интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Большая Энциклопедия Нефти и Газа. Габаритная мощность трансформатора


Габаритная мощность - трансформатор - Большая Энциклопедия Нефти и Газа, статья, страница 2

Габаритная мощность - трансформатор

Cтраница 2

В случае же работы трансформатора на выпрямитель по двухполупериодной двухплечной ( рис. 32 - 2 и 32 - 11) или однополупериодной ( рис. 32 - 1 и 32 - 10, а) схеме габаритная мощность трансформатора больше мощности, потребляемой из сети.  [16]

Габаритная мощность трансформатора ( автотрансформатора) зависит также от температуры, до которой может быть допущен его нагрев, а последний тем сильнее, чем больше плотность тока 5 в обмотках.  [17]

Удобнее при проектировании трансформатора трехфазного тирнсторного выпрямителя выбирать схему, у которой вторичные обмотки соединены в зигзаг ( рис. 6 - 24) и вынужденное подмагничивание отсутствует. Габаритная мощность трансформатора в схеме с соединением вторичных обмоток в зигзаг на 8 % больше, чем в обычной схеме и составляет при а 0 1 46 Р0 вместо 1 35 Я0 для обычной трехфазной схемы.  [19]

Для трансформатора преобразователя напряжения выбираем тороидальный маг-нитопровод из пермаллоя 34НКМП, толщина ленты 0 1 мм, Bsl5 тл. Находим габаритную мощность трансформатора.  [20]

Итак, в результате проведенного расчета получены параметры оптимального набора конденсаторов ( Cs, U. По этим значениям вычислена габаритная мощность трансформатора. По току / т и максимальному напряжению l / в вентиля подбирается диод.  [21]

Для того чтобы от трансформатора получить максимальный выходной ток, необходимо правильно выбрать диаметр провода вторичной обмотки. При его расчете вначале определяют габаритную мощность трансформатора, но еще раньше измеряют ширину центрального стержня магнитопровода трансформатора и толщину его набора в сантиметрах.  [22]

Если трансформатор работает на выпрямитель, собранный по мостовой схеме или по схеме с удвоением напряжения ( а также для случая трансформатора шакала), то при полной нагрузке вторичных обмоток мощность, поступающая в первичную обмотку, примерно равна габаритной мощности. В случае же работы трансформатора на выпрямитель, собранный по двухлолупериодной двуплечей схеме или по однополупериодяой схеме, габаритная мощность трансформатора больше мощности, поступающей из сети з его первичную обмотку.  [23]

По сравнению с рассмотренными ранее выпрямителями мостовая схема выпрямителя обладает рядом существенных преимуществ. В ней применяется однофазный трансформатор без вывода средней точки и требуется вдвое меньшее напряжение между выводами вторичной обмотки для получения заданного выпрямленного напряжения; обратное напряжение на вентиле в 2 раза меньше, чем в двухполупериодной однофазной схеме; габаритная мощность трансформатора меньше; отсутствует намагничивание сердечника трансформатора постоянной составляющей выпрямленного тока. В мостовых схемах нецелесообразно использовать кенотроны и газотроны.  [24]

В полумостовой схеме напряжение, подводимое к первичной обмотке трансформатора, составляет половину входного напряжения, а в мостовой схеме - полностью входное напряжение. Поэтому ток / ктах в полумостовой схеме в 2 раза больше, чем в мостовой, и, следовательно, при одинаковых коллекторных токах мощных транзисторов мостовая схема ТДК может быть рассчитана на выходную мощность в 2 раза большую, чем полумостовая схема ТДК. Габаритная мощность трансформатора нерегулируемого ТДК равна 1 41 требуемой его выходной мощности.  [25]

Перед началом расчета рекомендуется изучить [1, 13], обратив внимание на то, что напряжение, приложенное к первичной обмотке, имеет прямоугольную форму. Таким образом, потери в сердечнике нужно определять с учетом высших гармоник магнитной индукции. Наличие обмоток со средней точкой увеличивает габаритную мощность трансформатора.  [27]

Аналогичные кривые могут быть рассчитаны и для других рядов сердечников. Как было пояснено в § 21, во многих случаях выгодно выбирать типоразмер сердечника, габаритная мощность которого существенно превышает габаритную мощность трансформатора, используя при этом неполное заполнение окна медью.  [28]

Можно показать, что для приведенного выше примера привода вентилятора с параметрами & 2; [ ю0 05, и с диапазоном регулирования D 3: 1 габаритная мощность машины МП в схеме на рис. 4 - Г2 составляет 20 % номинальной мощности привода. Возможно также включение регулируемого трансформатора и в статорную цепь асинхронного двигателя. Отличительной особенностью каскадной схемы с трансформатором, включенным в статорную цепь, является необходимость установки трансформатора на полную мощность асинхронного двигателя, в то время как габаритная мощность трансформатора в роторной цепи определяется диапазоном регулирования скорости вращения асинхронного двигателя.  [29]

Через каждый вентиль ток течет в течение 1 / 3 периода. Ток в нагрузке все время имеет одно и то же направление. Одному периоду соответствуют шесть пульсирующих выбросов выпрямленного напряжения. В этой схеме действующее значение тока через вентиль сравнительно мало, уровень пульсаций низок и габаритная мощность трансформатора меньше по сравнению с другими схемами.  [30]

Страницы:      1    2

www.ngpedia.ru

Габаритная мощность - трансформатор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Габаритная мощность - трансформатор

Cтраница 1

Габаритная мощность трансформатора должна превышать мощность, найденную по вышеприведенным формулам, вследствие того, что необходимо компенсировать потоки вынужденного намагничивания сердечников трансформатора. Это превышение составляет 46 % для схемы звезда - зигзаг, 26 % для схемы с уравнительным реактором и 4 5 % для трехфазной мостовой схемы.  [1]

Габаритная мощность трансформатора на 30 % меньше, чем в трехфазной, и на 48 % меньше, чем в шестифазной нулевых схемах, ток первичной обмотки имеет форму синусоиды.  [2]

Габаритная мощность трансформатора на 30 % меньше, чем в схеме с нулем, и на 26 % меньше, чем в схеме с уравнительным реактором, ток первичной обмотки имеет форму синусоиды.  [3]

Габаритная мощность трансформатора в общем случае равна полусумме вольт-ампер всех обмоток трансформатора.  [4]

Габаритная мощность трансформатора Т2 на частоте преобразования 68 кГц равна 42 Вт, что позволяет увеличить выходную мощность источника питания до указанного значения.  [5]

Габаритная мощность трансформатора, входящая в выражение (V.8), равна, по определению, полусумме габаритных мощностей первичных и вторичных обмоток трансформатора.  [6]

Определим габаритную мощность трансформатора.  [7]

Теперь можно перейти к определению габаритной мощности трансформатора, которая вычисляется как полусумма мощности, переданной в первичную обмотку и полученной со вторичных обмоток.  [8]

Размеры трансформатора ( сечение сердечника и величина окна) определяются габаритной мощностью трансформатора, выражаемой в вольт-амперах.  [9]

Предварительный расчет основных параметров схемы пуш-пуль-ного конвертора должен определить коэффициент трансформации п и габаритную мощность трансформатора.  [10]

Из главы, посвященной основам работы трансформаторов, мы помним, что с повышением рабочей частоты габаритная мощность трансформатора увеличивается, а это значит, что при сохранении мощности можно, повысив часюту преобразования, существенно снизить габаритные размеры трансформатора.  [12]

Значение Вт 1 2 тл находим из табл. 1.2 для стали марки Э310 при условии, что габаритная мощность трансформатора приблизительно равна Ргае - 1 5 Р 1 5х X 500 - 0 3 225 во.  [13]

При этом следует учитывать, что каждая половина первичной обмотки используется лишь в течение одной половины периода и поэтому габаритная мощность трансформатора превышает мощность, отдаваемую в нагрузку.  [14]

Страницы:      1    2

www.ngpedia.ru

Как устроен трансформатор? Как подключить трнасформатор к сети?

Как устроен трансформатор? Как подключить трансформатор к сети? FAQ Часть 2

В статье рассмотрены вопросы об устройстве, определении габаритной мощности, подключении и фазировании обмоток силовых низкочастотных трансформаторов.

Самые интересные ролики на Youtube

Близкие темы.

Блок питания для усилителя низкой частоты из доступных деталей. УНЧ, часть 3.

Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

Оглавление статьи.

  1. Как определить необходимую мощность силового трансформатора для питания УНЧ?
  2. Какую схему питания УНЧ выбрать?
  3. Расчёт выходного напряжения (переменного тока) трансформатора работающего на холостом ходу или без существенной нагрузки.
  4. Расчёт напряжения (постоянного тока) на выходе блока питания работающего при максимальной нагрузке.
  5. Типы магнитопроводов силовых трансформаторов.
  6. Как определить габаритную мощность трансформатора?
  7. Где взять исходный трансформатор?
  8. Как подключить неизвестный трансформатор к сети?
  9. Как сфазировать обмотки трансформатора?
  10. Как определить количество витков вторичной обмотки?
  11. Как рассчитать диаметр провода для любой обмотки?
  12. Как измерить диаметр провода?
  13. Как рассчитать количество витков первичной обмотки?
  14. Как разобрать и собрать трансформатор?
  15. Как намотать трансформатор?
  16. Как закрепить выводы обмоток трансформатора?
  17. Как изменить напряжение на вторичной обмотке не разбирая трансформатор?
  18. Программы для расчёта силовых трансформаторов.
  19. Дополнительные материалы к статье.

Страницы 1 2 3 4

Типы магнитопроводов силовых трансформаторов.

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.

Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

Магнитопроводы бывают:

1, 4 – броневые,

2, 5 – стержневые,

3, 6 – кольцевые.

Правда, кольцевых штампованных магнитопроводов я никогда не видел.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Подробнее о магнитопроводах в главе – «Разборка и сборка трансформаторов».

Вернуться наверх к меню

Как определить габаритную мощность трансформатора.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.

Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.

Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

Для облегчения расчётов, загляните по этой ссылке: Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

P = B * S² / 1,69

P – мощность в Ваттах,

B – индукция в Тесла,

S – сечение в см²,

1,69 – постоянный коэффициент.

Пример:

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

S = ²√ (P * 1,69 / B)

Пример:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.
Тип магнитопровода Магнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Броневой штампованный 1,2 1,3 1,35 1,35 1,3
Броневой витой 1,55 1,65 1,65 1,65 1,6
Кольцевой витой 1,7 1,7 1,7 1,65 1,6

Вернуться наверх к меню

Где взять исходный трансформатор?

Проще всего подобрать готовый трансформатор на радиорынке, если, конечно, он есть в вашем городе. Там же можно договориться о перемотке трансформатора. Но, и трансформаторы, и услуги по их перемотке достаточно дороги.

На картинке часть лотка на радиорынке, где можно купить трансформаторы в городе Cishinau (Кишинёв).

Если у Вас в сарае или на балконе валяется какая-нибудь ненужная техника, то наверняка в ней есть и трансформаторы. Любой разборный сетевой трансформатор очень легко переделать под свои нужды. Самое главное, чтобы хватило его габаритной мощности.

Если мощность трансформатора меньше требуемой, то под нагрузкой выходное напряжение трансформатора может существенно просесть. Но, это тоже не беда, так как микросхемы типа TDA2030, TDA2040 и TDA2050 могут работать при значительном снижении напряжения питания, а именно: ±6, ±2,5 и ±4,5 Вольт соответственно.

Маловероятно, что вторичные обмотки найденного трансформатора подойдут по току и напряжению, но первичная обмотка уже рассчитана на напряжение осветительной сети и это самое лучшее подспорье, так как перемотать вторичную обмотку намного проще, чем первичную.

Хорошо, если это будет стандартный унифицированный трансформатор, тогда можно по его наименованию точно определить напряжения и максимально допустимые токи вторичных обмоток. Такие трансформаторы не поддаются разборке, поэтому прежде чем его покупать, нужно сверить название с данными в справочнике.

В конце статьи есть ссылка на справочник, в котором можно найти подробную информацию о большинстве унифицированных трансформаторов советского и постсоветского производства.

Если же это будет трансформатор без опознавательных знаков, то вероятность того, что его придётся перематывать, будет стремиться к 99%. За такой транс много платить не стоит.

При покупке трансформатора на кольцевом магнитопроводе, следует иметь в виду, что не каждый трансформатор можно разобрать, не повредив первичной обмотки.

  1. Годится для замены вторичной обмотки.
  2. Нужно мотать первичную обмотку.
  3. Нужно мотать первичную обмотку.

Вернуться наверх к меню

Как подключить неизвестный трансформатор к сети?

Прежде чем подключать трансформатор к сети, нужно прозвонить его обмотки омметром. У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.

Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.

В двухкаркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.

При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном включении предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.

Рассчитываем ток предохранителя обычным способом:

I = P / U

I – ток, на который рассчитан предохранитель (Ампер),

P – габаритная мощность трансформатора (Ватт),

U – напряжение сети (~220 Вольт).

Пример:

35 / 220 = 0,16 Ампер

Ближайшее значение – 0,25 Ампер.

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт) Ток ХХ (мА)
5 - 10 10 - 200
10  -50 20 - 100
50 - 150 50 - 300
150 - 300 100 - 500
300 - 1000 200 - 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности.

Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем меньше ток ХХ.

Схема подключения, при определения количества витков на вольт.

Вернуться наверх к меню

Как сфазировать обмотки трансформатора?

На электрических схемах принято отмечать жирной точкой начало намотки отдельных катушек трансформатора, если это необходимо. Но, выводы катушек реального трансформатора могут не иметь вообще никакой маркировки.

При прозвонке неизвестного трансформатора, может понадобиться определить начало намотки некоторых катушек.

Например, если две отдельные части первичной обмотки включить навстречу друг другу, то они просто могут выйти из строя. На картинке изображён трансформатор, у которого первичная обмотка состоит из двух частей и эти части подключены в противофазе, что недопустимо (!).

Для фазировки обмоток можно использовать стрелочный вольтметр постоянного тока и батарейку (химический элемент питания) включённые по приведённой схеме.

Диапазон измеряемого напряжения вольтметра нужно подобрать так, чтобы было хорошо заметно движение стрелки. Начинать лучше с большего диапазона.

Если при замыкании выключателя, стрелка вольтметра отклонилась в прямом направлении, то за начало фазируемых обмоток нужно принять «+» (плюс) батареи и «+» вольтметра.

Если стрелка отклонилась в обратном направлении, обмотки подключены в противофазе относительно «+» батареи и «+» вольтметра.

Нужно иметь в виду, что при замыкании выключателя, стрелка вольтметра будет отклоняться в одну сторону, а при размыкании в противоположную, из-за возникшей ЭДС самоиндукции. Ориентироваться нужно по отклонению стрелки именно в момент включения выключателя.

При подключении катушек витых стержневых или штампованных стержневых трансформаторов, у которых два симметрично расположенных каркаса, нужно иметь в виду, что силовые магнитные линии выходят из одного каркаса, но входят в другой.

На картинке изображён трансформатор, у которого первичная обмотка состоит из двух симметричных катушек с выводами 1, 2 и 1’, 2’. Катушки расположены на двух симметрично расположенных друг относительно друга каркасах.

Например, чтобы соединить катушки такого трансформатора последовательно, нужно соединить выводы 2 и 2’, а сеть подключить к выводам 1, 1’.

Вернуться наверх к меню

Страницы 1 2 3 4

oldoctober.com

Габариты трансформаторов

Согласие на обработку персональных данных Настоящим в соответствии с Федеральным законом № 152-ФЗ «О персональных данных» от 27.07.2006 года свободно, своей волей и в своем интересе выражаю свое безусловное согласие на обработку моих персональных данных ООО «Траст Индастри» (ОГРН 1137746534970, ИНН 7725795149), зарегистрированным в соответствии с законодательством РФ по адресу: 115280, г. Москва, ул. Автозаводская, дом 16, корп. 2, стр. 14 (далее по тексту - Оператор). Персональные данные - любая информация, относящаяся к определенному или определяемому на основании такой информации физическому лицу. Настоящее Согласие выдано мною на обработку следующих персональных данных: - Имя; - Фамилия; - Телефон; - E-mail; - Комментарий. Согласие дано Оператору для совершения следующих действий с моими персональными данными с использованием средств автоматизации и/или без использования таких средств: сбор, систематизация, накопление, хранение, уточнение (обновление, изменение), использование, обезличивание, а также осуществление любых иных действий, предусмотренных действующим законодательством РФ как неавтоматизированными, так и автоматизированными способами. Данное согласие дается Оператору для обработки моих персональных данных в следующих целях: - предоставление мне услуг/работ; - направление в мой адрес уведомлений, касающихся предоставляемых услуг/работ; - подготовка и направление ответов на мои запросы; - направление в мой адрес информации, в том числе рекламной, о мероприятиях/товарах/услугах/работах Оператора. Настоящее согласие действует до момента его отзыва путем направления соответствующего уведомления на электронный адрес [email protected]. В случае отзыва мною согласия на обработку персональных данных Оператор вправе продолжить обработку персональных данных без моего согласия при наличии оснований, указанных в пунктах 2 – 11 части 1 статьи 6, части 2 статьи 10 и части 2 статьи 11 Федерального закона №152-ФЗ «О персональных данных» от 26.06.2006 г. Принимаю Не принимаю

www.trustindustry.ru

Что такое трансформатор? | Компьютер и жизнь

Приветствую, друзья!

ТрансформаторМы с вами уже знакомились с тем, как работают некоторые «кирпичики», из которых состоит современный компьютер.

Вы уже знаете, как работают диоды, а также полевые и биполярные транзисторы.

Сегодня мы с вами узнаем, как устроен еще один такой «кирпичик» — трансформатор.

Он не просто жужжит или гудит, но выполняет очень важные функции!

Если бы не изобрели эту штуку, у нас не было бы ничего – не телевидения, ни радио, ни компьютеров, ни электрического света в домах.

Мы не будем рассматривать подробно всё многообразие трансформаторов (их много), но ограничимся тем, что имеет отношения к компьютеру и периферийным устройствам.

Что такое трансформатор?

Слово «трансформатор» происходит от латинского transformo (преобразовывать). Мы рассмотрим трансформаторы — преобразователи напряжения, как наиболее нас интересующие.

Бывают еще другие трансформаторы, например, тока.

Трансформатор напряжения позволяет получить напряжение одной величины из напряжения другой величины. Все вы видели высоковольтные линии с высокими опорами, по которым передается высокое напряжение 6000, 35 000, 110 000, 220 000 или 500 000 Вольт.

В домашней же электрической сети и присутствует напряжения 220 вольт (В). Преобразование высокого напряжения в 220 В осуществляется с помощью здоровенных трансформаторов в тонны весом, которые находятся в трансформаторных подстанциях.

Из напряжения 220 В мы можем получить дома более низкое напряжение нужной величины с помощью небольшого трансформатора. Удобно, не правда ли?

Как устроен трансформатор

Малогабаритный трансформаторНизкочастотный трансформатор содержит в себе сердечник из сплава на основе железа и размещенные на нем обмотки из провода. В упрощенном виде трансформатор содержит две обмотки — первичную и вторичную. Они изолированы друг от друга и не имеют электрического контакта.

На первичную обмотку подается преобразуемое напряжение, со вторичной снимается напряжение, нужное нам.

Это и отражено в символическом изображении трансформатора в электрических схемах. Обмотки изображают в виде волнистых линий с отводами, сердечник — одной (или несколькими, зависит от стандарта) прямой линией.

Изображение трансформатора в схемахПри подаче переменного тока в первичную обмотку в ней возникает переменное магнитное поле.

Магнитное поле характеризуется такой числовой величиной, как магнитный поток.

Чем больше ток в первичной обмотке и чем больше там витков, тем сильнее возникающий магнитный поток.

Это магнитный поток наводит (генерирует) переменное напряжение во вторичной обмотке.

Если подключить к вторичной обмотке нагрузку, по ней потечет переменный ток. Следует отметить, что частота переменного напряжение во вторичной обмотке будет равна частоте напряжения в первичной обмотке.

Что будет, если первичную обмотку подключить к источнику постоянного напряжения? Появится ли постоянное напряжение на вторичной обмотке, ведь при протекании тока в первичной обмотке в ней генерируется магнитный поток?

Нет, не появится! Напряжение во вторичной обмотке находится только при переменном магнитном потоке, а при постоянном токе он постоянен.

Магнитный поток в трансформатореРоль сердечника заключается в том, что он почти полностью концентрирует в себе магнитный поток.

Без сердечника магнитная связь обмоток было бы слабее.

И мощность, отдаваемая вторичной обмоткой в нагрузку, было бы гораздо меньше.

Полная теория трансформатора довольно сложна.

Чтобы исчерпывающим образом описать его работу, необходимо применять математический аппарат с интегралами, производными и прочими сложными понятиями.

Мы не будем здесь этого делать, но приведем несколько базовых соотношений, имеющих практическую пользу.

Габаритная мощность и КПД трансформатора

Трансформатор с П-образным сердечникомДля начала отметим, что, чем больше поперечное сечение сердечника (или магнитопровода) трансформатора, тем большую мощность можно получить на вторичных обмотках.

Именно поэтому большие трансформаторы, установленные в трансформаторных подстанциях и питающие несколько многоэтажек, имеют большой вес и габариты.

Маломощные трансформаторы, отдающие мощность в несколько Ватт (Вт), умещаются на ладони.

Трансформатор характеризуется габаритный мощностью, т.е. суммарной мощностью, отдаваемой всеми вторичными обмотками.

Как известно, мощность Р2 = U2 * I2, где U2, I2 – соответственно, напряжение и ток вторичной обмотки трансформатора.

Отметим, что не вся мощность, потребляемая первичной обмоткой от источника передается во вторичную. Часть мощности идет на нагрев проводов и сердечника. Кроме того, некоторая часть магнитного потока, создаваемого первичной обмоткой, рассеивается в пространстве и не участвуют в наведении напряжения во вторичных обмотках.

Именно поэтому, КПД (коэффициент полезного действия) трансформатора, т.е. отношение мощности вторичной обмотки P2 к мощности первичной обмотки P1 меньше 100%.

КПД: η = P2 / P1

В общем случае, чем больше габаритная мощность трансформатора, тем больше его КПД.

КПД маломощных трансформаторов может составлять величину 60 – 80%. КПД мощных трансформаторов в распределительных подстанциях может иметь величину 99% .

Провода в обмотках нагреваются потому, что они имеют не нулевое сопротивление. Прохождения тока по проводнику, обладающему сопротивлением, вызывает, по закону Джоуля-Ленца, его нагрев.

Именно поэтому обмотки трансформатора выполняют из меди, как материала, обладающего низким удельным сопротивлением.

Количество витков на вольт и сечение магнитопровода трансформатора

Магнитопровод трансформатораНапряжение на вторичной обмотке пропорционально количеству витков провода в ней. Чем больше витков, тем больше напряжение на ней.

Маломощный трансформатор характеризуется такой вспомогательной величиной, как количество витков на вольт.

Она связана достаточно сложной зависимостью с сечением магнитопровода трансформатора.

Для маломощных однофазных трансформаторов c сердечником из отдельных пластин приближённая формула имеет вид:

w = 50/S, где S — сечение магнитопровода в кв. сантиметрах, w – количество витков на вольт.

Таким образом, если сечение магнитопровода имеют величину, скажем 4 кв. см, то для него w = 50/4 = 12,5.

Если первичная обмотка рассчитана на напряжение 220 вольт количество витков в ней должно быть: w1 = 220*12,5 = 2750. А если нам надо, например, иметь 15 вольт на вторичной обмотке, надо намотать w2 = 15*12,5 = 188 витков.

В заключение первой части рассмотрим, что такое коэффициент трансформации.

Коэффициент трансформации трансформатора

Трансформатор характеризуется ещё такой величиной, как коэффициент трансформации. Коэффициент трансформации k — это отношение напряжения вторичной обмотки к напряжению первичной обмотки: k = U2/U1. Если имеется несколько вторичных обмоток разными напряжениями, то для каждой будет свой коэффициент трансформации.

Из вышесказанного видно, что коэффициент трансформации определяется соотношением витков вторичной и первичной обмоток: k = w2/w1.

Для приведенных выше цифр в примере k = 15/220 = 188/2750 = 0,068

Для понижающего трансформатора коэффициент трансформации будет меньше единицы, для повышающего – больше.

Бывают трансформаторы с коэффициентом трансформации, равным единице.

В этом случае трансформатор служит для гальванической развязки разных частей схемы.

Во второй части мы продолжим знакомство с этой интересной штуковиной.

Можно еще почитать:

Как устроен компьютерный блок питания. Часть 1.

Как устроен компьютерный блок питания. Окончание.

vsbot.ru


Каталог товаров
    .