Расчет силового трансформатора Трансформатор – это пассивный преобразователь энергии. Его коэффициент полезного действия (КПД) всегда меньше единицы. Это означает, что мощность потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети. Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети. Параметры и характеристики трансформатора. Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток. Но если нагрузка первого трансформатора потребляет больший ток, а второго маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью. Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще. Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника. Поэтому габариты трансформатора зависят от его мощности. И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора. Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах. Но это напряжение зависит также и от количества витков первичной обмотки. При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки количеству витков первичной. Это отношение и называется коэффициентом трансформации. Если напряжение на вторичной обмотке зависит от коэффициента трансформации нельзя произвольно выбирать количество витков одной из обмоток. Чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки. Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя. Эта характеристика называется количеством витков на один вольт.. Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети. КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95. Более высокие значения имеют трансформаторы большей мощности. Электрический расчет трансформатора Перед расчетом трансформатора необходимо сформулировать требования, которым он должен удовлетворять. Они и будут являться исходными данными для расчета. Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками. Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов. Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они являются техническими требованиями к трансформатору. Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой из вторичных обмоток и сложить их, учитывая также КПД трансформатора. Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока: P=UI, P– мощность, потребляемая от обмотки, Вт; U– эффективное значение напряжения, снимаемого с этой обмотки, В; I– эффективное значение силы тока, протекающего в этой же обмотке, А. Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле: PS=U1I1+U2I2+U3I3 Для определения габаритной мощности трансформатора, полученное значение суммарной мощности PSнужно разделить на КПД трансформатора:Pг= , где Pг – габаритная мощность трансформатора; η – КПД трансформатора. Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали). И те и другие параметры становятся известными только после расчета трансформатора. Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из таблицы 6.1. Таблица 6.1 Суммарная мощность, Вт 10-20 20-40 40-100 100-300 КПД трансформатора 0,8 0,85 0,88 0,92 Наиболее распространены две формы сердечника: О – образная и Ш – образная. На сердечнике О – образной формы обычно располагаются две катушки, а на сердечнике Ш – образной формы - одна. Зная габаритную мощность трансформатора, находят сечение рабочего керна его сердечника, на котором находится катушка: S= 1,2 Сечением рабочего керна сердечника является произведение ширины рабочего керна а и толщины пакета с. Размеры а и с выражены в сантиметрах, а сечение – в квадратных сантиметрах. После этого выбирают тип пластин трансформаторной стали и определяют толщину пакета сердечника. Сначала находят приблизительную ширину рабочего керна сердечника по формуле: a= 0,8 Затем по полученному значению а производят выбор типа пластин трансформаторной стали из числа имеющихся в наличии и находят фактическую ширину рабочего керна а. после чего определяют толщину пакета сердечника с: c = S/a Количество витков , приходящихся на 1 вольт напряжения, определяется сечением рабочего керна сердечника трансформатора по формуле: n=k/S, гдеN– количество витков на 1 В;k– коэффициент, определяемый свойствами сердечника;S- сечение рабочего керна сердечника, см2. Из приведенной формулы видно, что чем меньше коэффициент k, тем меньше витков будут иметь все обмотки трансформатора. Однако произвольно выбирать коэффициентkнельзя. Его значение обычно лежит в пределах от 35 до 60. В первую очередь оно зависит от свойств пластин трансформаторной стали, из которых собран сердечник. Для сердечников С-образной формы, витых из тонкой ленты, можно братьk= 35. Если используется сердечник О - образной формы, собранный из П- или Г – образных пластин без отверстий по углам, берутk= 40. Такое же значениеkи для пластин типа УШ, у которых ширина боковых кернов больше половины ширины среднего керна.. Если используются пластины типа Ш без отверстий по углам, у которых ширина среднего керна ровно вдвое больше ширины крайних кернов, целесообразно взятьk= 45, а если Ш – образные пластины имеют отверстия, тоk= 50. Таки образом, выборkв значительной мере условен и им можно в некоторых пределах варьировать, если учесть, что уменьшениеkоблегчает намотку, но ужесточает режим трансформатора. При применении пластин из высококачественной трансформаторной стали этот коэффициент можно немного уменьшать, а при низком качестве стали приходится его увеличивать. Зная необходимое напряжение каждой обмотки и количество витков на 1 В, легко определить количество витков обмотки, перемножим эти величины: W=Un Такое соотношение справедливо только для первичной обмотки, а при определении количества витков вторичных обмоток нужно дополнительно вводить приближенную поправку для учета падения напряжения на самой обмотке от протекающего по ее проводу тока нагрузки: W=mUn Коэффициент mзависит от силы тока, протекающего по данной обмотке (см. таблицу 6.2). Если сила тока меньше 0,2 А, можно приниматьm= 1. Толщина провода, которым наматывается обмотка трансформатора определяется силой тока, протекающей по этой обмотке. Чем больше ток, тем толще должен быть провод, подобно тому как для увеличения потока воды требуется использовать более толстую трубу. От толщины провода зависит сопротивление обмотки. Чем тоньше провод, тем больше сопротивление обмотки, следовательно, увеличивается выделяемая в ней мощность и она сильнее нагревается. Для каждого типа обмоточного провода существует предел допустимого нагрева, который зависит от свойств эмалевой изоляции. Поэтому диаметр провода может быть определен по формуле:d=p, гдеd– диаметр провода по меди, м;I- сила тока в обмотке, А;p- коэффициент, (таблица 6.3) который учитывает допустимый нагрев той или иной марки провода. Таблица 6.2: Определение коэффициента m Сила тока вторичной обмотки, А 0,2 – 0,5 0,5 – 1,0 1,0 – 2,0 2,0 – 4,0 m 1,02 1,03 1,04 1,06 Таблица 6.3: Выбор диаметра провода. Марка провода ПЭЛ ПЭВ-1 ПЭВ-2 ПЭТ p 0,8 0,72 0,69 0,65 Выбрав коэффициент pможно определить диаметр провода каждой обмотки. Найденное значение диаметра округляют до большего стандартного. Сила тока в первичной обмотке определяется с учетом габаритной мощности трансформатора и напряжения сети: I=Pг/U Практическая работа: Рассчитать трансформатор, имеющий три вторичные обмотки с учетом следующих исходных данных: U1= 6,3 В,I1= 1,5 А;U2= 12 В,I2= 0,3 А;U3= 120 В,I3= 59 мА Ход работы: Найти суммарную мощность, потребляемую от вторичных обмоток: Ps Из таблицы 6.1 найти КПД трансформатора и определить его габаритную мощность: Pг Найти сечение сердечника трансформатора: S Найти приближенное значение ширины рабочего керна: a Используя найденное значение ширины рабочего керна найти толщину пакета: с Определить фактическое сечение рабочего керна сердечника: Sф=ac Считая, что используются пластины трансформаторной стали типа Ш-19 без отверстий по углам, взять k= 45. Найти количество витков на 1В: n=k/SФ, гдеSф– фактическое сечение рабочего керна сердечника. Определить количество витков первичной обмотки при питании от сети напряжением 127 В: WI Определить количество витков первичной обмотки при питании от сети напряжением 220 В:WII Определить количество витков дополнительной секции первичной обмотки, которую необходимо подключить к обмотке, рассчитанной на 127 В, для питания напряжением 220 В: Wд=WII–WI Найти из таблицы 6.2 коэффициент mдля каждой из вторичных обмоток: приI1, определитьm1, приI2, определитьm2, приI3, определитьm3. Определить количество витков каждой из вторичных обмоток с округлением до ближайшего целого числа: W1,W2,W3. Найти силу тока в первичной обмотке при питании от сети напряжением Ua= 127 В:Ia=Pг/Ua Найти силу тока в первичной обмотке при питании от сети напряжением Ub= 220 В:Ib=Pг/Ub Считая, что используется провод марки ПЭВ-1 найти диаметр провода первичной обмотки для секции, рассчитанной на 127 В: da=p(Коэффициентpвзять из таблицы 6.3) Считая, что используется провод марки ПЭВ-1 найти диаметр провода первичной обмотки для секции, рассчитанной на 220 В: db=p(Коэффициентpвзять из таблицы 6.3) studfiles.net Электрическая сеть в своём начале имеет всего лишь несколько генераторов. Они установлены на электростанции, которая проектируется как одно целое. На много лет вперёд в ней всё остаётся без изменений вплоть до завершения сроков службы турбин, генераторов и трансформаторов. Но в электросети, питаемой этой электростанцией, как говорится «всё течёт, всё изменяется». Предприятия имеют тенденции к развитию и росту на основе получаемой электрической энергии. Её источником является заводская трансформаторная подстанция и трансформаторы, которые на ней установлены. Поэтому на этапе проектирования важно правильно выбрать каждый трансформатор в основном по мощности с учётом местных условий его эксплуатации. На них будут оказывать влияние Мощность трансформатора должна обеспечить внутренние потребности предприятия на весь период его эксплуатации, который составляет не один десяток лет. Если на этапе проектирования выбран менее мощный трансформатор, так же как и излишне мощный это лишние расходы которые всегда весьма нежелательны. Замена трансформатора на новую более мощную модель это весьма дорогостоящая процедура. А поскольку на подстанции для надёжности всегда работают, как минимум два одинаковых трансформатора расходы удвоятся. Но и неиспользуемая мощность трансформатора это также «деньги на ветер». Сеть электроснабжения разветвляется на шести уровнях с использованием на каждом из них трансформаторов обычно на 6 и 10 кВ на главных понижающих подстанциях, сокращённо «ГПП». Самые мощные из них относятся к пятому уровню. Мощность трансформаторов измеряется в мегавольт – Амперах (МВ*А) и, как правило, соответствует одному из значений ряда Высокая сторона напряжения трансформатора ГПП обычно равна одному из значений ряда Подавляющее большинство видов электрооборудования работающих на предприятиях подключены к электросети предприятия с напряжением 220, 380, 500 или 600 В от цеховых трансформаторных подстанций с напряжениями 3, 6, 10 или 20 кВ на высокой стороне. В этих подстанциях используются трансформаторы со стандартными значениями мощности: Номинал 2500 кВА мощности трансформатора в цеховых подстанциях распространён не так широко как другие номиналы мощностей. При авариях связанных с короткими замыканиями в электрических цепях вторичной обмотки величина тока получается слишком большой и требует дорогостоящих коммутаторов. По этой причине цеховые подстанции с трансформаторами 2500 кВА это специальные проекты. Но не всегда трансформатор является пограничным устройством, объединяющим высоковольтную и низковольтную электросети которое своей мощностью определяет работу потребителей на низкой стороне напряжения. Среди потребителей электроэнергии есть и трансформаторы. Они являются частью электропечей, выпрямителей преобразователей, сварочного оборудования. Мощность этих трансформаторов выбирается исходя из специфики выполняемых ими функций. При выборе мощности трансформатора, а также схемы, соответственно которой он присоединён в связи с особенностями питающих линий электропередачи, имеет значение схема ближайшей энергетической системы района и характеристики её источников питания. Поэтому для трансформаторных подстанций 3-го уровня с мощностями от 100 до 2500 кВА на этапе проектирования существенное значение имеют такие параметры как: Чтобы мощность трансформатора получилась оптимальной для электропитания потребителей лучше всего основываться на распределении нагрузок в течение суток. Если таковых данных или графиков нет, путём суммирования активных нагрузок — потребителей вычисляется максимальная величина активной нагрузки. Наиболее эффективным решением по суммарным издержкам является выбор такой мощности трансформатора, когда он в часы «пик» перегружен, но его номинальная мощность несколько меньше продолжительной максимальной нагрузки. При этом необходимо учитывать теплообмен его с окружающей средой, который зависит от её температуры и конструкции трансформатора. Технические решения с погружением магнитопровода с обмотками в масло способны лучше переносить перегрузки, чем трансформаторы с воздушным охлаждением. Нагрев и потери мощности происходят в результате больших токов в обмотках и нагрева магнитопровода. Нагрев от большой силы тока имеет две составляющие: Ток вторичной обмотки трансформатора в номинальном режиме достигает нескольких тысяч ампер. Например, при мощности 2500 кВА во вторичной обмотке с фазным напряжением 400 В номинальный ток будет более 2000 Ампер в каждой фазе. При таком токе сопротивление обмотки даже в доли Ома приводит к нагреву. Другим источником потерь являются вихревые токи в магнитопроводе. Несмотря на применение сборки его из тонких стальных пластин трансформаторной стали потери существенно уменьшаются, но полностью не устраняются. Индуктивность рассеяния ещё один важный параметр конструкции обмоток и магнитопровода. Она, по сути, является дросселем, который соединён последовательно с обмоткой и приводит к падению напряжения на выводах обмотки и нагрузке. Поскольку на этот вредный параметр можно повлиять только конструкцией магнитопровода и обмоток, а вариантов для них совсем немного, индуктивность рассеяния всегда значительна во всех трёхфазных трансформаторах. Причина заключается в их Ш – образных магнитопроводах. Минимальная индуктивность рассеяния у магнитопровода в форме тора, в котором обмотка равномерно распределена по нему. Однако сложность формирования обмоток определила магнитопроводу в форме тора место только среди маломощных трансформаторов. Мощность трансформатора определяет его конструкцию. Она получается довольно таки сложной несмотря на то, что в трансформаторе всего лишь несколько обмоток на одном общем для них магнитопроводе. Его конструкция определяется теми процессами, которые происходят как при нормальной работе, так и при аварийных режимах. Но более детальное рассмотрение этого потребует отдельной большой статьи, а возможно и книги. podvi.ru Многие начинающие мастера задаются вопросом о том, как рассчитать мощность трансформатора для сварочного аппарата. Практически любой хозяин знает, что трансформаторный агрегат представляет собой электроприбор, обеспечивающий процесс преобразования напряжения в направлении его повышения или понижения. Схема устройства сварочного трансформатора. При изготовлении таких приспособлений требуется произвести расчет всех технических параметров, основными среди которых являются: Готовые аппараты, изготовленные в промышленных условиях, как правило, имеют полное техническое описание. Схема расчета обмотки. Перед использованием оборудования в случае если его технические параметры не известны, их следует рассчитать. Такой технический параметр, как мощность преобразователя напряжения, является одним из важнейших показателей, оказывающих влияние на работу и использование прибора. От него зависит функциональность агрегата, собранного на базе конкретного преобразователя. Чаще всего эти преобразователи напряжения применяются в блоках питания и сварочных трансформаторных агрегатах. Расчетная мощность любого преобразователя трансформаторного типа зависит от силы и напряжения, используемого для нормального функционирования электротока. Для того чтобы рассчитать мощность, нужно умножить показатель напряжения на величину силы потребляемого тока. Вычисление мощности трансформатора можно осуществить по определенной методике. На начальном этапе требуется осмотреть само устройство и определиться с его типом и типом сердечников, применяемых конструкции. Наиболее распространенными являются те, что имеют Ш-образную форму. Этот тип сердечника применяется в трансформаторах, которые имеют не самый лучший коэффициент полезного действия. Доступность и невысокая стоимость этого типа трансформаторного оборудования позволяют делать эти приборы доступными. Доступность и простота конструкции сделали эти типы трансформаторных преобразователей популярными среди любителей конструировать электроприборы своими руками. Помимо трансформаторных преобразователей, имеющих Ш-образный сердечник, существуют устройства, имеющие сердечник в виде кольца. Такие агрегаты носят название тороидальных трансформаторов. Эти устройства обладают более высоким коэффициентом полезного действия и некоторыми другими отличительными качествами. Стоимость этих устройств значительно выше, и применяются они при создании мощных и высокотехнологичных агрегатов. Вернуться к оглавлению Схема трансформатора с первичной и вторичной обмоткой. Расчет сварочного трансформатора можно осуществить самостоятельно, воспользовавшись специальными справочниками по радиотехнике и электронике. Чаще всего при сборке сварочного аппарата используются трансформаторные агрегаты, которые имеют Ш-образный сердечник. Для получения правильных результатов расчетов требуется установить размер сечения магнитопровода. Магнитопровод Ш-образного трансформаторного приспособления измеряется длиной поставленных пластин, входящих в состав этого элемента конструкции. Пластины его изготавливаются из электротехнической специальной стали. Для точного подсчета сечения нужно перемножить между собой два технических параметра. Этими техническими параметрами являются толщина набора пластин и ширина центрального лепестка пластины магнитопровода. Толщина набранных пластин и ширина пластин, входящих в набор, может быть измерена при помощи линейки. Все измерения лучше всего регистрировать в сантиметрах, что позволит избежать возникновения погрешностей в расчетах параметра. В случае, если трансформатор полностью закрыт и измерить размер центрального элемента не представляется возможным, то следует устройство разобрать и измерить этот параметр.Работу следует проводить очень аккуратно, чтобы не повредить элементы конструкции. Вернуться к оглавлению Осмотрев трансформаторное устройство, и найдя открытое пространство в конструкции или разобрав агрегат, проводят измерение толщины центрального элемента. При проведении измерений следует как можно точнее снимать показания. Далее полученное значение нужно умножить на значение, полученное при измерении набора магнитопровода. Для дальнейших расчетов применяют формулу: S=1,3*√Pтр, в которой: S — значение площади сечения магнитопровода;Ртр показатель мощности, который имеет сварочный трансформатор;1,3 — коэффициент, который представляет собой усредненное значение. Используя элементарный математический курс и курс физики эту формулу можно преобразовать в следующий вид: 〖Ртр=(S/1.33)〗^2. На следующем этапе проводится подстановка в получившуюся формулу показателей, которые получены при проведении измерений сердечника установленного в обмотку. Расчет сварочного трансформатора требуется обязательно проводить при самостоятельном конструировании агрегата для проведения сварки. От правильности проведенного расчета зависит работоспособность инструмента и его функциональность. В процессе сборки устройства лучше всего использовать трансформаторные агрегаты с заранее известными техническими параметрами, так как самостоятельно точно рассчитать теоретическую и практическую мощность изготавливаемого устройства достаточно сложно. www.parnikiteplicy.ru Трансформатор является преобразователем электрической энергии. С его помощью можно легко трансформировать одну величину тока и/или напряжения в другую. Конструкция его достаточно проста. Он состоит из следующих основных функциональных частей: магнитопровод определенной формы, катушки, каркас, на который и наматываются рабочие катушки. Магнитопровод делают в виде тора (круглой формы), Ш-образной и П-образной формы. Каждая форма имеет свои особенности в работе. Магнитопровод трансформатора, рассчитанный на работу с низкой частотой (промышленная частота в 50 Гц) делают из листового железа. Это позволяет снизить потери при работе устройства. Трансформатор, что работает на более высоких частотах уже имеет магнитопровод из феррита различных марок. Мощность трансформатора напрямую связана с размерами магнитопровода, материалом (из которого он сделан), частотой, на которой устройству приходится работать. Самый простой вариант трансформатора содержит в себе две обмотки, называемые первичной и вторичной. Первичная обмотка является входной, вторичная — выходной. Первичная может состоять из нескольких обмоток (или одной, но с отводом), рассчитанных на различное входное напряжение (обычно можно встретить на 220 вольт и на 110). У вторичной может быть гораздо больше обмоток, в зависимости от количества различных напряжений, что нужно получить под разные нужды от одного трансформатора. Теперь, что касается самой электрической мощности трансформатора. На практике обычно бывает так — есть электротехническое устройство потребитель (нагрузка), которое нужно запитать. Известно напряжение его питания и сила тока, что оно потребляет при своей работе. Под это устройство нужно подобрать соответствующий блок питания. Напомню, что электрическую мощность можно найти по следующей простой формуле: P=U*I (мощность в ваттах равна напряжение в вольтах умноженное на силу тока в амперах). Следовательно, зная напряжение и ток нагрузки мы легко вычисляем мощность устройства. Блок питания должен иметь чуть большую мощность, чем нагрузка, которую он будет питать (запас по мощности должен быть не менее 25%). Поскольку трансформатор является основным функциональным элементом, определяющий общую мощность блока питания (трансформаторного), то именно его мощность должна быть правильно рассчитана и подобрана под нагрузку. Итак, к примеру, есть небольшой, двухканальный усилитель звуковой частоты, мощность которого 20 ватт на канал. Питание у него 12 вольт. Под него нужно собрать (найти) подходящий трансформаторный блок питания. Общая мощность этого усилителя будет равна 40 ватт (два канала по 20 ватт). Следовательно, с учетом запаса, нам нужно найти понижающий силовой трансформатора, у которого мощность будет не меньше 50 ватт. Поскольку нагрузка нуждается в 12 вольтах, то и вторичная обмотка трансформатора должна быть рассчитана на это напряжение. Минимальные размеры (при той же мощности) будет у трансформатора круглой формы (тора), но его сложнее мотать (если это делать самому). Ш-образные и П-образные легче наматывать, они проще в своей разборке и сборке, хотя и имеют чуть большие размеры и вес. Мощность трансформатора (если говорить о трансформаторах, рассчитанных на стандартную частоту сети 50 герц, имеющие железные магнитопровод) имеет прямую зависимость от площади поперечного сечения основной части сердечника, где намотан провод обмоток. Формулу зависимости площади сечения магнитопровода трансформатора от его мощности можно выразить так: мощность трансформатора (ватты) равна квадрату площади поперечного сечения основной части магнитопровода (квадратные сантиметры). То есть, если мы имеем понижающий силовой трансформатор (с металлическим сердечником), но мощность его нам неизвестна, то нужно взять и измерить его толщину и ширину основной его части (где намотан провод). Далее узнаем сечение этой части, перемножаем эту ширину и толщину (в сантиметрах). Полученный результат возводится в квадрат. Вот и получаем мощность, которой обладает этот трансформатор, с этим магнитопроводом. Либо при покупке сразу смотрим или узнаем номинальную мощность приобретаемого трансформатора. Поскольку электрическая мощность равна произведению силы тока на напряжение, то при одной и той же мощности нам нужно будет учитывать, что если мы увеличиваем напряжение, то придется жертвовать уменьшением силы тока (уменьшая диаметр, сечение провода вторичной обмотки), и наоборот, увеличивая ток на выходе трансформатора, мы будем вынуждены снижать напряжение (уменьшая количество витков в обмотке). Если важен и ток и напряжение на выходе трансформатора, а вся вторичная обмотка не помещается в магнитопровод, то, естественно, нужно увеличивать размеры этого магнитопровода, повышая общую мощность трансформатора. P.S. В каком-то смысле импульсные трансформаторы, рассчитанные на работу с более высокими частотами, нежели стандартные 50 герц, можно назвать резиновыми по своей мощности. То есть, при пропускании через них тока одной частоты они будут выдавать одну мощность, если же частоту этого тока увеличить, то и мощность этого трансформатора также будет увеличена, при тех же самых его размерах магнитопровода. Но для таких высокочастотных трансформаторов уже используются специальные электронные схемы преобразователей, и содержат в себе сердечники из феррита различных марок (вместо железа). electrohobby.ru Классический теоретический расчет трансформатора достаточно сложен Для его выполнения необходимо знать такие характеристики, как магнитная проницаемость используемых для сердечника пластин трансформаторной стали, длина магнитных силовых линий в сердечнике, средняя длина витка обмотки и другие параметры Профессиональному разработчику НИИ все эти параметры известны, так как он обладает сертификатами применяемых в трансформаторе материалов Радиолюбитель же вынужден использовать для трансформатора совершенно случайно попавший к нему сердечник, характеристики которого ему неизвестны По указанной причине для расчета трансформатора предлагается эмпирический метод, многократно проверенный радиолюбителями и основанный на практическом опыте Расчет элементарно прост и требует лишь знания простейших основ арифметикиПринцип действия трансформатора Рис 61 Трансформатор: а – общий вид б – условное обозначение Трансформатор был изобретен П Н Яблочковым в 1876 году Устройство трансформатора показано на рис 61а, а его схематическое обозначение – на рис 616 Трансформатор состоит из стального сердечника и обмоток, намотанных изолированным обмоточным проводом Сердечник собирается из тонких пластин специальной электротехнической стали для снижения потерь энергии Обмотка, предназначенная для подключения к сети переменного тока, называется первичной Нагрузка подключается к вторичной обмотке, которых в трансформаторе может быть несколько Номера обмоток обычно проставляются римскими цифрами Часто обмоткам присваивают номера их выводов Работа трансформатора основана на магнитном свойстве электрического тока При подключении концов первичной обмотки к электросети по этой обмотке протекает переменный ток, который создает вокруг ее витков и в сердечнике трансформатора переменное магнитное поле Пронизывая витки вторичной обмотки, переменное магнитное поле индуцирует в них ЭДС Соотношение количества витков первичной и вторичной обмоток определяет получаемое напряжение на выходе трансформатора Если количество витков вторичной обмотки больше, чем первичной, выходное напряжение трансформатора будет больше напряжения сети Такая обмотка называется повышающей Если же вторичная обмотка содержит меньше витков, чем первичная, выходное напряжение окажется меньше сетевого (понижающая обмотка) Трансформатор – это пассивный преобразователь энергии Его коэффициент полезного действия (КПД) всегда меньше единицы Это означает, что мощность, потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети Параметры и характеристики трансформатора Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток Но если нагрузка первого трансформатора потребляет большой ток, а второго – маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника Поэтому габариты трансформатора зависят от его мощности И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах Но это напряжение зависит также и от количества витков первичной обмотки При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки к количеству витков первичной Это отношение и называется коэффициентом трансформации Если напряжение на вторичной обмотке зависит от коэффициента трансформации, можно ли выбирать количество витков одной из обмоток, например первичной, произвольно Оказывается, нельзя Дело в том, что чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя Эта характеристика называется количеством витков на один вольт Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95 Более высокие значения имеют трансформаторы большей мощности Электрический расчет трансформатора Прежде чем начать электрический расчет силового трансформатора, необходимо сформулировать требования, которым он должен удовлетворять Они и будут являться исходными данными для расчета Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они и являются техническими требованиями к трансформатору Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой вторичной обмотки, и сложить их, учитывая также КПД трансформатора Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока: где Р – мощность, потребляемая от обмотки, Вт U – эффективное значение напряжения, снимаемого с этой обмотки, В I – эффективное значение силы тока, протекающего в этой же обмотке, А Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле: Для определения габаритной мощности трансформатора полученное значение суммарной мощности Ps нужно разделить на КПД трансформатора: где Рг – габаритная мощность трансформатора η – КПД трансформатора Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали) И те и другие параметры становятся известны только после расчета трансформатора Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из табл 61 Таблица 61 Определение КПД трансформатора Суммарная мощность, Вт 10-20 20-40 40-100 100-300 кпд трансформатора 0,8 0,85 0,88 0,92 Допустим, что нужно рассчитать трансформатор, имеющий три вторичные обмотки со следующими исходными данными: U, = 6,3 В I, = 1,5 А U, = 12 В I, = 0,3 А U3 = 120 ΒΊ3 = 59 мА Находим суммарную мощность, потребляемую от вторичных обмоток: Ps = Ιφφ + U,I, + U3I3 = 6,3 x 1,5 + 12 x 0,3 + 120 x 0,059 = 20,13 Вт Обращаем внимание на то, что при расчете сила тока третьей обмотки, которая в исходных данных указана в миллиамперах, обязательно должна переводиться в амперы: 59 мА = 0,059 А Из табл 61 находим КПД трансформатора η = 0,85 и определяем его габаритную мощность: Наиболее распространены две формы сердечника: О-образная (рис, 62а) и Ш-образная (рис, 626) На сердечнике О-образной формы обычно располагаются две катушки, а на сердечнике Ш-образной формы – одна (рис, 63) Зная габаритную мощность трансформатора, находят сечение рабочего керна его сердечника, на котором находится катушка: Сечением рабочего керна сердечника, как показано на рис, 62, является произведение ширины рабочего керна а и толщины пакета с Размеры а и с выражены в сантиметрах, а сечение – в квадратных сантиметрах Рис 62 Формы сердечника трансформатора Рис 63 Расположение катушек на сердечнике После этого выбирают тип пластин трансформаторной стали и определяют толщину пакета сердечника Сначала находят приблизительную ширину рабочего керна сердечника по формуле: Затем по полученному значению а производят выбор типа пластин трансформаторной стали из числа имеющихся в наличии и находят фактическую ширину рабочего керна а, после чего определяют толщину пакета сердечника с: Количество витков, приходящихся на 1 вольт напряжения, определяется сечением рабочего керна сердечника трансформатора по формуле: где η – количество витков на 1 В к – коэффициент, определяемый свойствами сердечника S – сечение рабочего керна сердечника, см2 Из приведенной формулы видно, что чем меньше коэффициент к, тем меньше витков будут иметь все обмотки трансформатора Однако произвольно выбирать коэффициент к нельзя Его значение обычно лежит в пределах от 35 до 60 В первую очередь оно зависит от свойств пластин трансформаторной стали, из которых собран сердечник Для сердечников С-образной формы, витых из тонкой ленты, можно брать к = 35 Если используется сердечник О-образной формы, собранный из П- или Г-образных пластин без отверстий по углам, берут к = 40 Такое же значение к и для пластин типа УШ, у которых ширина боковых кернов больше половины ширины среднего керна Если используются пластины типа Ш без отверстий по углам, у которых ширина среднего керна ровно вдвое больше ширины средних кернов, целесообразно взять к = 45, а если Ш-образные пластины имеют отверстия, то к = 50 Наконец, коэффициент к берется равным 60 при использовании Ш-образных пластин толщиной 0,5 мм с отверстиями, в то время как меньшие значения к соответствуют толщине пластин 0,35 мм Следует заметить, что выбор к в значительной мере условен и им можно в некоторых пределах варьировать, если учесть, что уменьшение к облегчает намотку, но ужесточает режим трансформатора При применении пластин из высококачественной трансформаторной стали этот коэффициент можно немного уменьшать, а при низком качестве стали приходится его увеличивать Зная необходимое напряжение каждой обмотки и количество витков на 1 В, легко определить количество витков обмотки, перемножив эти величины: Такое соотношение справедливо только для первичной обмотки, а при определении количества витков вторичных обмоток нужно дополнительно вводить приближенную поправку для учета падения напряжения на самой обмотке от протекающего по ее проводу тока нагрузки: Коэффициент ш зависит от силы тока, протекающего по данной обмотке (см табл 62) Если сила тока меньше 0,2 А, можно принимать ш = Е Толщина провода, которым наматывается обмотка трансформатора, определяется силой тока, протекающего по этой обмотке Чем больше ток, тем толще должен быть провод, подобно тому как для Сила тока вторичной обмотки, А 0,2-0,5 0,5-1,0 1,0-2,00 2,0-4,0 m 1,02 1,03 1,04 1,06 увеличения потока воды требуется использовать более толстую трубу Дело в том, что от толщины провода зависит сопротивление обмотки Чем тоньше провод, тем больше сопротивление обмотки, следовательно, увеличивается выделяемая на ней мощность и она сильнее нагревается Для каждого типа обмоточного провода существует предел допустимого нагрева, который зависит от свойств эмалевой изоляции Поэтому диаметр провода может быть определен по формуле: d = pVf, где d – диаметр провода по меди, мм I – сила тока в обмотке, А р – коэффициент (табл 63), который учитывает допустимый нагрев той или иной марки провода Таблица 63 Выбор диаметра провода М арка провода ПЭЛ ПЭВ-1 ПЭВ-2 ПЭТ Р 0,8 0,72 0,69 0,65 Выбрав коэффициент р, можно определить диаметр провода каждой обмотки Найденное значение диаметра округляют до большего стандартного Сила тока в первичной обмотке определяется с учетом габаритной мощности трансформатора и напряжения сети: Пример электрического расчета Произведем расчет трансформатора по тем исходным данным, которые были приведены ранее Находим сечение сердечника трансформатора: Находим приближенное значение ширины рабочего керна: Выбираем пластины трансформатора типа Ш-19, для которых а = 1,9 см, и находим толщину пакета: Фактически полученное сечение рабочего керна сердечника: Определяем коэффициент к Допустим, что используются пластины трансформаторной стали типа Ш-19 без отверстий по углам Тогда к = 45 Находим количество витков на 1 В: Определяем количество витков первичной обмотки при питании от сети напряжением 127 В: а также при питании от сети напряжением 220 В: Определяем количество витков дополнительной секции первичной обмотки, которую необходимо подключить к обмотке, рассчитанной на 127 В, для питания напряжением 220 В: Находим из табл 62 коэффициент ш для каждой из вторичных обмоток: при ф = 1,5 А пр = 1,04 при 12 = 0,3 А ш2 = 1,02 при 13 = 0,059 А ш3 = 1,00 Определяем количество витков каждой из вторичных обмоток с округлением до ближайшего целого числа: Находим силу тока в первичной обмотке при питании от сети напряжением 127 В: то же при напряжении сети 220 В: Находим диаметр провода первичной обмотки для секции, рассчитанной на напряжение 127 В при использовании провода марки ПЭВ-1 (коэффициент р = 0,72 берем из табл 63): то же для секции на 220 В: Находим диаметры проводов вторичных обмоток Для этого составляем схему трансформатора (рис, 64) и таблицу намоточных данных (табл 64), где диаметры проводов по меди выбраны из ближайших больших стандартных значений, а диаметры проводов в изо ляции взяты на 10% больше, чем диаметры проводов по меди Таблица 64 Намоточные данные трансформатора Нем ера вы водов Количество витков, W Диаметр провода по меди, d, мм Диаметр провода по изоляции, мм 1-2 970 СО О t СО О 2-3 710 0,25 0,275 4-5 50 0,9 0,99 6-7 94 0,41 0,45 8-9 917 0,18 0,2 Конструктивный расчет трансформатора Окно сердечника, предназначенное для размещения катушки с обмотками, имеет размеры, соответствующие толщине катушки b и ее ширине h (рис, 62) Однако не вся площадь окна может быть занята обмотками, необходимо оставить место и для каркаса катушки Кроме того, обмотки нельзя наматывать вплотную к щечкам каркаса, так как это иногда приводит к «проваливанию» витков верхних слоев намотки в пространство, занятое нижними слоями, в результате чего может возникнуть пробой между витками, появятся короткозамкнутые витки и во время работы трансформатора его обмотки сгорят Поэтому в зависимости от конструкции каркаса и толщины материала, из которого он будет изготовлен, а также с учетом расстояния между щечкой каркаса и началом намотки каждого слоя выбираются эффективные размеры окна Ьэ и h Обмотки трансформатора наматываются рядовой намоткой виток к витку с прокладками между слоями для обеспечения электрической изоляции одного слоя по отношению к соседнему, иначе возникнет пробой между витками обмоток Ведь между началом одного слоя и концом следующего, которые оказываются расположенными один под другим, действует значительное напряжение, соответствующее количеству витков двух слоев намотки и многократно превышающее допустимое напряжение для эмалевой изоляции Поэтому между слоями используются прокладки в виде одного слоя кабельной бумаги толщиной d, а между обмотками – три слоя такой же бумаги Иногда, если прочность электрической изоляции какой-либо обмотки нужно специально увеличить, между этой обмоткой и другими прокладывают дополнительно один или несколько слоев лакоткани При определении толщины обмотки сначала нужно подсчитать количество витков W , которое можно намотать в одном слое Для этого эффективную ширину окна следует разделить на диаметр провода по изоляции: Полученный результат округляют до ближайшего меньшего целого числа Затем находят количество слоев η , которое займет обмотка, разделив общее количество ее витков W на количество витков Wc одного слоя: Полученное значение п,округляют до ближайшего большего целого числа, после чего определяют толщину обмотки t: где (η – 1) – количество бумажных прокладок между слоями Для определения толщины катушки нужно сложить значения толщины каждой обмотки и к результату прибавить толщину прокладок между обмотками: где t, t, t и тд – толщина каждой обмотки d – толщина бумаги для прокладок η – количество обмоток Полученная толщина катушки Т должна быть меньше, чем эффективный размер окна b Теоретически этого достаточно для вывода: катушка сможет разместиться в окне сердечника Однако на практике существуют некоторые факторы, которые трудно учесть в процессе инженерного расчета Одним из таких факторов является невозможность, а иногда просто неумение намотчика укладывать при намотке витки вплотную один к другому В результате уменьшается количество витков в слое относительно расчетного, а следовательно, увеличивается количество слоев, что ведет к увеличению фактической толщины катушки Кроме того, форма витка обычно не получается прямоугольной, а напоминает эллипс, что также приводит к увеличению толщины катушки Поэтому следует установить некоторый запас по толщине катушки Так, при ручной намотке и низкой квалификации намотчика полученное значение Т должно быть по крайней мере в 2 раза меньше, чем Ьэ Когда намотка производится на станке и квалификация намотчика достаточно высока, Т может быть в 1,2 раза меньше b Если такие соотношения не получаются, необходимо произвести перерасчет трансформатора, увеличив размер окна путем выбора другого типоразмера пластин или увеличив сечение рабочего керна за счет увеличения толщины пакета Это снизит количество витков на 1 В, уменьшится количество витков всех обмоток, и толщина катушки Т станет меньше Пример конструктивного расчета Произведем конструктивный расчет трансформатора, который должен следовать за электрическим расчетом, проведенным ранее Для пластин трансформаторной стали типа Ш-19 размеры окна: b = 17 мм h = 46 мм Допустим, что каркас катушки выполнен из гетинакса толщиной 0,5 мм Тогда эффективная ширина окна должна быть уменьшена на толщину каркаса, то есть Ьэ = 16,5 мм Эффективная ширина намотки может быть найдена, если из высоты окна h вычесть толщину двух щечек каркаса и двойное расстояние между щечками и крайними витками обмоток, которое можно принять равным 2 мм Тогда Ьэ = 41 мм Выберем для прокладок между слоями и между обмотками бумагу толщиной d = ОД мм Найдем количество витков в слое для секции первичной обмотки, предназначенной для напряжении сети 127 В: Находим количество слоев этой обмотки: и ее толщину: Количество витков в слое для дополнительной секции, рассчитанной на 220 В: Количество слоев: Толщина обмотки: То же для вторичной обмотки № 1: Для вторичной обмотки № 2: Для вторичной обмотки № 3: Находим толщину катушки трансформатора: Определим запас размещения катушки в окне сердечника: Полученный результат позволяет сделать вывод о том, что намотка может быть выполнена вручную при средней квалификации намотчика Источник: Виноградов Ю А и др, Практическая радиоэлектроника-М: ДМК Пресс – 288 с: ил (В помощь радиолюбителю) nauchebe.net В раздел: Советы → Расcчитать силовой трансформатор Как рассчитать силовой трансформатор и намотать самому.Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника - сможете ли разместить обмотку.Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток - амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции. Формула для расчета витков трансформатора 50/S Сопутствующие формулы: P=U2*I2 Sсерд(см2)= √ P(ва) N=50/S I1(a)=P/220 W1=220*N W2=U*N D1=0,02*√i1(ma) D2=0,02*√i2(ma) K=Sокна/(W1*s1+W2*s2) 50/S - это эмпирическая формула, где S - площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт. Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода. Если вы планируете намотать трансформатор с достаточно "жёсткой" характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14. Рассчитываем количества витков на вольт14/7,8=1,8 витка на вольт. Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений. Вариант 2 расчета трансформатора.Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности: Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1. После выполнения расчетов, приступаем к выбору самого трансформаторного железа, провода для намотки и изготовление каркаса на которой намотаем обмотки. Для прокладки изоляции между слоями обмоток приготовим лакоткань, суровые нитки, лак, фторопластовую ленту. Учитываем тот факт, что Ш - образный сердечник имеют разную площадь окна, поэтому будет не лишним провести расчет проверки: войдут ли они на выбранный сердечник. Перед намоткой производим расчет - поместится ли обмотки на выбранный сердечник.Для расчета определения возможности размещения нужного количества обмоток:1. Ширину окна намотки делим на диаметр наматываемого провода, получаем количество витков наматываемыйна один слой - N¹.2. Рассчитываем сколько необходимо слоев для намотки первичной обмотки, для этого разделим W1 (количество витков первичной обмотки) на N¹.3. Рассчитаем толщину намотки слоев первичной обмотки. Зная количество слоев для намотки первичной обмотки умножаем на диаметр наматываемого провода, учитываем толщину изоляции между слоями.4. Подобным образом считаем и для всех вторичных обмоток.5. После сложения толщин обмоток делаем вывод: сможем ли мы разместить нужное количество витков всех обмоток на каркасе трансформатора. Еще один способ расчета мощности трансформатора по габаритам.Ориентировочно посчитать мощность трансформатора можно используя формулу:P=0.022*S*С*H*Bm*F*J*Кcu*КПД;P - мощность трансформатора, В*А;S - сечение сердечника, см²L, W - размеры окна сердечника, см;Bm - максимальная магнитная индукция в сердечнике, Тл;F - частота, Гц;Кcu - коэффициент заполнения окна сердечника медью;КПД - коэффициент полезного действия трансформатора;Имея в виду что для железа максимальная индукция составляет 1 Тл. Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 - магнитная индукция [T], j =2.5 - плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 - 0,33. Если вы располагаете достаточно распространенным железом - трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?Расшифровка обозначений ОСМ: О - однофазный, С - сухой, М - многоцелевого назначения.По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.Что же в этом случае делать?Имеется два пути решения.1. Смотать все обмотки и намотать заново.2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие - количество витков меньше.Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год. ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции.В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное - то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.Как подобрать трансформатор?С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29). После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности. Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток. Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя. По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.Разные вопросы и советы. 1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной. 2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса. 3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата. 4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода. 5. При разборке - сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью). Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?Для того чтобы получить от двух трансформаторов постоянное напряжение, к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт. www.110volt.ru Как узнать мощность трансформатора? Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором. Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт. Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике. Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания. Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт. Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной. Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе. P=Uн * Iн ,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах. Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре. Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель». Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины. При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров. Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно. Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения. Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула. ,где S — площадь сечения магнитопровода; Pтр — мощность трансформатора; 1,3 — усреднённый коэффициент. После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она. Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее. В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003. Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов — «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.). Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт. Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока. acheese.ruКак правильно рассчитать мощность трансформатора? Как определить мощность трансформатора
Расчет силового трансформатора
Мощность трансформатора - выбор по мощности и учет потерь
Правильный выбор мощности
Особенности конструкции и потери
Как рассчитать мощность трансформатора
Расчет обмотки преобразователя напряжения и его мощности
Самостоятельное проведение расчета обмотки мощности преобразователя сварочного аппарата
Формула для расчета мощности преобразователя напряжения
Мощность трансформатора, какая должна быть, как её подобрать, рассчитать.
Тема: какой мощности должен быть трансформатор на блоке питания, как ее узнать.
РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА | Техника и Программы
Как рассчитать трансформатор, количество витков намотки на вольт. Габаритная мощность трансформатора. Диаметр провода обмотки.
1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:I2 = 1,5 Iн,где: I2 - ток через обмотку II трансформатора, А;Iн - максимальный ток нагрузки, А.2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:P2 = U2 * I2,где: P2 - максимальная мощность, потребляемая от вторичной обмотки, Вт;U2 - напряжение на вторичной обмотке, В;I2 - максимальный ток через вторичную обмотку трансформатора, А.3. Подсчитываем мощность трансформатора:Pтр = 1,25 P2,где: Pтр - мощность трансформатора, Вт;P2 - максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.4. Определяют значение тока, текущего в первичной обмотке:I1 = Pтр / U1,где: I1 - ток через обмотку I, А;Ртр - подсчитанная мощность трансформатора, Вт;U1 - напряжение на первичной обмотке трансформатора (сетевое напряжение). 5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:S = 1,3 Pтр,где: S - сечение сердечника магнитопровода, см2;Ртр - мощность трансформатора, Вт.6. Определяем число витков первичной (сетевой) обмотки:w1 = 50 U1 / S,где: w1 - число витков обмотки;U1 - напряжение на первичной обмотке, В;S - сечение сердечника магнитопровода, см2.7. Подсчитывают число витков вторичной обмотки:w2 = 55 U2 / S,где: w2 - число витков вторичной обмотки;U2 - напряжение на вторичной обмотке, В;S-сечение сердечника магнитопровода, см2.8. Высчитываем диаметр проводов обмоток трансформатора:d = 0,02 I,где: d-диаметр провода, мм;I-ток через обмотку, мА. Таблица 1 Iобм, ma <25 25 - 60 60 - 100 100 - 160 160 - 250 250 - 400 400 - 700 700 - 1000 d, мм 0,1 0,15 0,2 0,25 0,3 0,4 0,5 0,6 Подключение обмоток трансформаторов ТПП
Соединение обмоток отдельных трансформаторов
Как узнать мощность трансформатора? | Компьютерные и радио детали
Определение мощности силового трансформатора
Поделиться с друзьями: