интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Стабилизатор напряжения 15 кВт — характеристики, применение. Стабилизатор напряжения на 15 вольт


Стабилизатор напряжения 15 кВт - выбираем лучший

Если у вас есть загородный дом, то необходимо определиться с выбором типа стабилизатора для бытовой электрической сети. Чаще всего на дом выделяется не более 15 киловатт мощности.

Какой вид прибора приобрести

Существует несколько видов таких приборов. Релейные стабилизаторы наиболее популярные, имеют небольшую стоимость, универсальные в работе.

Тиристорные стабилизаторы являются наиболее дорогостоящими, но обладают повышенной надежностью, не создают много шума.

Электромеханические модели стабилизаторов обычно имеют значительные габаритные размеры, служат относительно недолго, создают некоторый шум от движения щеток. Но они не имеют недостатков, которые есть у первых видов приборов. Это плавная регулировка, а значит, нет кратковременных отключений от фазы, что отрицательно сказывается на чувствительные бытовые устройства.

Электромеханический тип прибора лучше устанавливать на приборы освещения и особо точные приборы. Для монтажа на весь дом необходимо знать, что не будет резких и частых перепадов напряжения, во избежание выхода его из строя.

Стабилизатор Энергия СНВТ – 15000 / 1

Стабилизатор напряжения 15 кВт

Это 1-фазный мощный стабилизатор напряжения, который осуществляет защиту от помех электрической сети, при работе множества включенных в сеть устройств бытового назначения.

Технические данные:

  • Общая мощность – 15 кВА
  • Тип сети – 1-фазная, на 220 вольт.
  • Вид прибора – гибридный.
  • Напряжение входа – от 105 до 280 В.
  • Напряжение выхода – 220 В с отклонением 3% в обе стороны.
  • Фиксация прибора (исполнение) – напольная.
  • Рабочая температура – от -5 до +40 градусов.

Элементы управления:

Стабилизатор напряжения 15 кВтСтабилизатор напряжения 15 кВт

Этот прибор используется для загородного жилья, обеспечивает поддержание в сети напряжения 220 вольт при широком диапазоне напряжений входа. Надежно осуществляет защиту подключенных устройств от проблем превышения или недостачи напряжения.

1-фазный стабилизатор гибридного типа имеет комбинированный метод регулировки напряжения на выходе. В одном приборе сочетаются два принципа действия, что можно назвать техническим прогрессом, который избавляет нас от выбора типов стабилизаторов. В интервале от 145 до 255 вольт он действует по электромеханическому методу регулировки с допуском 3%, а в интервале от 105 до 144 вольт и от 256 до 280 вольт далее действует по релейному способу работы.

При экстремальных режимах такой прибор проявляет себя с наилучшей стороны. Он имеет цифровую индикацию напряжения и силы тока потребителей, подключается клеммной колодкой.

ostabilizatore.ru

9.5.4. Трехвыводные стабилизаторы напряжения

Интегральные стабилизаторы с фиксирован­ным напряжением серий К142ЕН5А, Б имеют выходное напряжение 5 В или 6 В в зависимости от типа микросхемы. Стабилизаторы содержат за­щиту от перегрузок по току и тепловую защиту, срабатывающую при температуре кристалла до + 175°С.

На выходе стабилизатора необходимо вклю­чить конденсатор С1 > 10 мкФ для обеспечения устойчивости при импульсном изменении тока нагрузки.

Данные интегральных стабилизаторов с фик­сированным выходным напряжением приведены в таблице 9.2, а на рисунке 9.13 показана типовая схема его включения.

Рисунок 9.13 - Включение ИМС К142ЕН5

Таблица 9.2 – Параметры микросхемы с фиксированным выходным напряжением

Тип ИМС

Выходное напряж, UВЫХ, В

Точность установки

Макси

мальный ток нагрузки

IН.max, А

Макси

мальное входное напряж

UВХ.max, В

Макси

мальная мощность Р, Вт, при

ТК=+80oС

Мини

мальное напряжение РЭ

UКЭ.min, B

К142ЕН5А

5

2

3

15

10

2,5

К142ЕН5Б

6

2

3

15

10

2,5

Из импортных ИМС стабилизаторов рассмотрим трехвыводные стабилизаторы напряжениясемейства LM78ХХ. Серия 78ХХ выпускаются в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Рисунок 9.14 – Внешний вид стабилизаторов 78ХХ

Вместо "ХХ" изготовители указывают напряжение стабилизации, которое выдает этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 - 15 Вольт. Схема подключения таких стабилизаторов показана на рисунке 9.15. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

Рисунок 9.15 – Схема подключения ИМС семейства 78ХХ

На рисунке показаны два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Даташит на стабилизаторы можно изучить 7805.pdf (147,1 kB). Упрощенная принципиальная схема показана на рисунке 9.16.

Стабилизаторы на отрицательное напряжения имеют такие же параметры, что и семейство78ХХ, но первые цифры у них 79, т. е. 79ХХ.

Рисунок 9.16 – Упрощенная схема стабилизатора семейства 78ХХ

Технические характеристики ИМС семейства 78ХХ приведены в таблице 9.3.

Стабилизатор 7805 выдает выходное напряжение 5 Вольт. Желательное входное напряжение 10 Вольт. Существует разброс выходного стабилизированного напряжения, так стабилизатор 7805 может выдать одно из напряжений диапазона 4.75 - 5.25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать одного Ампера.

Нестабилизированное постоянное напряжение может изменяться в диапазоне от 7,5 до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт. Поэтому, если нагрузка на выходе такого стабилизатора будет потреблять большой ток, необходимо использовать радиатор. Чем больше ток на выходе, тем больше по габаритам должен быть радиатор. Еще лучше, если радиатор еще обдувается кулером, как процессор в компьютере.

Рисунок 9.17 - 78ХХ на радиаторе

Таблица 9.3 – Технические характеристики трехвыводных стабилизаторов

На рисунке 9.18 показана схема простейшего стабилизатора с сетевым питанием

Рисунок 9.18 Схема простейшего стабилизатора с сетевым питанием

В заключение приводим справочные данные для ИМС непрерывных стабилизаторов.

Наименование микросхемы

Напряжение стабил., В

Макс. 1ст нагр., А

Рассеив. Рмах, Вт

Потребление, мА

Код на корпусе

(К)142ЕН1А (К)142ЕН1Б К142ЕН1В К142ЕН1Г К142ЕН2А К142ЕН2Б

3...12±0,3 3...12±0,1 3...12±0,5 3...12±0,5 3...12±0,3 3...12±0,1

0,15

0,8

4

(К)06 (К)07 К27 К28 К08 К09

142ЕНЗ К142ЕНЗА К142ЕНЗБ 142ЕН4 К142ЕН4А К142ЕН4Б

3...30±0,05 3...30±0,05 5...30±0,05 1.2...15±0,1 1.2...15±0,2 3...15±0,4

1,0 1,0 0,75 0,3 0,3 0,3

6

10

10 К10 К31

11

К11 К32

(К)142ЕН5А (К)142ЕН5Б (К)142ЕН5В (К)142ЕН5Г

5±0,1 б±0,12 5±0,18 6±0,21

3,0 3,0 2,0 2,0

5

10

(К)12 (К)13 (К)14 (К)15

142ЕН6А К142ЕН6А 142ЕН6Б К142ЕН6Б 142ЕН6В К142ЕН6В

±15±0,015 ±15±0,3 ±15±0,05 ±15±0,3 ±15±0,025 ±15±0,5

0,2

5

7,5

16 К16 17 К17 42 КЗЗ

142ЕН6Г К142ЕН6Г К142ЕН6Д К142ЕН6Е

±15±0,075 ±15±0,5 ±15±1,0 ±15±1,0

0,15

5

7,5

43 К34 К48 К49

(К)142ЕН8А (К)142ЕН8Б (К)142ЕН8В

9±0,15 12±0,27 15±0,36

1,5

6

10

(К)18 (К)19 (К)20

К142ЕН8Г К142ЕН8Д К142ЕН8Е

9±0,36 12±0,48 15±0,6

1,0

6

10

К35 К36 К37

142ЕН9А 142ЕН9Б 142ЕН9В

20±0.2 24±0,25 27±0,35

1,5

6

10

21 22 23

К142ЕН9А К142ЕН9Б К142ЕН9В К142ЕН9Г К142ЕН9Д К142ЕН9Е

20±0,4 24±0,48 27±0,54 20±0,6 24±0,72 27±0,81

1,5 1,5 1,5 1,0 1,0 1,0

6

10

К21 К22 К23 К38 К39 К40

(К)142ЕН10 (К)142ЕН11

3...30 1.2...37

1,0 1.5

2

4

7 7

(К)24 (К)25

(К)142ЕН12 КР142ЕН12А

1.2...37 1,2...37

1.5 1,0

1 1

5

(К)47

КР142ЕН15А КР142ЕН15Б

±15±0,5 ±15±0,5

0,1 0,2

0,8 0,8

КР142ЕН18А КР142ЕН18Б

-1,2...26,5 -1,2...26,5

1,0 1,5

1

1

5

(LM337)

КР1157ЕН502 КР1157ЕН602 КР1157ЕН802 КР1157ЕН902 КР1157ЕН1202 КР1157ЕН1502 КР1157ЕН1802 КР1157ЕН2402 КР1157ЕН2702

5 6 8 9 12 15 18 24 27

0,1

0,5

5

78L05 78L06 78L08 78L09 78L12 78L15 78L18 78L24 78L27

КР1170ЕНЗ КР1170ЕН4 КР1170ЕН5 КР1170ЕН6 КР1170ЕН8 КР1170ЕН9 КР1170ЕН12 КР1170ЕН15

3 4 5 6 8 9 12 15

0,1

0,5

1,5

см. рис.

КР1168ЕН5 КР1168ЕН6 КР1168ЕН8 КР1168ЕН9 КР1168ЕН12 КР1168ЕН15 КР1168ЕН18 КР1168ЕН24 КР1168ЕН1

-5 -6 -8

-9 -12 -15 -18 -24 -1,5...37

0,1

0,5

5

79L05 79L06 79L08 79L09 79L12 79L15 79L18 79L24

studfiles.net

Интегральный стабилизатор 78L05: описание, примеры подключения, datasheet

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального линейного стабилизатора 78L05.

Описание стабилизатора 78L05

Данный стабилизатор не дорогой и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

фото стабилизатора 78L05

Микросхема - стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C. 

назначение выводов 78L05

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 - КР1157ЕН5, а для 7805 - 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

типовая схема включения 78L05

Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подаче входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема лабораторного блока питания отличается своей оригинальностью, из-за нестандартного применения микросхемы TDA2030, источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

блок питания на 78L05

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем  подбора подходящего сопротивления резистора R3 или R4.

Бестрансформаторный блок питания на 5 вольт

данная схема бестрансформаторного источника питания характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

применение стабилизатора 78L05 в бестрансформаторной схеме

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора - гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на КТ315. Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые  в бесперебойниках.

 зарядное для аккумуляторов на 78L05

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4...R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА  необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

78L05 - источник тока

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и  до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем  уменьшения или увеличения сопротивление резистора R2.

Скачать datasheet на 78L05 (161,0 Kb, скачано: 5 099)

www.joyta.ru

Линейные стабилизаторы напряжения | joyta.ru

Стабилизация напряжения в современных электронных устройствах очень важный элемент. Цифровые схемы требуют стабильного и надежного питания.

Самая простая схема стабилизации напряжения, которую мы можем встретить на практике – это система на основе стабилитрона. Базовый режим работы стабилитрона показан на следующем рисунке:

Линейные стабилизаторы напряжения

Эта система использует эффект стабилитрона, который происходит во время пробоя p-n перехода при обратном смещении. Это приводит к протеканию тока, и весь избыток напряжения гасится на балластном резисторе. Величина падения напряжения определяется силой тока, протекающего через него.

Поэтому фиксированный тока через стабилитрон фиксирует падение напряжения на резисторе и тем самым стабилизируется выходное напряжение. Стабилитроны изготавливаются на различные напряжения в диапазоне от 1,5В до 200В.

Но, часто для стабилизации напряжения на практике применяются специализированные микросхемы, которые можно разделить на две группы:

  • с возможностью регулировки напряжения- положительная полярность- отрицательная полярность
  • без возможности регулировки напряжения- положительная полярность- отрицательная полярность

Интегральные стабилизаторы напряжения имеют три основные характеристики:

  • выходное напряжение
  • максимальный ток
  • минимальное входное напряжение

На вход стабилизатора напряжения, необходимо подавать большее напряжение, чем то, которые должно быть на выходе.

В самых распространенных стабилизаторах разница между входным и выходным напряжением составляет около 2В. Но также существуют стабилизаторы LDO стабилизаторы, в которых эта разница намного ниже. Это напряжение часто обозначается как VDO

Среди популярных не регулируемых стабилизаторов можно отметить:78xx – самый известный из всех стабилизаторов положительного напряжения. Выпускается в различных версиях на напряжения: 5, 6, 8, 9, 10, 12, 15, 18, 24 вольт, VDO = 2В.79xx – самый популярный из всех стабилизаторов отрицательного напряжения. Производятся в версиях на напряжения: 5, 6, 8, 9, 10, 12, 15, 18, 24 вольт, VDO = 2В.

LM2940x – LDO стабилизатор положительного напряжения. На напряжение: 5, 8, 9, 10, 12, 15 вольт, VDO = 0,5В.

Среди регулируемых стабилизаторов напряжения наиболее известны:LM317 – диапазон выходных напряжений от 1,25 до 37 вольт, VDO = 3В.LM337 – диапазон выходных напряжений от -1,25 – 37 вольт, VDO = 5В.

Современные стабилизаторы напряжения имеют различного рода тепловую защиту и защиту по току, что обеспечивает безопасность работы и снижает шансы на «сгорание» схем.

Кроме линейных стабилизаторов существует также группа импульсных стабилизаторов. Отличаются они, безусловно, больший КПД (меньше энергии уходит на тепловые потери). Интересной особенностью является то, что они позволяют поднимать и снижать напряжения, что очень полезно во время питания микросхем от батареи.

www.joyta.ru


Каталог товаров
    .