматривать как влияющий ток, он наводит в смежном проводе ЭДС, величина которой определяется так же, как и для контактной сети.

где Zэс =jωMэс – взаимоиндуктивное сопротивление между экранирующим проводником и смежным проводом на 1 км длины смежного провода. Суммарная ЭДС Es, как это видно из векторной диаграммы рис. 14, существенно меньше ЭДС без экранирующего проводника из-за почти 180-градусного сдвига фаз между двумя наводимыми ЭДС.

Суммарная ЭДС Es, как это видно из векторной диаграммы, существенно меньше ЭДС без экранирующего проводника из-за почти 180-градусного сдвига фаз между двумя наводимыми ЭДС. Количественной характеристикой экранирующего действия служит коэффициент экранирования, равный отношению суммарной ЭДС к ЭДС, наведенной током контактной сети (то есть к ЭДС без учета экранирования) S =Es/E. Его можно определить, обозначив Z =jωM: . Коэффициент экранирования по модулю лежит между нулем и единицей, и чем он меньше, тем лучше экранирование.

Экранирующее действие рельсов

Ток электровоза обычно стекает с рельсов в землю на сравнительно небольшом расстоянии от электровоза - не более километра. Это позволяет говорить о том, что в рельсах протекает только индуктированный со стороны контактной сети ток, то есть рельсы можно рассматривать в качестве экранирующего проводника.

Направления токов Iк и Iр – от наблюдателя (в одну сторону). По аналогии с формулой (13) суммарная ЭДС равна

Поскольку значения сопротивлений Z и Zрс близки друг к другу (когда ширина сближения существенно больше высоты смежного провода над землей и высоты эквивалентного контактного провода), то:

. коэф экранирования рельсов:

где Zкр = jωMкр – сопротивление взаимоиндуктивной связи 1 км рельсов с контактной сетью, Zoр=Roр+jωLoр – сопротивление 1 км цепи рельсы-земля. Активное сопротивление рельсов сравнительно большое, а Mкр меньше Loр, поэтому большого экранирующего эффекта рельсы не дают. При удельной проводимости земли от 0.001 См/м до 0.1 См/м значение sр составляет 0.45...0.6 для однопутных участков и 0.4...0.55 для двухпутных, и только при ширине сближения менее 10 м из-за несимметрии рельсов и контактной сети относительно смежной линии экранирующее действие рельсов усиливается, значение sр снижается до 0.35...0.1

В итоге формула для расчета ЭДС магнитного влияния должна быть дополнена коэффициентом экранирования рельсов:

Экранирующее действие оболочки кабеля

Кабель коренным образом отличается от однопроводной линии наличием проводящей оболочки - брони или специальной экранирующей оболочки. В простейшем варианте кабель имеет одну жилу и коаксиальный экран. Для такой конструкции справедливо выражение для коэффициента экранирования:

Кроме оболочки кабеля, в многожильном кабеле экранирующим действием обладают и соседние жилы,  у  которых  обычно sж»0.9...0.95, то есть действие жил сравнительно мало.

Результирующая ЭДС в жиле кабеля будет определяться выражением

Рельсы, оболочки кабелей и другие проводящие заземленные объекты снижают напряжение магнитного влияния. Учет экранирующего действия подобных объектов производится введением коэффициента экранирования, показывающего остающуюся долю наводимого напряжения из-за экранирования.

  1. Гальваническое влияние тяговой сети.

Особенности гальванического влияния

1. Гальваническому влиянию подвержены смежные линии, имеющие заземления (однопроводные цепи, проложенные в земле металлические сооружения и коммуникации, кабели). Очевидно, что для проявления влияния необходимо либо минимум две точки заземления, либо гальванический контакт с рельсом и минимум одна точка заземления.

2. Гальваническое влияние вызывается так называемыми блуждающими токами, возникающими вследствие утечки тока из рельсов в землю. Потенциалы отдельных точек земли зависят при этом от тока в контактной сети, сопротивления рельсов, переходного сопротивления рельсы – земля, удельной проводимости земли. Из-за неоднородности земли и изменения тока в рельсах потенциалы точек земли вблизи рельсов изменяются нерегулярно во времени и по поверхности земли.

3. Наибольшая величина напряжения при гальваническом влиянии наводится при расположении смежной линии перпендикулярно к оси железной дороги и в случае, когда один из заземлителей однопроводной линии находится в удаленной точке земли с нулевым потенциалом

4. Оценку величины Uг в зависимости от ширины сближения, проводимости земли и глубины заземлителя проводят для двух режимов работы тяговой сети: короткого замыкания и вынужденного.

При переменном токе с гальваническим влиянием можно не считаться, если удельная проводимость земли более 0.1 См/м, а также при наличии в тяговой сети отсасывающих трансформаторов.

5. При электрификации на постоянном токе основную опасность гальванического влияния составляет электрокоррозия подземных сооружений.

Качественная картина влияния блуждающих токов на подземные сооружения

Анализ закономерностей гальванического влияния сильно усложняется неоднородностью структуры земли, поэтому далее представлены лишь самые общие закономерности гальванического влияния на подземную коммуникацию, расположенную параллельно оси железной дороги

Влияние блуждающих токов на подземные сооружения

Почва, в которой прокладываются коммуникации, с электрической точки зрения представляет собою электролит, в котором переносчиками электрического заряда при протекании тока служат ионы. В электролите металлический анод подвергается интенсивной электрокоррозии, причем убыль металла согласно первому закону электролиза Фарадея пропорциональна величине стекающего с анода тока. При больших токах происходит разрушение и в катодных зонах. Эти зоны на железной дороге из-за перемещения электровозов постоянно перемещаются.

Гальваническое влияние на опоры контактной сети

Хотя влияние блуждающих токов происходит на протяженные коммуникации, однако с эффектом электрокоррозии при электрификации на постоянном токе приходится считаться и для опор контактной сети. Это связано с необходимостью заземления металлических поддерживающих конструкций опоры на тяговые рельсы, поскольку в другом варианте возможное перекрытие изоляции контактной сети на опоре приведет к протеканию больших токов через самозаземление опоры.

Эти токи еще не слишком велики, чтобы сработала защита от коротких замыканий, но они очень быстро разрушат опору вплоть до ее падения. Заземляют опору обычно через искровые промежутки или защитные диоды. Необходимость установки последних и определяется тем, какая же зона преимущественно находится на рельсах – анодная или катодная. Заземлять арматуру опоры в катодной зоне можно прямо на рельс, а вот соединение на рельс в анодной зоне может привести к ускоренной коррозии арматуры опоры.

Искровые промежутки и защитные диоды иногда выходят из строя, причиной чего служат в основном перенапряжения в рельсах. В таких случаях возникают токи утечки, зависящие от напряжения рельс – земля и сопротивления опоры.

Сопротивление железобетонной опоры складывается из двух составляющих: это сопротивление верхнего пояса (поддерживающие конструкции - арматура) и сопротивление арматура - земля. Последнее не превышает 60 Ом, а чаще находится в пределах 10...30 Ом. Сопротивление верхнего пояса зависит от контакта между хомутом и арматурой.

  1. Защита от гальванического влияния.

Мероприятия по защите подземных сооружений от блуждающих токов

Применяемые защитные мероприятия подразделяют на две группы: во-первых, это снижение величин блуждающих токов, во-вторых, это защита непосредственно подземных сооружений.

К первой группе относятся следующие мероприятия.

1. Уменьшение тока в рельсах и в земле. При системе распределенного питания или при сокращении расстояниях между подстанциями снижается утечка тока с рельсов в землю. В последнем варианте возможно появление уравнительных токов, которые могут даже ухудшить положение.

2. Уменьшение сопротивления рельсового пути. Это мероприятие требует надежного соединения между стыками.

3. Увеличение переходного сопротивления рельсы-земля. Достигается путем пропитки шпал непроводящими составами, подсыпкой щебеночного балласта и устройством дренажа для осушения полотна.

4. Регулируемый путевой источник тока (ПИТ). ПИТ представляет собой вольтодобавочное устройство, включаемое в рассечку рельсов. Его питание осуществляется от сети переменного тока, а выходное напряжение управляется током в контактной сети, при этом ток выпрямителя регулируется примерно равным току в контактной сети. ПИТ создает дополнительное напряжение и заставляет ток нагрузки течь по рельсам. Увеличение напряжения на нагрузке при этом незначительно, а потребляемая им мощность сравнительно невелика.

Вторая группа мероприятий по защите подземных сооружений.

1. Катодная защита. Суть заключается в искусственном создании на подземном сооружении в его анодной зоне катодной зоны от дополнительного источника напряжения. При этом будет интенсивно разрушаться дополнительное заземление катодной защиты. В катодных зонах подземного сооружения потенциал станет еще более отрицательным, что может привести к повреждению краски подземного сооружения из-за интенсивного выделения водорода между металлом и слоем краски.

2. Протекторная защита. Присоединение к подземному сооружению металла с более низким электрохимическим потенциалом создает источник ЭДС с анодом на присоединенном металле. Эта ЭДС, однако, мала и защита применима лишь при небольших потенциалах (обычная почвенная коррозия).

3. Дренажная защита. Анодная зона подземного сооружения при такой защите соединяется с отрицательной шиной подстанции или с рельсами. Происходит "осушение" электрических зарядов анодной зоны - дренаж. Резистор Rд позволяет регулировать потенциал подземного сооружения, а диод предотвращает протекание тока в обратном направлении при случайном повышении потенциала рельсов в точке соединения. Дренажная защита усиливает отток с рельсов у нагрузки и коррозию рельсов.

  1. Суммирование напряжений разных видов влияния.

С появлением целых трех разных видов влияния – электрического, магнитного и гальванического – возникает вопрос о том, как поступать при нескольких влияниях одновременно.

Собственно, вопрос сводится к суммированию магнитного и гальванического влияний при заземленных объектах (когда электрическое влияние практически отсутствует) и к суммированию магнитного и электрического влияний для изолированных от земли линий.

Исходным пунктом суммирования является возможность просто складывать потенциалы от разных источников в соответствии с законом сохранения энергии или в соответствии с наложением нескольких токов. Очевидно, что в каждом случае необходимо сначала аккуратно определиться со слагаемыми и только затем складывать их.

1. Воздушные и кабельные однопроводные линии с рабочими заземлителями, подземные провода. Напряжение магнитного влияния сдвинуто на угол 90 градусов относительно влияющего тока (при синусоидальных токах и напряжениях), а гальваническое влияние находится в фазе с током контактной сети. Из-за отсутствия электрического влияния суммарное напряжение будет равно

2. Изолированные от земли провода воздушных линий. Эти провода подвержены как электрическому, так и магнитному влияниям. Суммирование необходимо проводить с учетом разностей фаз напряжений Uэ и Uм . Напряжения магнитного влияния в начале UМ0 и в конце UМl определяются выражениями такого вида:

Суммирование этих напряжений с напряжением электрического влияния, по фазе совпадающего с напряжением контактной сети В соответствии с теоремой косинусов суммарное напряжение в начале и в конце линии определится выражением

  1. Расчеты влияющих токов контактной сети при коротком замыкании и вынужденном режиме.

Общие положения

С опасными влияниями приходится иметь дело в основном в случае тяговой сети переменного тока 1х25 кВ.

В этом плане наиболее опасными являются два следующих режима в тяговой сети:

- короткое замыкание, при котором протекают наибольшие токи;

 - вынужденный режим, при котором одна из тяговых подстанций, питающих межподстанционную зону, отключается, токи протекают по большей длине и в одном направлении.

Расчет влияющего тока при коротком замыкании в тяговой сети

В наиболее распространенном случае ток короткого замыкания рассчитывается:

где 2Zлэп=2jXлэп– сопротивление ЛЭП без учета активного сопротивления, приведенное к напряжению 27.5 кВ,

Sкз – мощность трехфазного короткого замыкания на шинах подстанции;

studfiles.net

Постоянный электрический ток

1. Понятие электрического тока. Постоянный электрический ток. Виды токов. Условия, необходимые для появления и существования тока. Сила и плотность тока. Единицы измерения.

Электрический ток — это упорядоченное движение заряженных частиц в проводнике.

Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

Виды токов:

1. Электрический ток появляется тогда, когда заряженные частицы или тела начинают перемещаться в пространстве под действием не электрических сил (скажем движение потока ионов в комнате под действием потока воздуха)- это токи конвекции

2. Кратковременные токи возникают в диэлектриках в начальный момент поляризации (создании электрического поля) или при располяризации (снятии поля), ибо в этом случае происходит смещение зарядов в диполях; такой вид тока называется током поляризации.

3. Когда под действием сил поля положительные частицы перемещаются по направлению вектора напряженности Е, а отрицательные против него. Такие токи называются токами проводимости. –это такой ток, который обусловлен колебаниями электронов и ионов в среде

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Единица силы тока 1 Ампер - сила тока, когда через поперечное сечение проводника в 1 секунду проходит заряд в 1 Кулон.

Плотностью тока – сила тока, проходящая через единицу площади поверхности сечения проводника, перпендикулярной направлению скорости направленного движения электрических зарядов.

где j -плотность тока, S - площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

2. Электрический ток в металлах. Опытное доказательство природы носителей электрических зарядов в металлах. Основы классической электронной теории проводимости в металлах.

Представление об электронной природе носителей зарядов в металлах, заложенная в теории Друде и Лоренца, в основе имеет ряд классических опытных доказательств.

Первым из таких опытов является опыт Рикке (1901), в котором в течение года эл. ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Сu,Аl,Сu) одинакового радиуса. Несмотря на то, что общий заряд, прошедший через цилиндры, достигал огромной величины (около 3,5*Кл) никаких изменений в массе крайних металлов обнаружено не было. Это явилось доказательством предположения, что в переносе заряда участвуют частицы чрезвычайно малой массы.

Несмотря на малость массы носителей заряда, они обладают свойством инерции, что и было использовано в опытах Мандельштама и Папалекси, а затем в опытах Стюарта и Толмена, которые раскручивали катушку с очень большим числом витков до огромной скорости (порядка 300 м/с), а затем резко тормозили ее. В результате смещения зарядов вследствие инерции создавало импульс тока, а зная размеры и сопротивление проводника и величину тока, регистрировавшегося в опыте, можно было вычислить отношение заряда к массе частицы, которая оказалась очень близка к величине, которая получается для электрона (1,7*Кл/кг).

Основы классической электронной теории проводимости в металлах

Существование свободных электронов в металлах объясняется тем, что при образовании кристаллической решетки металла ( в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся „свободными" и могут перемещаться по объему. Т.е. в узлах кристаллической решетки располагаются положительные ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, средняя длина свободного пробега электронов при этом порядка м (расстояние между узлами решетки).Электроны проводимости сталкиваются с ионами решетки, передавая им энергию, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде-Лоренца электроны обладают такой же энергией теплового движения, как и молекулы идеального одноатомного газа и при комнатных температурах тепловая скорость электронов будет порядкам/с, все электроны рассматриваются как независимые и для объяснения макроскопических явлений (например, ток) достаточно знать поведение одного электрона, чтобы определить поведение всех электронов. Поэтому такую теорию называют „ одноэлектронным приближением" и не смотря на свою упрощенность она дает некоторые удовлетворительные результаты.

Тепловое хаотическое движение электронов не может привести к появлению тока. При наложении на металлический проводник электрического поля все электроны приобретают направленное движение, величину скорости которого можно оценить по плотности тока- даже при очень больших плотностях (порядка 10 -10 А/м ) скорость упорядоченного движения получается около м/с. Следовательно, при вычислениях результирующую скорость движения электрона (тепловая + упорядоченная) можно заменять на скорость теплового движения.

Встает вопрос, а как же объяснить факт мгновенной передаче электрических сигналов на большие расстояния? Дело в том, что электрический сигнал переносят не те электроны, которые находятся на начале линии передачи, а электрическое поле, имеющее скорость около 3*м/с, вовлекающее в движение практически мгновенно все электроны вдоль цепи. Поэтому электрический ток и возникает практически мгновенно с замыканием цепи

3. Закон Ома для однородного участка цепи (интегральный закон Ома). Сопротивление, удельное сопротивление. Зависимость сопротивления от температуры. Соединение проводников.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U - напряжение на участке, R - сопротивление участка.

Величину обратную удельной электропроводности называют удельным сопротивлением проводника . Тогда получаем формулу , которая характеризует сопротивление проводника (току) или

омические сопротивление.

В электрических цепях осуществляется соединение проводников последовательное, параллельное и смешанное.

При последовательном соединении выполняются условия:

; ;

При параллельном соединении:

; ;

При смешанном соединении сначала выделяются участки последовательно соединенных сопрот. в параллельных участка и определяются общее сопрот. этич участков; затем вычисляются сопрот. параллельных участков и только после этого общее сопротивление всей цепи.

Сопротивление проводников зависит от температуры: для нормального металла с примесями и металла с идеальной кристаллической решеткой в области комнатных температур удельное сопротивление изменяется пропорционально абсолютной температуре по закону:

где — удельное сопротивление приС;1 / 273К — температурный коэффициент;t -

температура по шкале Цельсия.

Если пренебречь изменениями объема проводника при его нагревании, то сопротивление проводников изменяется по аналогичному закону:

где — удельное сопротивление приС;α ≈ 1 / 273К — температурный коэффициент; t -

температура по шкале Цельсия.

Температурная зависимость сопротивления металлических проводников широко используется для создания термометров сопротивления. Измеряя сопротивление проводника, сопротивление которого при 0°С известно, можно определить температуру окружающей среды (точность достигает до 0,003 К).

5. Сторонние силы. Замкнутая электрическая цепь с источником тока. Электродвижущая сила (ЭДС), падение напряжения на участке цепи. Закон Ома для замкнутой цепи. Закон Ома для неоднородного участка цепи.

Разделение зарядов происходит под действием сторонних сил. Сторонние силы действуют лишь внутри источника тока и могут быть обусловлены химическими процессами (аккумуляторы, гальванические элементы), действием света (фотоэлементы), изменяющимися магнитными полями (генераторы) и т.д.

Электрическая цепь – соединение источников постоянного тока с проводниками и другими электрическими элементами.

Замкнутая цепь состоит из двух частей — внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r; внешняя — различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R. Тогда полное сопротивление цепи равно r + R.

Электродвижущая сила источника тока – физическая величина , равная отношению работы, совершаемой сторонними силами внутри источника тока при перемещении через него зарядов, к величине этого заряда.

или

где - падение напряжения на внешнем участке цепи;

- падение напряжения на внутреннем участке цепи (источника тока)

Единицей электродвижущей силы в СИ является вольт (В).

Напряжение – разность потенциалов между крайними точками этого участка

Закон Ом для замкнутой цепи: сила тока в замкнутой цепи прямо пропорциональна ЭДС в цепи и обратно пропорциональна общему сопротивлению цепи.

Закон Ома для неоднородного участка цепи:

где R — общее сопротивление неоднородного участка.

8. Разветвленные цепи. Законы Кирхгофа. Правила знаков для токов, падений напряжений и ЭДС.

Разветвлённая цепь

Узлом электрической цепи называют соединение не менее трех проводников, по которым идут токи. Ток, входящий в узел считают положительным, выходящим из узла - отрицательным.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус».

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

где n – число источников ЭДС в контуре;

m – число элементов с сопротивлениемв контуре;

–напряжение или падение напряжения на k-м элементе контура.

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю :

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

studfiles.net

Напряжение электрического тока и вольтметр | Учеба-Легко.РФ

Электрический ток – это проходящие через проводник электроны, несущие отрицательный заряд. Объем этого заряда или, иными словами, количество электричества характеризует силу тока. Мы знаем, что сила тока одинакова во всех местах цепи.

Электроны не могут исчезать или «спрыгивать» с проводов и нагрузки. Поэтому, силу тока мы можем измерить в любом месте электрической цепи. Однако, будет ли одинаковым действие тока на разные участки этой цепи? Давайте разберемся.

Проходя по проводам, ток лишь слегка их нагревает, однако не совершает при этом большой работы. Проходя же через спираль электрической лампочки, ток не просто сильно нагревает ее, он нагревает ее до такой степени, что она, раскаляясь, начинает светиться. То есть в данном случае ток совершает механическую работу, и довольно приличную работу. Ток тратит свою энергию. Электроны в том же количестве продолжают бежать дальше, но энергии у них уже поменьше.

Определение электрического напряжения

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии. То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: 

U=A/q,

где U - напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

Вольтметр

Для измерения напряжения существует прибор, называемый вольтметром. В отличие от амперметра, он подключается не произвольно в любом месте цепи, а параллельно нагрузке, до нее и после. В таком случае вольтметр показывает величину напряжения, приложенного к нагрузке. Для измерения напряжения на полюсах источника тока, вольтметр подключают непосредственно к полюсам прибора.

uclg.ru


Каталог товаров
    .