интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Электромагнитный привод вакуумного высоковольтного выключателя. Вакуумный высоковольтный выключатель


принцип действия, плюсы и минусы, выбор

Вакуумные выключатели

Любой выключатель, применяемый в высоковольтных сетях, должен надёжно и быстро отключать и включать электрические цепи и оборудование в нормальном и аварийном режимах энергосистемы. При  коммутации в высоковольтных сетях, токи в которых могут  достигать десятки тысяч ампер при коротких замыканиях, возникает электрическая дуга между контактами выключателя. Это может привести к человеческим жертвам, повреждениям самого выключателя и близстоящего оборудования. Для предотвращения возникновения дуги в высоковольтных выключателях используют специальное дугогасительное устройство (дугогасительная камера), в которой расположены контакты выключателя. Внутри камеры создается вакуум с давлением около 10−5 мм рт. ст., электрическая прочность которого в десятки раз больше воздуха в нормальных условиях.

Таким образом, вакуумный высоковольтный выключатель — это коммутационный аппарат, предназначенный для операций включения и выключения в цепях от 6 кВ и выше, который в качестве среды для гашения дуги используют вакуум.

Выключатель рассчитан на:

  1. нормальный режим работы;
  2. аварийный, то есть должен выдерживать  кратковременные  токи короткого замыкания.

Принцип действия

вакуумный выключательМеханизм гашения дуги в вакуумных выключателях основан на высокой электрической прочности и усиленных диэлектрических свойствах вакуума. В момент размыкания контактов  в вакуумном промежутке возникает электрическая дуга, которая поддерживается за счет металла, испаряющегося с поверхности контактов. При переходе тока через ноль, происходит гашение дуги и восстановление диэлектрических свойств вакуумного промежутка, и дуга между разомкнутыми контактами  больше не возникает. Из-за большой электрической прочности вакуума гашение дуги может произойти до перехода тока через ноль, это явление называют срезом тока. Срез тока негативно влияет на сеть, так как вызывает коммутационные перенапряжения, которые могут достигать огромных величин.

Особенности применения и эксплуатации

Вакуумные выключатели конструктивно разрабатывались сначала как устройство, применяемое только в шкафах КРУ (комплектное распределительное устройство). В настоящее время они используются и для открытых распределительных устройств (ОРУ).

Современный высоковольтный вакуумный выключатель представляет собой быстродействующий коммутационный аппарат нового поколения, рассчитанный на более долгий срок службы, нежели его предшественники с масляной  или элегазовой средой для тушения электрической дуги. Статистически процент их применения в электроустановках выше 1000 Вольт стабильно растёт. Китайские энергетики уже полностью отказались от устаревших масляников и полностью перешли на более компактные и не требующие частой профилактики вакуумные выключатели. Вакуумный выключатель довольно неприхотлив и не требует регулярной чистки контактов и смене масла, которое зачастую довольно обильно вытекает из баков. Согласно паспортным данным срок эксплуатации вакуумных выключателей составляет порядка 20 лет.

Во время эксплуатации приводной механизм может выйти со строя, а подать питание на определённый важный механизм в производственной цепочке необходимо, поэтому все выключатели должны быть оборудованы механизмом ручного взвода пружины. А также обязательным является присутствие аварийной кнопки отключения механизмов блокировки выкатывания во включенном состоянии. Это безопасность персонала, поэтому этот момент очень важен.

Конструктивные особенности

Каждый  высоковольтный вакуумный выключатель обладает своими характеристиками и конструктивными особенностями, так как используется в сетях с разным напряжением и током. Также разные производители вносят свои индивидуальные коррективы в устройство и конструкцию своих изделий. Но основные элементы всё же остаются неизменными. конструкция выключателя

Основные элементы конструкции вакуумного выключателя это:

1-Корпус из прочного металлического материала, внутри которого установлен привод включения и отключения, в этом случае он пружинный; 2-Три полюса токоведущих частей, которые предназначены для подключения к сети и для отсоединения от неё при эксплуатации в контрольное, рабочее и выкаченное положения; 3-Литой диэлектрический корпус, содержащий силиконовые и эпоксидные смолы, с вакуумной дугогасительной камерой; 4-Тележка для перемещения внутри ячейки КРУ, этот механизм зачастую у разных производителей различный.

Электрическая основная высоковольтная часть разделена между фазами и содержит следующие элементы: высоковольтная часть

1-Верхний токопроводящий вывод; 2-Дугогасительная камера, содержащая вакуум; 3-Диэлектрический корпус полюса; 4-Подвижная часть контактной системы; 5-Нижний отходящий токопроводящий вывод; 6-Гибкий элемент токоведущей шины; 7-Специальная тяга, оборудованная прочным изолятором.

В свою очередь, сама дугогасящая камера является тоже очень важным хоть и не разборным элементом, зачастую в случае неисправности они не ремонтируются, а заменяются новыми.

Вот основные её части и механизмы: дугогасящая камера

1-Вывод неподвижного силового контакта; 2-Неподвижный силовой контакт; 3-Подвижный силовой контакт; 4-Экранирующий механизм, снижающий помехи при коммутации; 5-Керамический изоляционный корпус; 6-Сильфон, сохраняющий  герметичность во время движения контакта; 7-Вывод подвижного элемента контактной системы.

Выключатель управляется местным или дистанционным способом. В аварийных режимах отключается от релейной защиты или от противоаварийной автоматики (подается питание на электромагнит отключения и токопроводящие контакты размыкаются).

На данный момент некоторые производители изготавливают высоковольтные выключатели в комплекте с релейной защитой и противоаварийной автоматикой, такое устройство называется реклоузером.

Преимущества и недостатки

Как и любой механизм или устройство данный выключатель тоже имеет свои положительные и отрицательные стороны и понимание их при выборе очень важно.

Преимущества

  • Простая конструкция и установка в ячейки после вывода из эксплуатации устаревших выключателей;
  • Несложный ремонт, при неисправности камеры она подлежит немедленной замене;
  • Возможность работы не только в горизонтальном положении;
  • Надёжность во время всего длительного срока эксплуатации;
  • Хорошая коммутационная износостойкость;
  • Компактные небольшие размеры и вес;
  • Низкая пожароопасность;
  • Не загрязняет окружающую среду;
  • Небольшие расходы на ремонтные и профилактические работы.

Недостатки

  • Небольшой ресурс во время токов короткого замыкания;
  • Есть вероятность появления коммутационных перенапряжений;
  • Довольно высокая стоимость как всего устройства, так и комплектующих.

Особенности выбора

Для того чтобы правильно подобрать данный вид высоковольтных выключателей, в соответствии с местными условиями работы и конкретного оборудования, стоит обратить внимание на следующие критерии:

  1. Номинальное напряжение;
  2. Динамическая устойчивость;
  3. Параметры систем управления;
  4. Номинальный ток в рабочем режиме и режиме короткого замыкания;
  5. Частота включений и отключений;
  6. Климатическое исполнение;
  7. Скорость срабатывания выключателя ;
  8. Частота профилактических ремонтов и осмотров, в электроустановках без местного дежурного персонала это очень важный аспект;
  9. Износостойкость при коротких замыканиях;
  10. Габариты и размер вакуумной установки.

Самые распространённые модели

условное обозначениеВот несколько самых распространенных моделей ВВЭ-М-10–20, ВВЭ-М-10–40, ВВТЭ-М-10–20, а на рисунке указано как их расшифровывать и структура условных обозначений, так как модели могут содержать в своём названии до 10–12 букв и цифр. Почти все они являются заменой устаревших масляных выключателей, а работать могут как для коммутации цепей переменного тока, так и постоянного.

Настройка, установка и включение в работу высоковольтных вакуумных выключателей это трудоемкий процесс, от которого напрямую зависит вся дальнейшая работа энергосистемы, а также всех элементов и оборудования, подключаемого к ним, поэтому все работы лучше положить на плечи квалифицированного инженерно-электротехнического персонала. Управление вакуумным выключателем должно выполняться чётко и по определённым командам, от этого зависит жизнь и здоровье людей работающих на питаемом оборудовании.

Видео вакуумный выключатель

amperof.ru

Вакуумный выключатель - конструкция и принцип работы :: SYL.ru

Вакуумный выключатель - это новейший высоковольтный коммутационный аппарат, который получил широкое распространение в распределительных сетях. Что это за устройство?

Общие сведения

Вакуумный выключатель – высоковольтный аппарат для коммутации (периодические отключения и включения) электрического переменного тока в рабочих и аварийных режимах (короткие замыкания). Электрическая дуга, которая возникает между контактами устройства во время короткого замыкания, гасится. По всему миру такой прибор, как вакуумный выключатель, завоевывает все большую популярность по сравнению со своими предшественниками (масляными и маломасляными аппаратами). В сетях с напряжением до 35 киловольт в Китае их использование составляет почти 100 %, в развитых странах Европы достигает 70%.

Конструкция

Вакуумный выключатель состоит из двух основных элементов: подвижного и неподвижного контактов. У прибора есть три полюса, на которые установлены пофазно встроенные электромагнитные приводы. Они размещены на одном основании. Фазные приводы, которые расположены внутри выключателя, соединены механически между собой общим валом, синхронизирующим фазы, предохраняющим от режимов неполных фаз, задействующим дополнительные контакты. Также он механически блокирует соседние распределительные устройства, управляет индикацией положения контактов выключателя.

Принцип работы

Вакуумный выключатель (10 кВ, 6 кВ, 35 кВ – не имеет значения) обладает определенным принципом работы. Когда размыкаются контакты, в промежутке (в вакууме) ток коммутации создает электрический разряд – дугу. Ее существование поддерживается за счет испаряющегося металла с поверхности самих контактов в промежуток с вакуумом. Образованная парами ионизированного металла плазма – проводящий элемент. Она поддерживает условия протекания электрического тока. В тот момент, когда кривая переменного тока проходит через ноль, электрическая дуга начинает гаснуть, а пары металла фактически мгновенно (за десять микросекунд) восстанавливают электрическую прочность вакуума, конденсируясь на поверхностях контактов и внутренностях дугогасящей камеры. В это время восстанавливается напряжение на контактах, которые к тому моменту уже разведены. Если остаются после восстановления напряжения перегретые локальные участки, то они могут стать источниками эмиссии частичек заряженных, что вызовет пробой вакуума и протекание тока. Для этого используют управление дугой, поток тепла равномерно распределяют на контактах.

Вакуумный выключатель, цена на который зависит от фирмы-производителя, благодаря своим эксплуатационных свойствам, может сэкономить значительное количество ресурсов. В зависимости от напряжения, изготовителя, изоляции цены могут колебатся от 1500 у.е. до 10000 у.е.

Достоинства

Вакуумный выключатель 6 кВ – 35 кВ обладает безусловными преимуществами перед другими типами коммутационных устройств подобного назначения. Перечислим их.

  1. Безопасность. Вакуумный выключатель 6 кВ – 35 кВ намного более легкий, чем его аналоги (при равных параметрах номинальных напряжений и токов). Малые динамические нагрузки, небольшая энергия привода, отсутствие газов утечки и масла, бесшумная работа делают его удобным и абсолютно безопасным в плане экологии и взрывчатых свойств.
  2. Автономная работа. Дугогасительная вакуумная камера автономна, то есть нет необходимости пополнять среду. Это снижает расходы, которые идут на эксплуатацию коммутационного устройства.
  3. Высокое быстродействие, значительный механический ресурс. Основная причина – ход контактов (расстояние между ними) в дугогасительной вакуумной камере составляет всего десять миллиметров. У масляных выключателей это же расстояние доходит до нескольких сотен миллиметров. Естественно, прочность самого вакуума на пробой намного выше аналогичного показателя воздушных и масляных сред гашения дуги.

Кроме того, обязательно нужно упомянуть и следующие параметры.

  1. Коммутационная стойкость, высокий ресурс, низкие расходы на обслуживание. Число отключений рабочего тока без ремонтов и ревизий составляет десятки тысяч. Вакуумный выключатель способен отключать токи короткого замыкания в пределах от нескольких десятков до нескольких сотен раз (в зависимости от изготовителя и величины ударного тока и его периодической составляющей). К примеру: масляные выключатели нуждались в ревизии всего после нескольких сотен отключений рабочего тока и до десяти отключений токов КЗ (короткого замыкания). Воздушные выключатели – соответственно от 1000 до 2000 и от о 5 до 15.
  2. Надежность эксплуатации. Количество отказов у «вакуумника» намного ниже, чем у традиционных выключателей.

www.syl.ru

Вакуумный выключатель ВБП

Быстродействующий модульный вакуумный выключатель ВБП с пружинно-электромагнитным приводом предназначен для установки в ОРУ, КСО, КРУ, КРУЭ, КРУП, а также в КРУН (защищенных от воздействия окружающей среды) трехфазных электрических сетей различного уровня напряжения с компенсированной или изолированной нейтралью. Имеет стационарное (ВБКС) и выкатное (ВБКС) исполнение. Используется для дистанционных коммутации, коммутаций в ручном режиме (в том числе при отсутствии оперативного питания привода), отключения при перегрузках и короткого замыкания в сети и автоматического повторного включения (п.1,1а,2 по ГОСТ 687-78). Стоек к электродинамическому и термическому действию токов коротких замыканий.

Выключатель ВБП имеет российский сертификат соответствия ГОСТ 18397-86 и может использоваться для замены выключателей устаревших типов. На сегодняшний день является самым распространенным представителем этого типа коммутационных аппаратов.

Устройство устойчиво работает в сложных климатических условиях, пожаро- и взрывобезопасен, экологичен, так как не имеет утечек и вредных выбросов.

Контакты

Подвижный контакт при отключении приводится в движение за счёт потенциальной энергии предварительно сжатой пружины отключения. Он фиксируется в прижатом положении с помощью механической защелки. Гидравлический демпфер амортизирует его при отключениях. Выводы контактов могут быть адаптированы для присоединения шин или монтажа ламельных узлов. Механизм усиления увеличивает тяговое усилие магнитов до требуемых значений в схемах с дешунтированием или при снижении оперативного напряжения.Дугогасительная камера

Вакуумная дугогасительная многоразрывная камера обеспечивает минимальное время горения диффузной, распадающейся электрической дуги, находящейся в продольном магнитном поле. Благодаря электрической непроницаемости глубокого вакуума, напряжение между расходящимися контактами восстанавливается за сотые доли секунды. Корпус камеры изготовлен из самозатухающего поликарбоната, обладающего высокой жесткостью, прочностью и повышенной стойкостью к ударным воздействиям.

Коммутации

Вакуумный выключатель ВБП имеет кнопку для резервного ручного аварийного отключения и рычаг для неоперативного включения. Для визуального наблюдения за положением выключателя предусмотренные указатели и счетчик циклов коммутации. Блок сигнализации имеет свободные контакты, которые могут быть использованы в дополнительных схемах защиты и сигнализации.

Блокировки

Устройство имеет блокировку от самопроизвольных операций. Также есть механизм блокировки от неправильного отключения и включения при нахождении выключателя в промежуточном положении, а также от выкатывания и вкатывания включённого выключателя. В зависимости от расстояния между функционально зависимыми полюсами выключателя, на них возможна установка до 6 раз.

etmz.ru

Сравнение элегазового и вакуумного высоковольтного выключателей

                     

                 

  Элегазовый выключатель         против        Вакуумного выключателя

Преимущества и недостатки элегаза.  В нормальных условиях элегаз является инертным газом без запаха, невоспламеняющийся, нержавеющий и не токсичный. Тем не менее, при температуре выше 1000°C, элегаз разлагается на составляющие газы, включая газ S2F 10, который очень токсичен. К счастью, продукты распада внезапно воссоединяются после погасания дуги (при снижении температуры). В соответствии с электрической прочностью, элегаз обладает лучшими свойствами, чем вакуум  (График). Поэтому элегаз используется в качестве изоляционного материала и дугогасительной среды. Использование элегаза позволяет делать электрооборудование более компактного размера и предоставляет больше пространства для его устройства. Это и лежит в основе того, почему приблизительно 50% общего объема элегаза является диэлектриком в таких электрических приборах, как высоковольтный переключатель.

Можно предположить, что элегаз стал прекрасной дугогасительной средой для высоковольтного выключателя, если бы он не был так опасен для окружающей среды. Элегаз является одним из опасных нагретых газов на планете, как было установлено на 3-й Сессии Конференции Участников ООН Рамочной Конвенции о климатических изменениях. Тот факт, что элегаз представляет собой особую угрозу для мирового сообщества, основан на его стабильном молекулярном составе, так как этот газ неразрушим уже в течение 3200 лет.

Преимущества и недостатки вакуума. Для сравнения уточним, что дугогасительной средой в вакуумных высоковольтных выключателях выступает вакуум, он не представляет угрозы для окружающей среды. На самом деле, это обычный стеклянный контейнер и металлические компоненты, то есть вторсырье, Вакуум имеет свои недостатки и преимущества, которые отличаются от недостатков и преимуществ элегаза. Одним из выдающихся преимуществ вакуумного высоковольтного выключателя является легкость в создании оборудования и небольшое количество компонентов, приблизительно, на 50% меньше, чем в элегазовом высоковольтном выключателе, что приводит к увеличению срока службы, с очень высоким числом рабочих циклов. Кроме того, небольшое количество компонентов и простота конструкции обеспечивают компактный размер и небольшой вес для вакуумного высоковольтного выключателя, и, соответственно, легкое техобслуживание и инспекция.Еще одним из преимуществ высоковольтного вакуумного выключателя является высокое диэлектрическое сопротивление после нулевого значения тока.И, наконец, как уже отмечалось ранее, вакуумный выключатель не представляет угрозы для окружающей среды, как в случае с элегазовым выключателем. В случае с вакуумным выключателем нет риска взрыва или пожара, как с масляным высоковольтным выключателем.Тем не менее, одним из важнейших недостатков является стоимость. Элегазовый высоковольтный выключатель стоит дешевле, что говорит не в пользу конкурентоспособности вакуумного высоковольтного выключателя. Необходимо провести многие исследования с целью снижения затрат на вакуумный высоковольтный выключатель, чтобы они стали экономической альтернативой элегазовой технологии.

Делаем выводы:

Постоянные требования к сети электропередач увеличивают их производительность, надежность и устойчивость. Таким образом, важно продолжать развивать технологию новых выключателей, более надежных, производительных, недорогостоящих, не представляющих угрозу для окружающей среды и людей.

Вакуум – это среда с выдающимися свойствами в отношении объема, количества компонентов, простота, контроль тока короткого замыкания или стабилизация электрической прочности. Сегодня в распределительной сети высокого напряжения будет широко распространено оборудование, не использующее элегаз в качестве рабочего компонента. Тем не менее, необходимо внести изменения в дизайн и материалы, используемые для обеспечения соответствующей работы вакуумного высоковольтного выключателя на высоком напряжении. 

www.pomoshelektrikam.ru

Электромагнитный привод вакуумного высоковольтного выключателя

Изобретение относится к области электротехники, в частности к электромагнитным приводам высоковольтных вакуумных выключателей с магнитной защелкой. Техническим результатом является улучшение эксплутационно-технических характеристик привода, повышение надежности и упрощение управления при наименьших затратах энергии. Электромагнитный привод с одним устойчивым состоянием магнитной системы содержит магнитопровод, якорь, установленные с возможностью перемещения, катушку управления и постоянные магниты, установленные в магнитной системе с ориентацией одноименных полюсов в сторону рабочего зазора, последовательно с магнитным потоком, создаваемым катушкой управления. Причем магнитная система содержит, по крайней мере, четыре постоянных магнита, образующих совместно с магнитопроводом и якорем четыре параллельные магнитные цепи. Привод может быть снабжен механизмом ручного отключения, содержащим, по крайне мере, две магнитомягкие пластины. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области электротехники, в частности к электромагнитным приводам высоковольтных вакуумных выключателей с магнитной защелкой.

Известные электромагнитные приводы высоковольтных вакуумных выключателей в общем случае состоят из мощного включающего электромагнита, механического удерживающего устройства (защелки), кинематических звеньев и цепей передачи усилия от электромагнита к вакуумным дугогасительным камерам (КДВ), отключающего электромагнита и расцепителей защиты присоединений.

Недостатком таких приводов является их многозвенная система кинематического соединения от штока якоря к механизмам поджатия КДВ, большая масса и сложная система отключения выключателя при оперативном и аварийном его отключении, обязательное наличие механической защелки, а также большое потребление энергии от сети питания.

В настоящее время существует новое поколение вакуумных выключателей, имеющих приводную часть с электромагнитными приводами и удерживающими устройствами на постоянных магнитах.

К такому типу электромагнитных приводов относятся привода, разработанные в СП РЗВА, г.Ровно и на предприятии «Таврида-электрик», г.Москва. Электромагнитный привод, состоящий из шихтованного магнитопровода, якоря, выполненного в форме прямоугольной призмы, двух катушек управления, двух установленных соосно постоянных магнитов из соединений редкоземельных элементов, которые образуют две магнитные цепи, называемые «магнитными защелками», в которых фиксируется якорь в двух устойчивых положениях «включено» и «отключено», причем постоянные магниты установлены таким образом, что формируются параллельные магнитные потоки от управления катушек и постоянных магнитов (патент РФ №2214640, Н01Н 33/66).

Близким по технической сути к предлагаемому изобретению является также привод с «магнитной защелкой», разработанный на предприятии «Таврида-электрик» для выключателей серии BB/TEL (патент РФ №2020631, Н01Н 33/66), состоящий из круглого якоря, верхней и нижней плит, составляющих основной магнитопровод, катушки управления и кольцевого магнита, выполненного из магнитотвердого сплава и охватывающего катушку. Привода устанавливаются под каждым полюсом выключателя. При включении привода катушка управления электромагнита создает необходимую энергию электромагнитного поля для преодоления противодействующих сил и одновременно с этим намагничивается кольцевой магнит до определенного значения остаточной индукции, необходимой для удержания якоря во включенном состоянии. При отключении в катушку управления подается импульс обратной полярности, кольцевой магнит размагничивается до некоторого минимального значения остаточной индукции и привод снимается с магнитной защелки, т.е. происходит отключение выключателя.

К существенным недостаткам привода, разработанного на СП РЗВА, следует отнести то обстоятельство, что как и у всякой двухпозиционной устойчивой системы существенно затруднено ручное включение выключателя, т.к. при этом необходимо преодолеть довольно значительное усилие удержания якоря магнитным полем постоянных магнитов, чтобы перевести систему из одного устойчивого положения в другое, а также наличие двух катушек управления и большие массогабаритные характеристики данного типа привода.

К недостаткам привода для выключателей серии BB/TEL предприятия «Таврида-электрик» следует отнести зависимость степени остаточной намагниченности кольцевого магнита при включении от колебаний питающего напряжения, например, при понижении питающего напряжения количество энергии, расходуемое на намагничивание кольцевого магнита, уменьшится, в результате чего магнитное кольцо намагнитится до меньшего значения остаточной индукции, что повлияет на усилие удержания в сторону его уменьшения. Кроме того, в выключателях серии BB/TEL применяются три магнита с магнитной защелкой под каждым полюсом, что усложняет схему управления этой системой электромагнитов, а это приводит к снижению надежности выключателя.

Эти недостатки снижают эксплуатационно-технические характеристики приводов.

Предлагаемое изобретение - это новый тип электромагнитного привода, использующего принцип «магнитной защелки», в котором отсутствуют недостатки, присущие прототипам.

В основу предлагаемого изобретения поставлена задача создания нового типа электромагнитного привода, который удовлетворяет всем требованиям ГОСТ 687-78, предъявляемым к эксплуатационно-техническим характеристикам выключателей на основе такого типа приводов, и вместе с тем является многофункциональным, объединяющим функции включения-выключения выключателя, а также является элементом защиты присоединений и выполнен в едином механизме. При этом улучшены технико-экономические и массогабаритные характеристики, надежность и легкость управления при наименьших затратах энергии.

Сущность предлагаемого изобретения заключается в том, что электромагнитный привод вакуумного высоковольтного выключателя, содержащий магнитопровод из магнитного материала, круглый якорь, перемещающийся в двух направляющих в пределах рабочего зазора, постоянные магниты высокой энергии на основе соединений редкоземельных элементов, установленные в магнитной системе с ориентацией одноименными полюсами в сторону рабочего зазора, одну катушку управления, отличается тем, что имеет однопозиционную, с одним устойчивым состоянием магнитную систему, которая имеет, по крайней мере, четыре постоянных магнита, образующих совместно с магнитопроводом и якорем четыре параллельные магнитные цепи, в каждой из которых постоянные магниты своими полюсами установлены последовательно с образующимся при включении и отключении магнитным потоком катушки управления, при этом имеет механизм ручного отключения, содержащий как минимум две магнитомягкие пластины, за счет которых происходит шунтирование основного магнитного потока двух из четырех магнитных цепей и таким образом обеспечивающий ослабление его в рабочем зазоре и отключение при сравнительно невысоких затратах энергии.

Изобретение поясняется чертежами:

на фиг.1 изображен привод вакуумного выключателя во включенном состоянии;

на фиг.2 - механизм ручного отключения, вид В.

Конструктивно электромагнитный привод вакуумного выключателя состоит (фиг.1) из цилиндрического якоря 3 со штоком 10, нижней опорной плиты 8, фланца 2, четырех планок 4, выполненных из магнитомягкого материала, двух бронзовых втулок направляющих якоря - верхней 1 и нижней 9, поводка 11, кинематически связывающего якорь с рычагом промежуточного вала выключателя, восьми опорных стоек 14 из немагнитного материала, катушки управления 5 и четырех постоянных магнитов высокой энергии, изготовленных на основе редкоземельных элементов 6.

В состав привода входит и механизм ручного отключения, состоящий из вала 12, двух подшипников скольжения 15, двух ферромагнитных пластин 7, выполненных из магнитомягкого материала и рычага управления 13.

Работа электромагнитного привода происходит следующим образом.

При подаче напряжения управления постоянного тока на обмотку катушки 5 электромагнита в ней возникает магнитное поле, направленное последовательно и согласно с магнитным полем постоянных магнитов 6 в рабочий зазор, в результате чего якорь перемещается в сторону уменьшения рабочего зазора к нулю и совершает при этом определенную работу, и через рычаг промежуточного вала выключателя включает его, а при снятии рабочего напряжения с катушки якорь удерживается в притянутом к нижней плите 8 положении энергией магнитного поля постоянных магнитов 6, при этом выключатель остается во включенном положении. Такая кинематическая схема обеспечивает минимальное количество звеньев и как следствие минимальный износ деталей на протяжении всего срока эксплуатации. Для отключения выключателя необходимо подать на управляющую катушку напряжение обратной полярности. Возникающий магнитный поток катушки при этом направлен встречно магнитному потоку постоянных магнитов и компенсирует его действие, уменьшая удерживающее усилие. Под воздействием энергии сжатых пружин поджатия КДВ и отключающей пружины выключатель отключается. В режиме удержания якоря результирующая сила магнитного поля постоянных магнитов составляет 1600÷2300 Н. Такое усилие обеспечивает надежную фиксацию КДВ во включенном положении, в том числе в условиях значительных вибраций и ударов.

Для перевода выключателя из включенного положения в отключенное вручную необходимо переместить рукоятку 13 (фиг.2, вид В) влево таким образом, чтобы пластины 7 вошли в зацепление с двумя магнитными цепями в зоне установки постоянных магнитов 6 и замкнули магнитные потоки от этих двух магнитов по кратчайшему пути. При этом результирующее удерживающее усилие резко уменьшается и под воздействием пружин поджатия КДВ и отключающей пружины выключатель отключается. После завершения операции отключения рукоятка 13 и пластины 7 возвращаются в исходное (фиг.2, вид В) положение.

Таким образом, предлагаемый электромагнитный привод обладает рядом достоинств, по сравнению с существующими приводами на силовых электромагнитах:

- малые токи потребления при операциях «включено» и «отключено»;

- стабильность характеристик при колебаниях питающего напряжения в широком интервале значений;

- любое рабочее пространственное положение;

- безусловное выполнение требований ГОСТ 687-78 в части установки выключателя на защелку (полного включения) в условиях короткого замыкания в главных цепях и быстрого спада питающего выключатель оперативного напряжения;

- легкость ручного включения и отключения выключателя;

- существенно меньший «дребезг» главных контактов КДВ при проведении операции «включено».

Предлагаемое изобретение позволит создать высокотехнологическую, эффективную, многофункциональную и малогабаритную серию электромагнитных приводов нового типа с необходимыми мощностями управления для создания на их базе нового поколения вакуумных выключателей.

Опытный образец предлагаемого электромагнитного привода с магнитной защелкой прошел все нормативные испытания на базе серийно выпускаемого выключателя типа ВБ 10-20 с КДВ типа КДВА-5 и подтвердил соответствие расчетных параметров требованиям, предъявляемым к вакуумным выключателям с электромагнитным приводом зависимого (прямого) действия ГОСТ 687-78, в том числе и в части решения задач аварийной защиты присоединений.

1. Электромагнитный привод вакуумного высоковольтного выключателя, содержащий магнитопровод из магнитного материала, круглый якорь, перемещающийся в двух направляющих в пределах рабочего зазора, постоянные магниты высокой энергии на основе соединений редкоземельных элементов, установленные в магнитной системе с ориентацией одноименными полюсами в сторону рабочего зазора, одну катушку управления, отличающийся тем, что имеет однопозиционную, с одним устойчивым состоянием магнитную систему, которая имеет, по крайней мере, четыре постоянных магнита, образующих совместно с магнитопроводом и якорем четыре параллельные магнитные цепи, в каждой из которых постоянные магниты своими полюсами установлены последовательно с образующимся при включении и отключении магнитным потоком катушки управления.

2. Электромагнитный привод по п.1, отличающийся тем, что имеет механизм ручного отключения, содержащий как минимум две магнитомягкие пластины, за счет которых происходит шунтирование основного магнитного потока двух из четырех магнитных цепей и таким образом обеспечивающий ослабление его в рабочем зазоре и отключение при сравнительно невысоких затратах энергии.

www.findpatent.ru

высоковольтный вакуумный выключатель - патент РФ 2286614

Изобретение относится к электротехнике, а именно к высоковольтным вакуумным выключателям, предназначенным для коммутации без нагрузки мощных высокочастотных цепей, и может найти применение в мощной электротехнической и радиотехнической аппаратуре для переключения нагрузок, отводов катушки высокочастотного контура, антенных цепей, резонансных контуров, конденсаторов высоковольтных цепей в антенно-согласующих устройствах, фильтрах подавления гармоник и т.д. В высоковольтном вакуумном выключателе на внутренней поверхности диэлектрической оболочки и на внешней поверхности изолятора подвижного контакта выполнено покрытие с проводимостью на 2-4 порядка выше, чем у диэлектрика оболочки и изолятора, а в качестве материала покрытия использованы окислы, нитриды или карбиды металлов, коэффициент вторичной электронной эмиссии у которых не более 1,5, причем толщина слоя покрытия выбрана в 1,5-2 раза больше глубины проникновения в покрытие электронов, ускоренных высоковольтным полем высокой частоты между высокопотенциальными электродами. Технический результат - повышение надежности работы выключателя с разомкнутыми контактами в высокочастотных цепях без увеличения массы и габаритов и межэлектродных емкостей. 3 ил.

Рисунки к патенту РФ 2286614

Изобретение относится к электротехнике, а именно к высоковольтным вакуумным выключателям, предназначенным для коммутации без нагрузки мощных высокочастотных цепей.

Вакуумный выключатель может найти применение в мощной электротехнической и радиотехнической аппаратуре для переключения нагрузок, отводов катушки высокочастотного контура, антенных цепей, резонансных контуров, конденсаторов высоковольтных цепей в антенно-согласующих устройствах, фильтрах подавления гармоник и т.д.

Известны мощные высокочастотные вакуумные выключатели высокого напряжения, используемые для этих целей [1-3]. Однако в таких вакуумных выключателях со стеклянными и керамическими оболочками при работе с разомкнутыми контактами на высоких частотах при большом рабочем напряжении имеют место сквозные "проколы" стеклянных оболочек или локальный разогрев, а затем разрушение керамических оболочек. Это явление связано с возникновением так называемого "вторично-электронного резонансного разряда" (ВЭРР или его разновидности - полифазного вторично-электронного разряда), поскольку используемый в вакуумных выключателях материал диэлектрика для изолятора подвижного контакта и оболочки имеет коэффициент вторичной электронной эмиссии электронов существенно больше единицы (от 4 до 8 в зависимости от типа выбранного диэлектрика и его исходного материала - стекла или керамики). Механизм возникновения этого явления сводится к тому, что первичные электроны, тем или иным образом возникшие во внутреннем объеме выключателя (автоэлектронная эмиссия, термоэлектронная эмиссия, ионизация и др.), ускоряясь высокочастотным полем при большом рабочем напряжении, приобретают на длине свободного пробега очень большую кинетическую энергию. При этом энергия ускоренных этим полем первичных электронов может превысить энергию, соответствующую первому критическому потенциалу вторичной эмиссии электронов из материала диэлектрика. Вследствие этого первичные электроны при бомбардировке поверхностей диэлектрика оболочки и изолятора выбивают из этих поверхностей вторичные электроны, количество которых пропорционально коэффициенту вторичной электронной эмиссии при данной энергии первичных электронов, но всегда больше единицы. За счет этого на поверхности диэлектрика и в его приповерхностном слое, как правило в месте наибольшей напряженности электрического поля, а именно напротив межконтактного зазора или в местах включений инородного материала с малой работой выхода электронов, например щелочных металлов, формируется поле положительно заряженного локального пятна, которое способствует еще большему притяжению и ускорению первичных электронов. Как только потенциал положительно заряженного пятна оказывается больше порогового значения, необходимого для возникновения и поддержания лавинообразного нарастания вторичных электронов, возникает вторично-электронный резонансный разряд. Он ведет к появлению скользящего разряда по поверхности диэлектрика, к недопустимому разогреву диэлектрика в месте возникновения положительно заряженного пятна за счет превращения в тепло основной доли кинетической энергии электронов, ускоренных высокочастотным полем и полем положительно заряженного локального пятна на поверхности диэлектрика. В результате сильного нагрева локального пятна из него выделяется большое количество паров и газов, следствием чего является возникновение высокочастотного дугового разряда между положительно заряженным локальным пятном на поверхности диэлектрика и высокопотенциальными электродами (контактами) выключателя. Отмеченное выше в конечном итоге ведет к разрушению диэлектрика оболочки и изолятора и выходу выключателя из строя. Возникновение вторично-электронного резонансного разряда (или его разновидности - полифазного вторично-электронного разряда - ПФВЭР), переходящего затем в дуговой высокочастотный разряд, значительно снижает надежность работы высокочастотных вакуумных выключателей, переключателей и реле при разомкнутых контактах, особенно в случае плавного изменения рабочего напряжения или его частоты. Таким образом необходимо изыскание мер по предотвращению отмеченных недостатков.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является высоковольтный вакуумный выключатель [4], содержащий расположенные в вакуумированной камере оболочки подвижный и неподвижный контакты. Сущность предложенного в нем технического решения состоит во введении между внутренней поверхностью диэлектрической оболочки и внешней поверхностью контактов (токопроводников) экранирующего электрода цилиндрической формы из высокопроводящего немагнитного металла. Перекрывая межконтактный зазор и находясь под высоким потенциалом, он в положительную полуволну синусоидального высокочастотного напряжения отбирает на себя первичные электроны из межконтактного зазора и кольцевого пространства между внутренней поверхностью диэлектрической оболочки и внешней поверхностью токопроводников (контактов), а также из кольцевого зазора между внутренней поверхностью диэлектрической оболочки и внешней поверхностью цилиндрического экрана. В результате это способствовало снижению вероятности возникновения вторично-электронного резонансного разряда именно в области, перекрываемой экранирующим электродом (экраном).

Однако введение экранирующего электрода привело к увеличению межконтактных емкостей при разомкнутых контактах, следствием чего явилось значительное повышение потерь мощности высокой частоты при разомкнутых и замкнутых контактах за счет емкостных токов и низкая собственная резонансная частота выключателя, т.е. снижение верхней частоты рабочего диапазона частот. Кроме того, при этом не исключена вероятность возникновения вторично-электронного (или полифазного) резонансного разряда в области, не перекрываемой экранирующим электродом. Увеличение же области перекрытия, за счет увеличения длины экранирующего электрода, ведет к еще большему увеличению межконтактной емкости разомкнутых контактов, а следовательно, к еще большему увеличению емкостных потерь энергии высокой частоты и к еще большему снижению верхней рабочей частоты рабочего диапазона выключателя. В результате снижаются его надежность работы и эксплуатационные характеристики. Снижение же емкостей за счет увеличения межэлектродных зазоров ведет к существенному увеличения массы и габаритов, снижению количества коммутационных операций, а поэтому неэффективно. К тому же это не решает проблему по предотвращению вероятности возникновения вторично-электронного резонансного разряда.

Цель изобретения - повышение надежности работы выключателя с разомкнутыми контактами в высокочастотных цепях при сохранении его массогабаритных характеристик и межэлектродных емкостей.

Поставленная цель достигается тем, что в предлагаемом высоковольтном вакуумном выключателе, содержащем подвижный и неподвижный контакты, размещенные с определенным зазором в вакуумированной камере, в отличие от известных, на внутренней поверхности диэлектрической оболочки и на внешней поверхности изолятора подвижного контакта выполнено покрытие с проводимостью на 2-4 порядка выше, чем у диэлектрика оболочки и изолятора, а в качестве материала покрытия использованы окислы, нитриды или карбиды металлов, коэффициент вторичной электронной эмиссии у которых не более 1,5, причем толщина слоя покрытия выбрана в 1,5-2 раза больше глубины проникновения в покрытие электронов, ускоренных высоковольтным полем высокой частоты.

Увеличение поверхностной проводимости диэлектрика за счет тонкого слоя полупроводящего покрытия, в качестве материала которого использованы окислы, например, хрома, ванадия, молибдена и др. или нитриды, например, бора и др., или карбиды, например, вольфрама и др., которые имеют коэффициент вторичной электронной эмиссии, меньший или близкий к единице, обеспечивает рассеивание и рассасывание локального заряда пятна по всей поверхности диэлектрика оболочки и изолятора и далее на высокопотенциальные электроды (контакты и выводы). В результате это препятствует как образованию положительно заряженного локального пятна на поверхности диэлектрика, так и возникновению вторично-электронного высокочастотного разряда. При проведении экспериментальных исследований было установлено, что удовлетворительное рассасывание положительно заряженного локального пятна на диэлектрике происходит лишь в том случае, когда проводимость слоя покрытия превышает на два-четыре порядка проводимость диэлектрика оболочки и изолятора. Эксперименты также показали, что при проводимости слоя покрытия, превышающей более чем на четыре порядка проводимость диэлектрика оболочки и изолятора, токи утечки достигают критичных для нормальной работы значений из-за возрастания омических потерь энергии высокой частоты, идущей на нагрев вакуумного выключателя. При проводимости же покрытия, превышающей проводимость диэлектрика оболочки и изолятора менее чем на два порядка, не обеспечивается эффективное и быстрое рассасывание положительного заряда локального пятна на диэлектрике. В совокупности отмеченное определило выбор интервала проводимости покрытия на диэлектрике на два-четыре порядка выше проводимости самого диэлектрика оболочки и изолятора.

Снижению вероятности возникновения вторично-электронного резонансного разряда способствует также и то, что в предлагаемом вакуумном выключателе материал покрытия имеет коэффициент вторичной эмиссии электронов, значительно меньший, чем у диэлектрика оболочки изолятора. Это, в совокупности с рассасыванием положительного заряда локального пятна на диэлектрике за счет проводимости покрытия, обеспечивает повышение надежности работы предлагаемого вакуумного выключатели в высокочастотных высоковольтных цепях при плавном изменении величины рабочего напряжения или его частоты.

Для того, чтобы исключить вероятность образования положительно заряженного локального пятна под слоем покрытия, что в дальнейшем могло бы привести к возникновению вторично-электронного разряда на поверхности диэлектрика под покрытием, толщина покрытия выбрана в полтора-два раза больше глубины проникновения в покрытие первичных электронов, ускоренных полем высокой частоты между высокопотенциальными электродами вакуумного высокочастотного выключателя. Таким образом и данное решение тоже способствует повышению надежности работы предлагаемого вакуумного выключателя при разомкнутых контактах в высоковольтных высокочастотных цепях.

Благодаря созданию условий, препятствующих возникновению вторично-электронного разряда и устранению тем самым отрицательных последствий от его воздействия, отпадает необходимость использования в высокочастотных вакуумных выключателях системы экранных электродов для улавливания ускоренных высокочастотным полем первичных электронов. Это позволяет снизить межэлектродные емкости при разомкнутом положении контактов, следствием чего является снижение мощности потерь за счет емкостных токов, что в свою очередь снижает нагрев самого вакуумного выключателя и повышает коэффициент полезного действия радиопередающей аппаратуры. Кроме того, при уменьшении межэлектродных емкостей повышается собственная резонансная частота вакуумного выключателя, что способствует расширению диапазона его рабочих частот в область более высоких частот. В свою очередь уменьшение нагрева обеспечивает возможность увеличения пропускаемого тока высокой частоты и повышение надежности работы предлагаемого вакуумного выключателя при сохранении его массогабаритных характеристик.

Сущность предлагаемого изобретения поясняется чертежами, представленными на фиг.1-3. Высоковольтный вакуумный выключатель содержит оболочку 1 из вакуумплотной керамики (или стекла), неподвижный контакт 2 и подвижный контакт 3, подвижно через изолятор 4 (из керамики или другого механически прочного диэлектрика) сочлененный с якорем 5 электромагнитной системы управления 6. На всю внутреннюю поверхность диэлектрика оболочки 1 и на всю внешнюю поверхность изолятора 4 нанесено полупроводящее покрытие 7, например, из окиси хрома, толщина которого в 1,5-2 раза превышает глубину проникновения ускоренных высокочастотным полем первичных электронов вглубь диэлектрика оболочки и изолятора. Предлагаемое изобретение может быть использовано и в других высоковольтных высокочастотных вакуумных приборах, например в вакуумных коаксиальных высокочастотных высоковольтных выключателях и переключателях, вакуумных высоковольтных высокочастотных конденсаторах постоянной и переменной емкости и т.д. В сравнении с прототипом, предлагаемое изобретение обладает рядом преимуществ, заключающихся в предотвращении вероятности возникновения вторично-электронного резонансного разряда, в уменьшении потерь высокой частоты за счет емкостных токов, в повышении резонансной частоты, что в совокупности обеспечивает повышение надежности работы предложенного вакуумного выключателя в высоковольтных высокочастотных цепях и пропускаемого тока высокой частоты при сохранении его массогабаритных характеристик.

Источники информации

1. Патент США №2981816, кл. 200-144, 1965.

2. Патент США №3261953, кл. 200-144, 1967.

3. Авт. свидет. СССР №295152, МПК Н 01 Н 33/66, 1968.

4. Авт. свидет. СССР №562014, МПК Н 01 Н 33/66, 1977.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Высоковольтный вакуумный выключатель, содержащий подвижный и неподвижный контакты, размещенные в вакуумированной камере, отличающийся тем, что, с целью повышения надежности работы при разомкнутых контактах и повышения пропускаемого тока через замкнутые контакты, на внутренней поверхности диэлектрической оболочки камеры и на внешней поверхности изолятора подвижного контакта выполнено покрытие из диэлектрика с проводимостью на два÷четыре порядка выше, чем у диэлектрика оболочки и изолятора, в качестве материала покрытия использованы окислы, нитриды или карбиды металлов с коэффициентом вторичной электронной эмиссии не более 1,5, а толщина покрытия выбрана в 1,5÷2 раза больше глубины проникновения в него первичных электронов, ускоренных полем высокой частоты между высокопотенциальными электродами внутренней арматуры.

www.freepatent.ru

Высоковольтный вакуумный выключатель со съемным приводом

 

пп 563560

ОПИСАНИЕ

ИЗОБРЕТЕНИЯ

Союз Советских

Социалистических

РесауМик

К ПАТЕНТУ (б1) Дополнительный к патенту (51) М. Кл. - H 01Н 33/66

i (22) Заявлено 24.11.72 (21) 1854561/24-7 (32) Приоритет 27.11.71 (31) WPH0111/159215 (33) ГДР

Опубликовано 15.02.76. Бюллетень № 6

Государственный комите1

Совета Министров СССР па делам изобретений и открытий (53) УДК 621.3.067.1 (088.8) Дата опубликования описания 15.04.7б (72) Авторы изобретения

Иностранцы

Вольфганг Конрад, Манфред Биндер и Зигфрид Феге (ГДР) Иностранное предприятие

Институт «Прюффельд фюр Электрише Хохляйстунгстехник» (ГДР) (71) Заявитель (54) ВЫСОКОВОЛЬТНЫЙ ВАКУУМНЫЙ ВЫКЛЮЧАТЕЛЬ

СО СЪЕМНЫМ ПРИВОДОМ

Изобретение относится к области высоковольтногоо аппаратостроения.

Для стационарного монтажа в коммутационном устройстве особенно удобны вакуумные выключатели, поскольку вакуумная дугогасительная камера практически является необслуживаемой и неконтролируемой.

Известны высоковольтные вакуумные выключатели со съемным приводом, содержащие коленчатые рычаги для передачи приводного движения, тяговую штангу, контактную нажимную пружину, замыкающий контакт и упор. Однако в таких выключателях привод снимается только при разъединенных контактах, что приводит к перерыву. в эксплуатации. Блокировка включающей позиции коммутационных полюсов не предусмотрена.

Кроме того, подвижный коммутирующий контакт приводится в действие через систему коленчатых рычагов, которая вместе с коммутационными полюсами составляет нераздельное целое. При блокировке коммутационного положения выключателя механизм коленчатых рычагов удерживается в стабильном положении при помощи дополнительных пружин и фиксирующих запорных элементов.

В известных выключателях подвижный торцовый контакт удерживается во включенном положении посредством фиксации. Тяговая пружина обеспечивает стабильное положение выключения. Привод осуще твляется через шарнирную систему, которая соединена с тяговой штангой, перемещающей коленчатый рычаг из изогнутого положения в выпрямленное. При помощи коленчатого рычага движение через полюсную штангу и нажимную контактную пружину передается на коммутирующие контакты. Включенное положение фиксируется при помощи тяговой штанги при стопор сии и, которое одновременно должно препятствовать отскакиванию коммутационных контактов при включении. Управление

15 стопорением осуществляется через сложную рычажную систему. Если фиксация отсутствует, то выключающая пружина, расположенная на коленчатом рычаге противоположно тяговой штанге, тянет коленчатый шарнир в

20 положение изгиба и, таким образом, спо обствует размыканию контактов и стабильному разомкнутому положению. Отделение приводного механизма от коммутационных полюсов не предусмотрено и возможно лишь в том

25 случае, если выключатель не работает. Следовательно, на коммутационных полюсах остается множество подвижных элементов, которые увеличивают число помех. К тому же в

503560

60 коммутационных полюсах должны размещаться крупные механизмы, вследствие чего наружные габариты коммутационных полюсов увеличиваются.

Для упрощения конструкции и повышения ее надежности в предлагаемом выключателе контактная нажимная пружина расположена между коленчатыми рычагами, выполненными в виде сдвоенного рычага, и зажата между замыкающим контактом и ползуном, причем в положении «Отключено» замыка|ощий KDIIтакт прижат своим буртиком к ползуну, а в положении «Включено» ползун отодвинут от буртика, а коленчатый рычаг опирается на упор.

Таким образом, выполненный из изоляционного материала передаточный орган, который связывает полюс выключателя с приводом, в положении «Включено» не подвержен постоянному действию высоких контактных усилий. Благодаря этому устраняются усталостные явления в изоляционном материале, что повышает срок службы выключателя.

Передаточный орган может быть выполнен ослабленным. В замкнутом положении выключатель удерживается без дополнительного блокировочного элемента при помощи приводи э-передаточного органа, находящегося в полюсе выключателя, вследствие чего рабочий ток в полюсе выключателя при снятом приводе может не выключаться.

Предлагаемая конструкция выключателя позволяет производить стационарный монтаж его пол.:осов в коммутационных устройствах.

При этсм привод может соединяться и отсоединятьс:t от полюса выключателя, вмонтированного в устройство, при помощи разъемного (штеккерного) соединения.

На фнг. 1 показан описываемый выключатель в I:оложении «Выключено»; на фиг. 2— то же, гид сбоку; на фиг, 3 — то же, в положении

Выкл очатель содержит подвижный замыкающий контакт 1 и расположенный в полюсе вык; ючателя шарнирный механизм, служащий для передачи приводного движения от прив.)да. Приводное движение от привода передае-. ся через разъемно соединенную с ним тя:овую IIITBHI 2 к расположенному в полюсе выключателя двойному рычагу 3, 4, который через две пластинки 5 и 6, ползун 7 и нажи:.;ную контактную пружину 8 соединен с замыкающим контактом 1. Замыкающий контакт 1 и контактная нажимная пружина 8 расположены между двойными коленчатыми рычагами 3 и 4. В положении «Выключено» коленчатый рычаг находится в положении излома (см. фиг. 1).

Угольники 9 и 10 поворачиваются относительно оси вращения в цапфах 11 коленчатых шарниров, которые установлены в корпусе 12, вместе с их продолжением 13 до

Э

15 0

45 упора 14 н отклоняются в точке 15 вращения из положения излома через выпрямленное положение в положение с незначительным перегибом (см. на фиг. 3), В положении излома ползун 7 нажимной контактной пружиной 8, которая зажата меяду накладками в замыкающем контакте 1 и ползуне, прижимается к заплечику 16 замыкающего контакта 1, Если коленчатый рычаг переместится в выпрямленное положение, "î ползун 7 поднимается пластинками 5 и 6, и, следовательно, замыкающий контакт 1 через контактную нажимную пружину 8 прижимается своим торцовым контактом 17 к противополояному контакту, не изображенному на чертежах. Как только контакты соприкоснутся между собой, ползун 7 снимается с заплечика 16 замыкающего контакта 1 и скользит по замыкающему контакту до достижения выпрямленного положения двойного рычага 3, 4, а контактная нажимная пружина 8 вытягивается наружу за счет своего предварительного натяжения. После этого до достижения положения незначительного перегиба наступает небольшая разгрузка. Положение незначительного перегиба (см. фиг. 2) надежно удерживается с одной стороны благодаря упору 14, а с другой стороны за счет силового давления контактной нажимной пружины 8, достигающего 10 кг. Таким образом, положение незначительного перегиба используется в качестве блокировки положения «Включено» полюса выключателя и для разгрузки тяговой штанги 2 так, что привод может отделяться от полюса выключателя в положении

«Включено» без дополнительных мероприятий.

Выполненная пз изоляционного материала тяговая штанга 2 благодаря разгрузке в положении «Включено» не подвержена постоянному воздействию высоких усилий для обеспечения контакта. Это позволяет тяговую штангу 2 выполнять ослабленной и избегать в дальнейшем усталостных явлений.

Формула изобретения

Высоковольтный вакуумный выключатель со съемным приводом, содержащий коленчатые рычаги для передачи приводного движения, тяговую штангу, контактную наяимную пружину, замыкающий контакт и упор, о тл и ч а ю шийся тем, что, с целью упрощения консгрукции и повышения надежности, контактная нажимная пружина расположена между коленчатыми рычагами, выполненными в виде сдвоенного рычага, и зажата между замыкающим контактом и ползуном, причем в положении «Отключено» замыкающий контакт прижат своим буртиком к ползуну, а в положении «Включено» ползун отодвинут от буртика, а коленчатый рычат опирается íà упор.

Высоковольтный вакуумный выключатель со съемным приводом Высоковольтный вакуумный выключатель со съемным приводом Высоковольтный вакуумный выключатель со съемным приводом 

www.findpatent.ru


Каталог товаров
    .