интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Типы изоляторов, их достоинства и недостатки, применение. Высоковольтные изоляторы виды


Типы изоляторов, их достоинства и недостатки, применение

Типы изоляторов 1 В энергетике на сегодняшний день используется одновременно несколько типов изоляторов: фарфоровые, стеклянные, полимерные. У каждого из них есть определённые достоинства и недостатки. В настоящий момент больше всего оборудования и ВЛ оснащены фарфоровыми изоляторами, но постепенно осуществляется повсеместный переход на более современные стеклянные и полимерные изделия.

Необходимо отметить, что самыми дешёвыми по себестоимости изготовления являются полимерные изоляторы, однако по сравнению с другими типами они обладают существенным недостатком, а именно значительно меньшей надёжностью и особенно стабильностью свойств.

Под действием окружающей среды (солнечная радиация, ультрафиолетовое излучение) и просто со временем в процессе постепенного распада соединений на мономеры полимерные изоляторы изменяют свои как механические, так и электротехнические характеристики. Если оборудование регулярно подвергается осмотру и обслуживанию, то эта особенность полимерных изоляторов не является проблемой. Для оборудования с длительным сроком эксплуатации, в котором проводники находятся в труднодоступных местах, предпочтительнее использовать стеклянные или фарфоровые изоляторы. Это касается в первую очередь высоковольтных линий, для которых использование полимеров на сегодняшний день является скорее исключением из правил, нежели нормой.

Типы изоляторов 3

Фарфор в отличие от полимеров сохраняет свои характеристики практически неизменными в течение всего срока эксплуатации, поскольку для активации химических реакций необходимо нагреть его хотя бы до 1300 ºС. Он также может успешно применяться в агрессивных средах, например, в большинстве кислот, устойчив к опасным выбросам предприятий. Не подвержен горению и полностью водонепроницаем. Электрические свойства остаются неизменными с течением времени. Благодаря высоким диэлектрическим свойствам фарфора пробой изоляции практически исключён.

Типы изоляторов 2

Среди недостатков фарфора можно отметить большой вес, сложность транспортировки по сравнению с пластиковыми изоляционными материалами, хрупкость. Для продления срока эксплуатации на фарфоровые изоляторы наносится слой оцинковки или термодиффузионного покрытия.

Закалённое стекло характеризуется ещё большей хрупкостью, чем фарфор, но имеет ряд существенных преимуществ. Производство стеклянных изоляторов, как правило, полностью автоматизировано. Они не нуждаются в периодических испытаниях, поскольку даже малейшие дефекты благодаря прозрачности материала легко обнаружить при периодическом осмотре. Благодаря относительной дешевизне производства и простоте контроля стеклянные изоляторы сегодня вытесняют с рынка фарфоровые.

Типы изоляторов 4

pue8.ru

Изоляторы высокого напряжения. Назначение, типы и характеристики изоляторов.

Изоляторы предназначены для крепления токопроводов, а также для создания изоляционных промежутков между токопроводами различных фаз и между токопроводами и заземленными конструкциями. По назначению изоляторы подразделяются на станционные, линейные и аппаратные.

Станционные изоляторы предназначены для закрепления токопроводов в закрытых распределительных устройствах, а также для пропуска их через стены и перекрытия. Они соответственно подразделяются на опорные и проходные.

Линейные изоляторы предназначены для закрепления проводов на ВЛ и ОРУ. Они подразделяются на штыревые, стержневые и подвесные.

Изоляторы высоковольтной аппаратуры, опорные и проходные, являются неотъемлемой частью аппаратуры и по конструктивному исполнению могут быть разной формы.

Диэлектрические материалы, из которых изготавливаются изоляторы, должны иметь высокую электрическую и механическую прочность. Эти характеристики должны обеспечиваться как в нормальных условиях эксплуатации, так и в аварийных режимах, при различных атмосферных условиях, быть негигроскопичными, трекингостойкими, работать в широком диапазоне температур и в агрессивной среде.

Всем этим требованиям удовлетворяют следующие материалы: глазурированный электротехнический фарфор, стекло и некоторые пластмассы.

Фарфор обладает следующими характеристиками: электрическая прочность ; механическая прочность фарфора зависит от характера деформации , , ;

допустимый перепад рабочих температур 70ºC. Одно из достоинств фарфора как изоляции – низкая стоимость.

Стекло имеет электрическую прочность . Механические характеристики стекла примерно такие же, как у фарфора. Закаленное стекло допускает нагрузку до 530 кН. Стеклянные изоляторы могут изготавливаться методом штамповки и не требуют глазуровки. Прозрачность стекла позволяет легко обнаруживать трещины и другие дефекты, что облегчает контроль во время производства и эксплуатации.

Общий недостаток фарфоровых и стеклянных изоляторов – значительная масса и размеры.

В настоящее время широкое распространение получили изоляторы на основе стеклопластиков и полимерных покрытий. Полимерные изоляторы практически не повреждаются при транспортировке и имеют значительно меньшую (в 7–10 раз) металлоемкость подвесок, меньшую массу и размеры.

Металлическую арматуру изоляторов изготавливают из стали, ковкого и немагнитного чугунов или цветного металла. Немагнитный чугун и цветной металл применяются при больших токах с целью снижения потерь. Для крепления арматуры к диэлектрику используют высококачественные цементы и другие связующие.

Рис. 2.1 – Опорные изоляторы
Для изготовления изоляторов высоковольтной аппаратуры используется также эпоксидная смола, бакелизированная бумага и слоистые пластики. В высоковольтных вводах применяют бумажномасляную и маслобарьерную изоляцию, защищенную фарфоровыми покрышками.

Под воздействием токов короткого замыкания, ветра, гололеда и веса проводов высоковольтная изоляция испытывает большие механические нагрузки и вибрации. Кроме того изоляция ВЛ и ОРУ подвержена воздействию тумана, дождя, загрязнению и резким колебаниям температуры. Поэтому изоляционные материалы должны обеспечивать длительную электрическую прочность с учетом климатических условий и уровня перенапряжений, а также достаточную механическую прочность.

Для обеспечения надежной и безопасной работы изоляция подвергается испытанию повышенным напряжением. Значения испытательных напряжений для изоляции разных классов напряжения приводятся в таблицах. Для изоляторов внутренней установки определяющим является сухоразрядное напряжение , а для изоляторов наружной установки – мокроразрядное – напряжение перекрытия под дождем.



infopedia.su

Изоляторы для высоковольтных линий электропередач

В нашей стране широко распространены, наряду с кабельными линиями, воздушные высоковольтные линии электропередач. У каждого способа прокладки высоковольтных линий есть свои достоинства и недостатки. Кабельные линии обеспечивают прежде всего максимальную безопасность и не загромождают окололинейное пространство и в этом их основное достоинство. С другой стороны, кабельные линии более дорогостоящие и не везде имеется техническая возможность их укладки, вызванная плотностью подземных инженерных коммуникаций.

Воздушные высоковольтные линии электропередач экономически менее затратные по сравнению с кабельными линиями, но они значительно загромождают пространство вдоль линий и представляют собой опасные зоны. В связи с различными показателями линий электропередач еще на стадии их проектирования разрабатываются несколько вариантов и при согласовании проекта делается окончательный выбор способа их прокладки. Кроме того в стране имеется огромная разветвленная сеть воздушных высоковольтных линий электропередач, которые необходимо содержать и обеспечивать техническое обслуживание.

Одними из основных конструктивных элементов высоковольтных линий являются изоляторы различных типов и назначения, которые представляют собой устройства для крепления и изоляции токопроводящих проводов и кабелей на опорах воздушных линий электропередачи. Электрические изоляторы по своему назначению и конструктивному исполнению делятся на опорные, проходные, защитные, такелажные и другие. По способу крепления на опорах изоляторы подразделяются на штыревые и подвесные. Штыревые изоляторы крепятся на опорах на специальных штырях или крюках и применяются в основном на воздушных линиях с напряжением до 35 киловольт. Подвесные же изоляторы применяются на линиях с напряжением 35 и более киловольт, и каждый много раз встречал на высоковольтных линиях собранные из таких изоляторов гирлянды.

Любые высоковольтные изоляторы изготавливаются из электротехнического фарфора, технического стекла или из полимеров. Стеклянные изоляторы изготавливают из специального закаленного стекла, они имеют значительно большую механическую прочность при меньших размерах и массе, более длительный срок службы, в то же время имеют меньшее электрическое сопротивление. Наиболее сложными по конструкции являются подвесные изоляторы, которые состоят из фарфоровой или стеклянной изолирующей тарелки, оголовка или шапки из специального ковкого чугуна и стального стержня в форме пестика. Шапка и стержень закрепляются в тарелке с помощью высокомарочного марки не менее 500 цемента. Гирлянды подвесных изоляторов монтируются благодаря сферической конструкции головки стержня и шапки изоляторов, обеспечивающих надежное соединение изоляторов.

Число изоляторов в гирлянде обуславливается прежде всего напряжением ЛЭП, типом самих изоляторов и степенью загрязнения окружающей среды. Если по своим электротехническим показателям одной гирлянды оказывается недостаточно, то крепление проводов осуществляется двумя параллельно подвешенными гирляндами изоляторов. Подвесные полимерные изоляторы, точнее полимерные композитные изоляторы, представляют собой стеклопластиковый стержень с оконцевателями и полимерной оболочки.

Особое внимание в промышленной электротехнике было уделено стандартизации буквенных обозначений изоляторов, первое по их конструкции – Ш – штыревые, П – подвесные изоляторы, второе по материалу изготовления – Ф – фарфоровые, С – стеклянные, П – полимерные изоляторы. Цифры после буквенных обозначений означают номинальное напряжение электрического тока в киловольтах для данного изолятора. Многие электротехнические компании выполняют работы по строительству и реконструкции высоковольтных линий электропередач.

www.szenergo.ru

Как выбрать изоляторы для высоковольтных линий

Одним из важных элементов электрооборудования высоковольтных линий являются стержневые изоляторы. Качество используемых изоляторов, правильность их выбора по типу и количеству, – залог бесперебойной поставки электроэнергии. Также от надежности изоляторов зависит здоровье обслуживающего персонала.

Полимерные изоляторы

До недавнего времени в энергетической сфере применялись фарфоровые и стеклянные  изоляторы. На сегодняшний день на рынке электрических товаров начался рост предложений полимерных изоляторов.

Не смотря на это, количество полимерных изоляторов, используемых на объектах энергетики, пока что составляет не более 10% от общего числа применяемых изоляторов. Энергетики не отдают предпочтение массовому применению полимерных изоляторов на линиях, напряжение которых более 220 кВ. Из-за случаев, когда на линиях напряжением свыше 110 кВ оконцеватели обрывались, а на линиях 35–110 кВ происходило их возгорание.

У разных изоляторов значение прогиба в момент приложения усилия изгиба может быть различной. Именно поэтому полимерные изоляторы не рекомендуется применять в разъединителях класса напряжения 220 кВ и более. Даже незначительные повреждения полимерных изоляторов являются причиной нарушения их электрических характеристик, что вызывает их ускоренное изнашивание.

Из-за электрических разрядов  на поверхности изолятора бывает появление треков, из-за чего происходит, эрозия. Разгерметизация изолятора может привести к пробою, как по внутренней поверхности трубы, так и по воздушному промежутку полости трубы изолятора.

К преимуществам полимерных изоляторов можно отнести незначительный вес, стойкость к вандализму.

Вопросы, связанные с ресурсом полимерных изоляторов, надёжности используемых при их производстве материалов требуют дополнительного изучения и испытаний в условии лаборатории. В этом случае станет возможным выработать единое мнение о недостатках и достоинствах полимерных изоляторов.

Для проведения диагностики изоляторов наша компания предлагает ультрафиолетовые камеры DayCor, которые позволяют выявлять загрязнения изоляции в процессе работы, обнаруживать повреждения провода и многое другое.

Фарфоровые изоляторы

Химические свойства фарфора остаются неизменными с течением времени, так как химические реакции заканчиваются при температуре 1300ºС. Также неизменной остается и механическая прочность. Фарфор устойчив к агрессивным химическим выбросам, солнечной радиации и ультрафиолетовому излучению. Во время приложения усилия изгиба у фарфоровых изоляторов отсутствует деформация.

Поверхностные электрические разряды не оказывают влияния на фарфор. Также с течением времени электрические свойства фарфорового изолятора не меняются, а высокие диэлектрические свойства фарфора практически исключают пробой изолятора.

К недостаткам фарфоровых изоляторов стоит отнести значительную массу. Транспортировка таких изоляторов требует особого внимания, из-за их хрупкости высока вероятность повреждения посторонними предметами.

Стеклянные изоляторы

К преимуществам стеклянных изоляторов относят отсутствие необходимости проведения испытаний под напряжением, а их прозрачность позволяет обнаружить дефекты при осмотре. Разрушение стеклянной части изолятора не является критическим фактором, так как сама гирлянда при этом остается целой и какое-то время еще может функционировать. К критическим факторам состояния стеклянных изоляторов относятся такие неполадки как электрический пробой изолятора, механическое разрушение стеклянного элемента и изменение загрязненности окружающей среды в месте расположения объекта.

nppalerom.ru

Изоляторы



Различают изоляторы следующих видов: опорные, проходные и подвесные. Изоляторы должны отвечать ряду требований, определяющих их электрические и механические характеристики, в соответствии с назначением и номинальным напряжением, а также загрязненностью воздуха в районе установки.

К электрическим характеристикам относятся: номинальное напряжение, пробивное напряжение, разрядные и выдерживаемые напряжения промышленной частоты в сухом состоянии и под дождем, импульсные 50%-ные разрядные напряжения обеих полярностей. Основной механической характеристикой является минимальная разрушающая нагрузка, Н, приложенная к головке изолятора в направлении, перпендикулярном оси, а также жесткость или отношение силы, приложенной к головке изолятора в направлении. перпендикулярном оси, к отклонению головки от вертикали, Н/мм.

Жесткость опорных изоляторов зависит от их конструкции и номинального напряжения. Изоляторы для напряжения до 35 кВ включительно обладают очень большой жесткостью, поскольку высота их относительно мала. Изоляторы для более высоких напряжений имеют большую высоту и меньшую жесткость. Она составляет в зависимости от конструкции от 300 до 2000 Н/мм для изоляторов 110 кВ и 150-200 Н/мм для изоляторов 220 кВ. Это означает, что при КЗ головки изоляторов заметно отклоняются от своего нормального положения под действием электродинамических сил на проводники. Однако изоляторы не разрушаются при условии, что нагрузка на головку не превышает минимальной разрушающей нагрузки.

Опорные изоляторы предназначены для изоляции и крепления шин или токоведущих частей аппаратов на заземленных металлических или бетонных конструкциях, а также для крепления проводов воздушных линий на опорах. Их можно разделить на стержневые и штыревые.

Опорные стержневые изоляторы для внутренней установки

Опорный стержневой изолятор для внутренней установки серии ИО 10 кВ с квадратным фланцем и колпаком

Рис.1. Опорный стержневой изолятор для внутренней установки серии ИО 10 кВ с квадратным фланцем и колпаком

Опорные стержневые изоляторы для внутренней установки серии ИО изготовляют для номинальных напряжений от 6 до 35 кВ. Они имеют фарфоровое коническое тело с одним небольшим ребром (рис.1). Снизу и сверху предусмотрены металлические детали (армировка) для крепления изолятора на основании и крепления проводника на изоляторе.

Высота фарфорового тела определяется номинальным напряжением. Диаметр тела и вид армировки определяются минимальной разрушающей нагрузкой: чем больше последняя, тем прочнее должен быть укреплен изолятор на основании. Изоляторы, рассчитанные на значительную механическую нагрузку, имеют снизу квадратные фланцы с отверстиями для болтов, а сверху - металлические колпаки с нарезными отверстиями для крепления шинодержателя и проводника. Элементы арматуры охватывают тело изолятора и соединены с фарфором цементным составом.

Изоляторы серии ИО изготовляют с минимальной разрушающей нагрузкой от 3,75 до 30 кН.

Опорные стержневые изоляторы для наружной установки

Опорный стержневой изолятор для наружной установки серии ИОС 110 кВ

Рис.2. Опорный стержневой изолятор для наружной установки серии ИОС 110 кВ

Опорные стержневые изоляторы для наружной установки серии ИОС (рис.2) отличаются от изоляторов описанной выше конструкции более развитыми ребрами, благодаря которым увеличивается разрядное напряжение под дождем. Их изготовляют для номинальных напряжений от 10 до 110 кВ. Минимальная разрушающая нагрузка находится в пределах от 3 до 20 кН.

Опорные штыревые изоляторы

Опорный многоэлементный изолятор (мультикон) 245 кВ

Рис.3. Опорный многоэлементный изолятор (мультикон) 245 кВ

Опорные штыревые изоляторы серии ОНШ также предназначены для наружной установки. Они имеют фарфоровое тело с далеко выступающими ребрами (крыльями) для защиты от дождя. Длина пути тока утечки по поверхности диэлектрика значительно больше соответствующего пути тока утечки по изолятору, предназначенному для внутренней установки. Изолятор укрепляется на основании с помощью чугунного штыря с фланцем.

Для крепления токоведущих частей предусмотрен чугунный колпак с нарезными отверстиями. Штыревые изоляторы изготовляют для номинальных напряжений от 10 до 35 кВ и минимальной разрушающей нагрузки от 5 до 20 кН. Изолятор, показанный на рис.3, рассчитан на номинальное напряжение 35 кВ. Штыревые изоляторы 110-220 кВ представляют собой колонки из нескольких изоляторов 35 кВ.

Опорный штыревой изолятор для наружной установки серии ОНШ 35 кВ

Рис.4. Опорный штыревой изолятор для наружной установки серии ОНШ 35 кВ

В Англии, Франции и других странах строят опорно-штыревые изоляторы (рис.4), составленные из большого числа фарфоровых элементов 2, соединенных между собой цементной связкой 3, получившие название «мультикон». Вверху изолятора крепится колпак 1, а внизу - металлический фланец. Высота изолятора для напряжения 245 кВ составляет 2300 мм. Такие изоляторы, собранные в одиночные колонки, используются в РУ до 765 кВ. Они обладают малой жесткостью и в то же время высокой прочностью на изгиб.

Проходные изоляторы

Проходные изоляторы предназначены для проведения проводника сквозь заземленные кожухи трансформаторов и аппаратов, стены и перекрытия зданий.

Проходные изоляторы для внутренней установки до 35 кВ включительно имеют полый фарфоровый корпус без наполнителя с небольшими ребрами. Для крепления изолятора в стене, перекрытии предусмотрен фланец, а для крепления проводника - металлические колпаки. Длина фарфорового корпуса определяется номинальным напряжением, а диаметр внутренней полости - сечением токоведущих стержней, следовательно, номинальным током.

Проходной изолятор для внутренней установки 10 кВ, 250-630 А

Рис.5. Проходной изолятор для внутренней установки 10 кВ, 250-630 А

Проходной изолятор для внутренней установки 20 кВ, 8000-12500 А

Рис.6. Проходной изолятор для внутренней установки 20 кВ, 8000-12500 А

Изоляторы с номинальным током до 2000 А (рис.5) снабжены алюминиевыми стержнями прямоугольного сечения. Изоляторы с номинальным током свыше 2000 А (рис.6) поставляются без токоведущих стержней. Размеры внутренней полости выбраны здесь достаточными, чтобы пропустить через изолятор шину или пакет шин прямоугольного сечения, а при очень большом токе - трубу круглого сечения.

Фланцы и колпаки, в особенности у изоляторов с большим номинальным током, изготовляют из немагнитных материалов (специальных марок чугуна, а также силумина - сплава на основе алюминия и кремния) во избежание дополнительных потерь мощности от индуктированных токов. У изоляторов, предназначенных для ввода жестких и гибких шин в здания РУ или шкафы КРУ наружной установки, часть фарфорового корпуса, обращенная наружу, имеет развитые ребра (рис.7) для увеличения разрядного напряжения под дождем.

Проходной изолятор наружно-внутренней установки 35 кВ, 400-630 А

Рис.7. Проходной изолятор наружно-внутренней установки 35 кВ, 400-630 А

Проходные изоляторы 110 кВ и выше в зависимости от назначения получили названия линейных или аппаратных вводов. Кроме фарфоровой они имеют бумажно-масляную изоляцию. На токоведущий стержень наложены слои кабельной бумаги с проводящими прокладками между ними. Размеры слоев бумаги и прокладок выбраны так, чтобы обеспечить равномерное распределение потенциала как вдоль оси, так и в радиальном направлении.

Герметизированный бумажно-масляный ввод 500 кВ с выносным бачком давления

Рис.8. Герметизированный бумажно-масляный ввод 500 кВ с выносным бачком давления

Ввод (рис.8) состоит из следующих частей: металлической соединительной втулки 1, предназначенной для закрепления ввода в кожухе аппарата или в проеме стены, верхней 2 и нижней 3 фарфоровых покрышек, защищающих внутреннюю изоляцию от атмосферной влаги и служащих одновременно резервуаром для масла, заполняющего ввод. Вводы, предназначенные для аппаратов с маслом, имеют укороченную нижнюю часть; это объясняется более высоким разрядным напряжением по поверхности фарфора в масле сравнительно с разрядным напряжением в воздухе.

Вводы обычно герметизированы. Для компенсации температурных изменений в объеме масла предусмотрены компенсаторы давления, встроенные в верхнюю часть ввода или помещенные в особый бачок давления 4, соединенный с вводом гибким трубопроводом. Вводы имеют измерительное устройство, которое служит для контроля давления в системе ввод-бак.

Подвесные изоляторы

Подвесные изоляторы предназначены для крепления многопроволочных проводов к опорам воздушных линий и РУ. Их конструируют так, чтобы они могли противостоять растяжению.

Подвесной тарельчатый изолятор

Рис.9. Подвесной тарельчатый изолятор

Тарельчатый изолятор (рис.9) имеет фарфоровый или стеклянный корпус в виде диска с шарообразной головкой. Нижняя поверхность диска выполнена ребристой для увеличения разрядного напряжения под дождем, а верхняя поверхность диска - гладкой, с небольшим уклоном для стекания дождя. Внутри фарфоровой (стеклянной) головки цементом закреплен стальной оцинкованный стержень. Сверху фарфоровую головку охватывает колпак из чугуна с гнездом для введения в него стержня другого изолятора или ушка для крепления гирлянды к опоре. Число изоляторов в гирлянде выбирают в соответствии с номинальным напряжением.

Внутренней и наружной поверхностям фарфоровой головки придана такая форма, чтобы при тяжении провода фарфор испытывал только сжатие (как известно, прочность фарфора при сжатии значительно больше, чем при растяжении). Так обеспечивают высокую механическую прочность тарельчатых изоляторов. Они способны выдерживать тяжения порядка 104-105Н. Механическую прочность подвесных изоляторов характеризуют испытательной нагрузкой, которую изоляторы должны выдерживать в течение 1 ч без повреждений.

Расчетную нагрузку на тарельчатые изоляторы принимают равной половине часовой испытательной.

В местностях, прилегающих к химическим, металлургическим, цементным заводам, воздух содержит значительное количество пыли, серы и других веществ, которые образуют на поверхности изоляторов вредный осадок, снижающий их электрическую прочность. Вблизи моря и соленых озер воздух имеет большую влажность и содержит значительное количество соли, которая также образует вредный осадок.

Нормальные изоляторы, используемые в районах, удаленных от источников загрязнения, имеют отношение длины пути утечки к наибольшему рабочему напряжению около 1,5 см/кВ. Для РУ, подверженных загрязнению, применяют изоляторы особой конструкции или увеличивают число изоляторов в гирляндах. Прибегают также к периодической обмывке или обтирке изоляторов.

Подвесной изолятор для местностей с загрязненным воздухом

Рис.10. Подвесной изолятор для местностей с загрязненным воздухом

Тарельчатые изоляторы, предназначенные для местностей с загрязненным воздухом (рис.10), имеют увеличенную длину пути тока утечки и выполнены так, чтобы поверхность их была в наибольшей мере доступна очищающему действию дождя и ветра.

При одинаковой степени загрязнения и увлажнения разрядные напряжения у изоляторов особой конструкции приблизительно в 1,5 раза выше, чем у изоляторов обычного исполнения.



www.gigavat.com

2. Высоковольтная изоляция

СФ-110/2,25:стержневой, фарфоровый, номинальное напряжение 110 кВ, минимальная разрушающая нагрузка – 2,25 тс.

2.1.2. Станционно-аппаратныеизоляторы

Опорные изоляторы предназначены для крепления шинопроводов, деталей аппаратов и изолирования их от заземленных конструкций и между собой. Изготавливают их для наружной и внутренней установки на напряжение до 110 кВ. На большее напряжение опорные изоляторы собирают в колонны.

Опорные изоляторы для наружной установки делятся на штыревые и стержневые. Штыревые изоляторы используются в тех случаях, когда требуется большая механическая прочность на изгиб, изготавливаются из электротехнического фарфора. Обозначение, например, ОНШ-35-2000:опорный, наружной установки, штыревой, номинальное напряжение – 35 кВ, минимальная разрушающая нагрузка – 2000 кгс.

Опорно-стержневыеизоляторы изготавливаются на напряжение 35…150 кВ из электротехнического фарфора. Концы изолятора армированы чугунными фланцами. Обозначение, напримерОНС-110-1000:опорный, наружной установки, стержневой, номинальное напряжение 110 кВ, минимальная механическая прочность – 1000 кгс.

Проходные изоляторы и вводы используются там, где токоведущие части проходят через стены, перекрытия зданий, ограждения электроустановок или вводятся внутрь металлических корпусов оборудования. Проходными изоляторами называют изоляторы на напряжение до 35 кВ, на напряжение 110 кВ и выше – вводы. Вводы имеют более сложную конструкцию изоляции и выполняются с маслобарьерной изоляцией (до

150кВ) или с бумажно-маслянойизоляцией (220 кВ и выше). Проходные изоляторы на высокие напряжения (до 35 кВ включи-

тельно) изготавливаются из электротехнического фарфора, стекла, бакелитовой бумаги. На рис. 2.2 приведена конструктивная схема проходного изолятора.

Для увеличения напряжения перекрытия Uпер на наружной поверхности изолятора делают ребра, а также увеличивают диаметр изолятора у заземленного фланца. Проходные изоляторы маркируются по напряжению, току и изгибающей механической нагрузке. Например,П-10/400-750,что означает: проходной изолятор,UН = 10 кВ,IН = 400 А,

Ризг = 750 кгс.

studfiles.net

Высоковольтный изолятор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Высоковольтный изолятор

Cтраница 1

Высоковольтный изолятор выполнен на основе компаунда МБК-1 и материалов, исключающих образование токопроводящих следов на поверхности изолятора после возможных высоковольтных пробоев. Поверхность изолятора не накапливает электрических зарядов.  [2]

Высоковольтные изоляторы изготовляются преимущественно из фарфора, а высо-ковольтно-высокочастотные изоляторы - из стеатита.  [3]

Высоковольтные изоляторы согласно ГОСТ 5862 - 51 разделяются на собственно изоляторы и изоляционные части.  [4]

Высоковольтные изоляторы предназначаются для работы при температурах - 45 - i - 4 - 35 С при высоте установки их не более 1 000 м над уровнем моря.  [5]

Высоковольтные изоляторы должны изготавливать из фарфора, удовлетворяющего требованиям, приведенным в табл. 13 ( гр. Работают они при температуре от - 60 С до положительной, по классу изоляции С, указанному в ГОСТ 8024 - 69; отклонения от нормальных размеров, формы и расположения поверхностей изделия должны удовлетворять требованиям ГОСТ 13872 - 68 и ГОСТ 13873 - 68 соответственно.  [6]

Высоковольтные изоляторы до установки должны быть осмотрены и проверены по их размерам и на отсутствие дефектов. Изоляторы, имеющие трещины и сколы, к установке не допускаются. В тех случаях, когда изоляторы устанавливаются на металлические конструкции неармированными, они должны иметь под основанием мягкую подкладку из асбеста толщиной 5 мм.  [7]

Высоковольтные изоляторы, изготовленные из цирконовых масс, глазуруют в сыром состоянии и обжигают в один прием, подобно фарфоровым высоковольтным изоляторам.  [9]

Стеклянные закаленные подвесные высоковольтные изоляторы типа ПС-45, ПС-85, ПС-11 и ПС-16 при условии их изготовления из малощелочного стекла 13-в или даже из обычного щелочного стекла обладают большим запасом прочности, высокой термической стойкостью и устойчивостью к действию динамических нагрузок.  [10]

Формуют высоковольтные изоляторы следующими способами: протяжкой на вакуум-прессе болванок влажностью до 22 - 24 % с последующей формовкой на формовочных станках в гипсовых формах; обточкой на многорезцовых станках болванок, подвяленных до влажности 17 - 18 %; протяжкой при влажности 18 % и последующей обточкой; прессованием; литьем в гипсовые формы.  [11]

Форма высоковольтных изоляторов может быть самой разнообразной.  [13]

Перечень поставляемых штыревых стеклянных высоковольтных изоляторов и их основные технические данные приведены в Табл.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru


Каталог товаров
    .