Варисторы схема включения: Варистор. Принцип работы и применение

Варистор. Принцип работы и применение

Варистор является пассивным двухвыводным, твердотельным полупроводниковым прибором, который используется для обеспечения защиты электрических и электронных схем. В отличие от плавкого предохранителя или автоматического выключателя, которые обеспечивают защиту по току, варистор обеспечивает защиту от перенапряжения с помощью стабилизации напряжения подобно стабилитрону.

Слово «Варистор» является аббревиатурой и сочетанием слов «Varistor — variable resistor», резистор, имеющий переменное сопротивление, что в свою очередь описывает режим его работы. Его буквальный перевод с английского (Переменный Резистор) может немного ввести в заблуждения — сравнивая его с потенциометром или реостатом.

Но, в отличие от потенциометра, сопротивление которого может быть изменено вручную, варистор меняет свое сопротивления автоматически с изменением напряжения на его контактах, что делает его сопротивление зависимым от напряжения, другими словами его можно охарактеризовать как нелинейный резистор.

В настоящее время резистивный элемент варистора изготавливают из полупроводникового материала. Это позволяет использовать его как в цепях переменного, так и постоянного тока.

Варистор во многом похож по размеру и внешнему виду на конденсатор и его часто путают с ним. Тем не менее, конденсатор не может подавлять скачки напряжения таким же образом, как варистор.

Не секрет, что когда в цепи электропитания схемы какого-либо устройства возникает импульс высокого напряжения, то исход зачастую бывает плачевным. Поэтому применение варистора играет важную роль в системе защиты чувствительных электронных схем от скачков напряжения и высоковольтных переходных процессов.

Всплески напряжения возникают в различных электрических схемах независимо от того, работают они от сети переменного или постоянного тока. Они часто возникают в самой схеме или поступают в нее от внешних источников. Высоковольтные всплески напряжения могут быстро нарастать и доходить до нескольких тысяч вольт, и именно от этих импульсов напряжения необходимо защищать электронные компоненты схемы.

Один из самых распространенных источников подобных импульсов – индуктивный выброс, вызванный переключением катушек индуктивности, выпрямительных трансформаторов, двигателей постоянного тока, скачки напряжения от включения люминесцентных ламп и так далее.

Форма волны переменного тока в переходном процессе

Варисторы подключаются непосредственно к цепям электропитания (фаза — нейтраль, фаза-фаза) при работе на переменном токе, либо плюс и минус питания при работе на постоянном токе и должны быть рассчитаны на соответствующее напряжение. Варисторы также могут быть использованы для стабилизации постоянного напряжения и главным образом для защиты электронной схемы от высоких импульсов напряжения.

Статическое сопротивление варистора

 

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

При нормальной работе, варистор имеет очень высокое сопротивление, поэтому его работа схожа с работой стабилитрона.  Однако, когда на варисторе напряжение превышает номинальное значение, его эффективное сопротивление сильно уменьшается, как показано на рисунке выше.

Мы знаем из закона Ома, что ток и напряжение имеют прямую зависимость при постоянном сопротивлении. Отсюда следует, что ток прямо пропорционален разности потенциалов на концах резистора.

Но ВАХ (вольт-амперная характеристика) варистора не является прямолинейной, поэтому в результате небольшого изменения напряжения происходит значительное изменение тока. Ниже приведена кривая зависимости тока от напряжения для типичного варистора:

Мы можем видеть сверху, что варистор имеет симметричную двунаправленную характеристику, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоиды, подобно работе стабилитрона.
Когда нет всплесков напряжения, в квадранте IV наблюдается постоянное значение тока, это ток утечки, составляющий всего несколько мкА, протекающий через варистор.

Из-за своего высокого сопротивления, варистор не оказывает влияние на цепь питания, пока напряжение находится на номинальном уровне.  Номинальный уровень напряжения (классификационное напряжение) — это такое напряжение, которое необходимо приложить на выводы варистора, чтобы через него проходил ток в 1 мА. В свою очередь величина этого напряжения будет отличаться в зависимости от материала, из которого изготовлен варистор.

При превышении классификационного уровня напряжения, варистор совершает переход от изолирующего состояния в электропроводящее состояние. Когда импульсное напряжение, поступающее на варистор, становится больше, чем номинальное значение, его сопротивление резко снижается за счет лавинного эффекта в полупроводниковом материале. При этом малый ток утечки, протекающий через варистор, быстро возрастает, но в тоже время напряжение на нем остается на уровне чуть выше напряжения самого варистора. Другими словами, варистор стабилизирует напряжение на самом себе путем пропускания через себя повышенного значения тока, которое может достигать не одну сотню ампер.

Емкость варистора

Поскольку варистор, подключаясь к обоим контактам питания, ведет себя как диэлектрик, то при нормальном напряжении он работает скорее как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет определенную емкость, которая прямо пропорциональна его площади и обратно пропорциональна его толщине.

При применении в цепях постоянного тока, емкость варистора остается более-менее постоянной при условии, что приложенное напряжение не больше номинального, и его емкость резко снижается при превышении номинального значения напряжения. Что касается схем на переменном токе, то его емкость может влиять на стабильность работы устройств.

Подбор варистора

Чтобы для конкретного устройства правильно подобрать варистор, желательно знать сопротивление источника и мощность импульсов переходных процессов. Варисторы на основе оксидов металлов имеют широкий диапазон рабочего напряжения, начиная от 10 вольт и заканчивая свыше 1000 вольт переменного или постоянного тока. В общем необходимо знать на каком уровне напряжения нужно защитить схему электроприбора и взять варистор с небольшим запасом, например для сети 230 вольт подойдет варистор на 260 вольт.

Максимальное значение тока (пиковый ток) на которое должен быть рассчитан варистор, определяется длительностью и количеством повторений всплесков напряжения. Если варистор установлен с малым пиковым током, то это может привести к его перегреву и выходу из строя. Таким образом, для безотказной работы, варистор должен быстро рассеивать поглощенную им энергию переходного импульса и безопасно возвращаться в исходное состояние.

Варианты подключения варистора

 

Подведем итог

В данной статье мы узнали, что варистор это тип полупроводникового резистора, имеющий нелинейную ВАХ. Он является надежным и простым средством обеспечения защиты от перегрузки и скачков напряжения. Варисторы применяются в основном в чувствительных электронных схемах. В случае если питающее напряжение неожиданно превышает нормальное значение, варистор защищает схему за счет резкого снижения собственного сопротивления, шунтируя цепь питания и пропуская через себя пиковый ток, доходящий порой до сотен ампер.

Классификационное напряжение варистора — это напряжение на самом варисторе при протекании через него тока в 1 мА. Эффективность работы варистора в электронной или электрической цепи зависит от правильного его выбора в отношении напряжения, тока и силы энергии всплесков.

Скачать справочные материалы по зарубежным варисторам (3,0 MiB, скачано: 5 548)

Блок питания 0…30В/3A

Набор для сборки регулируемого блока питания…

Подробнее

Замена и проверка варистора на плате + видео

Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.

Скорее всего это произошло из-за скачков напряжения в сети.

При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.

Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.

Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.


Стандартная схема подключения варистора

параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:

Принцип действия варистора

По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток.

Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.

Маркировка варисторов

Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке.

Например маркировка варисторов CNR:

CNR-07D390K, где:

  • CNR-серия, полное название CeNtRa металлоксидные варисторы
  • 07- диаметр 7мм
  • D — дисковый
  • 390 — напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
  • K — допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.

Как же найти на плате варистор?

По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.

На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.

VA1- это варистор, а синяя деталь рядом это конденсатор-С70.

Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.

После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание — на строящемся объекте, на крыше, например. Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.

Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF — плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.

Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.

Ещё обратите внимание, что большинство плат — двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.

После замены варистора остаётся только поставить новый предохранитель и установить плату на место.

Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.

Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:

Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.

Выберите правильные варисторы для защиты цепей от перенапряжения

Варисторы, также называемые металлооксидными варисторами (MOV), используются для защиты чувствительных цепей от различных условий перенапряжения. По сути, эти нелинейные устройства, зависящие от напряжения, имеют электрические характеристики, аналогичные встречно-параллельным стабилитронам.

Загрузить эту статью в формате .PDF

Переходные процессы напряженияВаристоры отличаются высокой надежностью, что необходимо для того, чтобы выдерживать повторяющиеся импульсные токи с высокими пиками и переходные процессы с высокой энергией. Они также предлагают широкий диапазон напряжения, высокое поглощение энергии и быструю реакцию на переходные процессы напряжения. Номинальный пиковый ток находится в диапазоне от 20 до 70 000 А, а номинальная пиковая энергия — в диапазоне от 0,01 до 10 000 Дж.

В этом контексте «переходные процессы напряжения» определяются как кратковременные выбросы электрической энергии. В электрических или электронных цепях, которые предназначены для защиты варисторов, эта энергия может высвобождаться либо предсказуемым образом посредством управляемых переключений, либо случайным образом индуцироваться в цепь из внешних источников. Общие источники включают:

Молния: На самом деле переходные процессы, вызванные молнией, не являются результатом прямого удара. Удар молнии создает магнитное поле, которое может вызвать переходные процессы большой величины в близлежащих электрических кабелях. Удар от облака к облаку может повлиять как на воздушные, так и на подземные кабели. Исход также непредсказуем: удар, произошедший на расстоянии мили, может вызвать 70 В в электрических кабелях, а другой удар может создать 10 кВ на расстоянии 160 ярдов.
Коммутация индуктивной нагрузки: Генераторы, двигатели, реле и трансформаторы представляют собой типичные источники индуктивных переходных процессов. Включение или выключение индуктивных нагрузок может генерировать высокоэнергетические переходные процессы, которые усиливаются по мере увеличения нагрузки. Когда индуктивная нагрузка отключается, разрушающееся магнитное поле преобразуется в электрическую энергию, которая принимает форму двойного экспоненциального переходного процесса. В зависимости от источника эти переходные процессы могут достигать сотен вольт и сотен ампер при продолжительности 400 мс. Из-за различных размеров нагрузки будут различаться форма волны, длительность, пиковый ток и пиковое напряжение переходных процессов. Как только эти переменные будут аппроксимированы, разработчики схем смогут выбрать подходящий тип подавителя.
Электростатический разряд (ESD): Эта энергия является результатом дисбаланса положительных и отрицательных зарядов между объектами. Он характеризуется очень быстрым временем нарастания и очень высокими пиковыми напряжениями и токами.

Основы варистора

Варистор в основном состоит из массивов шариков из оксида цинка (ZnO), в которых ZnO был изменен небольшими количествами других оксидов металлов, таких как висмут, кобальт или марганец. В процессе производства MOV эти шарики спекаются (вплавляются) в керамический полупроводник. Это создает кристаллическую микроструктуру, которая позволяет этим устройствам рассеивать очень высокие уровни переходной энергии по всей своей массе. После спекания поверхность металлизируется, а выводы прикрепляются с помощью пайки.

Благодаря высокому рассеиванию энергии варисторами MOV их можно использовать для подавления молний и других высокоэнергетических переходных процессов, характерных для линий электропередач переменного тока. Они способны выдерживать большое количество энергии и отводить эту потенциально разрушительную энергию от чувствительной электроники, расположенной ниже по течению. MOV, которые также используются в цепях постоянного тока, бывают различных форм-факторов (рис. 1) .

1. Металлооксидные варисторы (MOV) доступны в различных форм-факторах и размерах для широкого спектра применений. Тип диска с радиальными выводами является наиболее распространенным вариантом.

 

Многослойные варисторы

Многослойные варисторы (MLV) предназначены для определенной части спектра переходного напряжения: среды печатной платы. Несмотря на меньшую энергию, переходные процессы от электростатического разряда, переключения индуктивной нагрузки и даже остатки грозового перенапряжения могут в противном случае достичь чувствительных интегральных схем на плате. MLV также изготавливаются из материалов ZnO, но они изготовлены из переплетенных слоев металлических электродов и производятся в бессвинцовых керамических корпусах. Они предназначены для перехода из состояния с высоким импедансом в состояние проводимости при воздействии напряжения, превышающего их номинальное напряжение.

MLV бывают разных размеров в форме микросхем и способны рассеивать значительную энергию импульса для своего размера. Таким образом, они подходят как для линий передачи данных, так и для приложений подавления переходных процессов в источниках питания.

Руководство по применению

При выборе подходящего MOV для конкретного приложения защиты от перенапряжения разработчик схемы должен сначала определить рабочие параметры защищаемой цепи, включая:

• Условия цепи, такие как пиковое напряжение и ток во время всплеск событие
• Постоянное рабочее напряжение MOV (должно быть на 20 % выше максимального напряжения системы при нормальных условиях)
• Количество скачков напряжения, которое MOV должен выдержать
• Допустимое сквозное напряжение для защищаемой цепи
• Любые стандарты безопасности, с которыми цепь должна соответствовать

Для простоты в этом примере предположим, что цель состоит в том, чтобы выбрать низковольтный дисковый MOV постоянного тока для следующих условий и требований цепи:

• Цепь постоянного тока 24 В
• Текущая форма волны для всплеска составляет 8 × 20 мкс; форма волны напряжения составляет 1,2 × 50 мкс (это типичные формы сигналов промышленного стандарта)
• Пиковый ток во время выброса = 1000 А
• MOV должен выдерживать 40 импульсов
• Другие компоненты схемы (ИС управления и т. д.) должны иметь номинал, выдерживающий максимальное напряжение 300 В

Шаг 1:   Чтобы найти номинальное напряжение MOV, примите во внимание 20-процентный запас с учетом бросков напряжения и допусков источника питания: 24 В постоянного тока × 1,2 = 28,8 В постоянного тока. Учитывая, что никакие варисторы не имеют номинального напряжения точно 28,8 В, проверьте спецификации для варисторов на 31 В постоянного тока.

Шаг 2:   Чтобы определить, какой размер диска MOV использовать, сначала определите серию MOV, которая минимально соответствует требованиям к скачку напряжения 1000 А. Изучив приведенную выше таблицу, можно предположить, что 20-мм MOV с максимальным номинальным постоянным напряжением 31 В постоянного тока (номер по каталогу V20E25P) является возможным решением для удовлетворения требований.

Шаг 3: Используйте кривые импульсной мощности (рис. 2) в том же листе данных, чтобы определить характеристики импульса относительно 40 импульсов при требовании 1000 А.

2. В техническом описании MOV будет представлена ​​кривая импульсной мощности; этот пример для 20-мм MOV.

 

Шаг 4:   Используйте кривую V-I (рис. 3) в техническом описании MOV, чтобы убедиться, что напряжение утечки будет меньше максимального значения в 300 В.

3. Техническое описание MOV также будет содержать кривую зависимости напряжения от тока, такую ​​как эта кривая максимального напряжения фиксации для 20-мм устройства на рис. 2.

Защита MOV от теплового разгона

Поглощение варистором переходной энергии во время перенапряжения приводит к локализованному нагреву внутри компонента, что в конечном итоге приводит к его износу. Если оставить незащищенным, деградация варистора может увеличить нагрев и тепловой разгон. Таким образом, все большее число устройств защиты от перенапряжений на основе варисторов предлагают встроенную функцию теплового отключения. Он обеспечивает дополнительную защиту от катастрофических отказов и опасностей возгорания даже в экстремальных условиях, когда варистор выходит из строя или при длительном перенапряжении.

MOV рассчитаны на определенные рабочие напряжения сети переменного тока. Превышение этих предельных значений при длительном аномальном перенапряжении может привести к перегреву и повреждению MOV.

MOV имеют тенденцию к постепенному ухудшению после сильного выброса или нескольких небольших скачков. Это ухудшение приводит к увеличению тока утечки MOV; в свою очередь, это повышает температуру MOV даже в нормальных условиях, таких как рабочее напряжение 120 В переменного тока или 240 В переменного тока. Терморазъединитель рядом с MOV (рис. 4) можно использовать для определения повышения температуры MOV, пока он продолжает деградировать до исходного состояния. В этот момент тепловое размыкание разомкнет цепь, удалив испорченный MOV из цепи и, таким образом, предотвратив потенциальный катастрофический отказ.

4. Термический разъединитель может разомкнуть цепь, предотвращая катастрофический отказ поврежденного MOV.

 

Драйверы для светодиодов и Lightning

Как правило, большинство источников питания для светодиодов имеют постоянный ток и часто называются драйверами для светодиодов. Их можно приобрести в виде готовых сборок, содержащих MOV, для удовлетворения более низких требований к перенапряжениям.

Обычно драйверы рассчитаны на перенапряжения в диапазоне от 1 до 4 кВ. Варистор диаметром от 7 до 14 мм обычно располагается после предохранителя в сети переменного тока. Тем не менее, чтобы обеспечить более высокий уровень устойчивости к перенапряжениям для освещения, установленного на открытом воздухе в условиях воздействия скачков напряжения, OEM-производители наружного освещения могут захотеть добавить устройства защиты от перенапряжения (SPD) на входных линиях переменного тока своих светильников перед драйвером светодиода.

Пример конструкции MOV: промышленные двигатели

Одним из аспектов защиты двигателя переменного тока является устойчивость самого двигателя к импульсным перенапряжениям. Параграф 20.36.4 стандарта NEMA MG-1 для двигателей-генераторов определяет единичное значение перенапряжения следующим образом: линейное напряжение сети переменного тока.

Для времени нарастания переходного процесса от 0,1 до 0,2 мкс требуется удвоенное единичное значение импульсной способности обмотки статора. Когда время нарастания достигает 1,2 мкс или больше, указывается 4,5-кратное значение единицы измерения. В случае внешних переходных процессов, таких как молния, это соответствует допустимому перенапряжению 918 В PEAK для двигателя 230 В (полный ток нагрузки = 12 А) в условиях высокого напряжения 250 В. (Молниеносные перенапряжения могут превысить эти значения, поэтому для защиты обмоток статора также потребуется гасящий элемент.)

Загрузите эту статью в формате .PDF

Рабочие температуры являются еще одним соображением. Предположим, что рабочая температура окружающей среды для этого приложения находится в диапазоне от 0 до +70°C. Это будет в пределах диапазона от -40 до +85 °C MOV, и не будет требований по снижению номинальных значений импульсного тока или энергии в этом температурном диапазоне. быть выбраны для этого примера. При использовании однофазного двигателя среднего размера мощностью 2 л.с. требуемый номинальный импульсный ток MOV будет определяться пиковым током, индуцируемым в цепи питания двигателя. Предполагая место обслуживания двигателя и полное сопротивление линии 2 Ом, было определено, что возможен грозовой перенапряжение 3 кА.
В этом случае в одном техническом паспорте указано максимальное напряжение фиксации 3 кА при 900 В, что ниже рекомендуемой выдерживаемой способности обмотки статора при напряжении 918 В. Если бы срок службы двигателя был оценен в 20 лет и указан как способный выдержать 80 грозовых переходных процессов в течение срока службы, кривые номинальных импульсов в паспорте подтвердили бы рейтинг 100+ импульсных перенапряжений.

Для получения более подробной информации о том, как согласовать MOV с приложениями, ознакомьтесь с «Руководством по проектированию варисторов для приложений постоянного тока».

Металлооксидный варистор (MOV) — работа, применение, советы по проектированию и руководство по выбору Цепь

. Металлооксидный варистор можно рассматривать как еще один тип переменного резистора, который может изменять свое сопротивление в зависимости от приложенного к нему напряжения. Когда через MOV проходит большой ток, значение его сопротивления уменьшается и действует как короткое замыкание. Следовательно, MOV обычно используются параллельно с предохранителем для защиты цепей от скачков высокого напряжения. В этой статье мы узнаем больше о MOV Работа с и как использовать его в своих проектах для защиты ваших цепей от скачков напряжения . Мы также узнаем об электрических свойствах MOV и о том, как выбрать MOV в соответствии с вашими требованиями к конструкции, так что давайте приступим.

 

Что такое MOV (металлооксидный варистор)?

MOV — это просто переменный резистор, но, в отличие от потенциометров, MOV может изменять свое сопротивление в зависимости от приложенного напряжения . Если напряжение на нем увеличивается, сопротивление уменьшается, и наоборот. Это свойство полезно для защиты цепей от скачков высокого напряжения; следовательно, они в основном используются как УЗИП в электронной сети. На рисунке ниже показан простой MOV

 

Как работает MOV?

В нормальных рабочих условиях сопротивление MOV будет высоким, и они будут потреблять очень мало тока, но при скачке напряжения в сети напряжение поднимется выше колена или напряжения фиксации , и они будут потреблять больше тока , это рассеивает импульс и защищает оборудование. MOV можно использовать только в течение защита от коротких перенапряжений , они не могут справиться с длительными перенапряжениями. Если варисторы подвергаются повторным скачкам напряжения, их свойства могут немного ухудшиться. Всякий раз, когда они испытывают всплеск, напряжение фиксации падает немного ниже, что через некоторое время может даже привести к их разрушению. Чтобы избежать такого рода рисков, MOV в основном подключаются последовательно с тепловым выключателем / предохранителем, который может сработать, если потребляется большой ток. Давайте подробнее обсудим, как MOV работает в цепи.

 

Как использовать MOV в вашей схеме?

MOV, также известные как варисторы, обычно используются вместе с предохранителями параллельно защищаемой цепи. На изображении ниже показано, как использовать MOV в схеме электроники .

Когда напряжение находится в пределах номинальных значений, сопротивление MOV будет очень высоким, и, следовательно, весь ток протекает через цепь, а ток через MOV не течет. Но когда в основном напряжении возникает всплеск напряжения, он проявляется непосредственно на MOV, поскольку он подключен параллельно сети переменного тока. Это высокое напряжение уменьшит значение сопротивления MOV до очень низкого значения, что сделает его похожим на короткое замыкание.

 

Это приводит к протеканию большого тока через MOV, что может привести к перегоранию предохранителя и отключению цепи от сетевого напряжения. Во время скачков напряжения неисправное высокое напряжение вернется к нормальным значениям очень скоро, в этих случаях продолжительность протекания тока не будет достаточно большой, чтобы перегорел предохранитель, и цепь вернется в нормальный режим работы, когда напряжение станет нормальным. Но каждый раз, когда обнаруживается всплеск, MOV на мгновение отключает цепь, замыкая себя и каждый раз повреждая себя высоким током. Поэтому, если вы обнаружите, что MOV поврежден в какой-либо силовой цепи, возможно, это связано с тем, что в цепи было много скачков напряжения.

 

Конструкция MOV

Металлооксидный варистор представляет собой резистор , зависящий от напряжения, , изготовленный из керамических порошков оксидов металлов, таких как оксид цинка, и некоторых других оксидов металлов, таких как оксиды кобальта, марганца, висмута и т. д. , MOV состоят примерно на 90% из оксида цинка и небольшого количества оксидов других металлов. Керамические порошки оксидов металлов остаются нетронутыми между двумя металлическими пластинами, называемыми электродами.

Зерна оксидов металлов создают диодный переход между каждым ближайшим соседом. Итак, MOV — это большое количество последовательно соединенных диодов. При подаче на электроды небольшого напряжения На переходах появляется обратный ток утечки . Первоначально генерируемый ток будет небольшим, но когда на MOV подается большое напряжение, краевые переходы диода разрушаются из-за туннелирования электронов и лавинного пробоя. Внутренняя структура MOV показана на рисунке ниже.

Конструкция металлооксидного варистора

Варистор MOV начинает проводить, когда на соединительные провода подается определенное напряжение, и прекращает проводить, когда напряжение падает ниже .0058 пороговое напряжение . MOV доступны в различных форматах, таких как формат диска, устройства с осевыми выводами, блоки и винтовые клеммы, а также устройства с радиальными выводами. MOV всегда должны подключаться параллельно для увеличения мощности обработки энергии, и если вы хотите получить более высокое номинальное напряжение, вы должны подключать его последовательно.

 

Электрические характеристики MOV

Давайте рассмотрим различные электрические характеристики MOV, чтобы лучше понять Свойства MOV.

 

Статическое сопротивление

Кривая статического сопротивления MOV строится со значением сопротивления MOV по оси X и значением напряжения по оси Y.

Кривая статического сопротивления

Вышеприведенная кривая представляет собой кривую напряжения и сопротивления MOV, при нормальном напряжении сопротивление находится на пике, но по мере увеличения напряжения сопротивление варистора уменьшается. Эту кривую можно использовать, чтобы понять, какое сопротивление будет у вашего MOV при разных уровнях напряжения.

 

ВАХ

Согласно закону Ома кривая ВАХ линейного резистора всегда представляет собой прямую линию, но мы не можем ожидать того же от переменного резистора. Как вы можете видеть на изображении ниже, даже небольшое изменение напряжения приводит к значительному изменению тока.

MOV может работать в обоих направлениях, поэтому он имеет симметричные двунаправленные характеристики. Кривая будет похожа на характеристическую кривую двух стабилитронов, соединенных встречно-параллельно. Когда MOV не проводит ток, он имеет высокое сопротивление до определенного напряжения, скажем, 0-200 вольт. Кривая имеет линейную зависимость, когда ток, протекающий через варистор, почти равен нулю. Когда мы увеличиваем приложенное напряжение в диапазоне 200-250 В, сопротивление уменьшается, и варистор начинает проводить ток, и начинает течь ток в несколько микроампер, что не имеет большого значения на кривой.

Как только возрастающее напряжение достигает номинального или фиксирующего напряжения (250 В), варистор становится высокопроводящим, через варистор начинает протекать ток силой около 1 мА. Когда переходное напряжение на варисторе равно или превышает напряжение фиксации, сопротивление варистора становится небольшим, что превращает его в проводник из-за лавинного эффекта полупроводникового материала.

 

Емкость MOV 

Поскольку мы уже знаем, что MOV состоит из двух электродов, он действует как диэлектрическая среда и обладает эффектами конденсатора, которые могут повлиять на работу системы, если он не приняты к рассмотрению. Каждый полупроводниковый варистор будет иметь значение емкости, зависящее от площади, которая также обратно пропорциональна его толщине.

Значение емкости не имеет большого значения, когда речь идет о цепи постоянного тока, поскольку емкость будет оставаться почти постоянной, пока напряжение устройства не достигнет напряжения фиксации. Не будет эффекта емкости, когда напряжение достигнет напряжения фиксации, так как варистор начнет свою нормальную работу.

Когда речь идет о цепях переменного тока, емкость MOV может влиять на общее сопротивление корпуса MOV, что вызывает ток утечки . Поскольку варистор подключен параллельно защищаемому устройству, сопротивление утечки варистора быстро падает при увеличении частоты. 9Значение реактивного сопротивления 0058 MOV можно рассчитать по формуле

Xc=1/2πfC

Где Xc — емкостное реактивное сопротивление, а f — частота сети переменного тока. Если частота увеличивается, ток утечки также будет увеличиваться, как показано в области непроводящей утечки на кривой вольт-амперной характеристики, рассмотренной выше.

 

Выбор правильного MOV для защиты

Чтобы правильно выбрать MOV для своего оборудования, необходимо знать о различных параметрах MOV. Спецификация MOV зависит от следующего:

  • Максимальное рабочее напряжение: Это установившееся постоянное напряжение, при котором типичный ток утечки будет меньше указанного значения.
  • Напряжение фиксации: Это напряжение, при котором MOV начинает проводить и рассеивать импульсный ток.
  • Импульсный ток: Это максимальный пиковый ток, который может быть подан на устройство без его повреждения; это в основном выражается в «текущем для данного времени». Несмотря на то, что устройство может выдерживать импульсный ток, производители рекомендуют заменить устройство в случае возникновения импульсного тока.
  • Surge Shift: Всякий раз, когда устройство испытывает скачок напряжения, номинальное ограничивающее напряжение уменьшается, изменение напряжения после скачка называется сдвигом скачка напряжения.
  • Поглощение энергии: Максимальное количество энергии, которое MOV может рассеять за указанное пиковое время импульса определенной формы волны во время выброса. Это значение можно определить, запустив все устройства в определенной контролируемой цепи с определенными значениями. Энергия обычно выражается в стандартном переходном режиме x/y, где x — переходный подъем, а y — время достижения половины пикового значения.
  • Время отклика: Это время, когда варистор начинает работать после возникновения перенапряжения, во многих случаях точное время отклика отсутствует. Типичное время отклика всегда составляет 100 нс.
  • Максимальное напряжение переменного тока: Это максимальное среднеквадратичное напряжение сети, которое может постоянно подаваться на варистор, максимальное среднеквадратичное значение должно быть выбрано таким, чтобы оно было немного выше фактического среднеквадратичного напряжения сети. Пиковое напряжение синусоиды не должно перекрываться с минимальным напряжением варистора, иначе это может сократить срок службы компонентов. Производители указывают максимальное напряжение переменного тока, которое мы можем предоставить устройству, в самом описании продукта.
  • Ток утечки: Это величина тока, потребляемого варистором, когда он работает ниже напряжения фиксации, то есть когда в сети нет перенапряжения. Обычно ток утечки указывается при заданном рабочем напряжении на устройстве.

 

Применение MOV

MOV могут использоваться для защиты различных типов оборудования от различных типов неисправностей. Их можно использовать для однофазной линейной защиты и однофазной линейной защиты и линейной защиты от земли в электрических цепях переменного/постоянного тока. Их можно использовать для полупроводниковой коммутационной защиты в транзисторах, полевых МОП-транзисторах или тиристорах, а также для защиты от искрения контактов в устройствах с электроприводом.

Когда дело доходит до применения, MOV можно использовать в цепях, где всегда существует риск перенапряжения или скачков напряжения. MOV в основном используются в адаптерах и полосах с защитой от перенапряжения, источниках питания, подключенных к сети, телефонных и других линиях связи, защите промышленных линий переменного тока высокой мощности, системах данных или системах питания, защите общего электронного оборудования, такого как сотовые телефоны. , цифровые камеры, персональные цифровые помощники, MP3-плееры и ноутбуки.

MOV также используются в некоторых случаях, таких как микроволновые смесители, для модуляции, обнаружения, а также преобразования частоты, которые не являются наиболее известными приложениями MOV.

 

Схема защиты MOV – советы по проектированию

Теперь, когда мы обсудили, что такое MOV и как его использовать для защиты цепи от скачков напряжения, давайте завершим статью несколькими советами по проектированию, которые пригодятся, когда вы разрабатываете свою схему.

  1. Первым шагом при выборе MOV является определение постоянного рабочего напряжения, которое будет обеспечиваться через варистор. Вы должны выбрать варистор с максимальным переменным или постоянным напряжением, которое соответствует приложенному напряжению или немного превышает его. Выбор варистора, который имеет максимальное номинальное напряжение на 10-15% выше, чем фактическое напряжение сети, является обычным явлением, поскольку линии питания всегда имеют допуск отклонения напряжения. Это соотношение будет включено в их значения напряжения, в некоторых случаях, если вы предпочитаете достичь чрезвычайно низкого тока утечки, несмотря на самый низкий уровень защиты, вы можете использовать варистор с более высоким рабочим напряжением.
  2. Узнайте количество энергии, поглощаемой варистором в случае выброса напряжения. Это можно определить, используя всю абсолютную максимальную нагрузку варистора во время перенапряжения в окружающей среде и спецификации, приведенные в техническом описании. Вы должны выбрать варистор, который может рассеивать больше энергии, что эквивалентно или немного больше, чем рассеивание энергии, необходимое во время перенапряжения, которое может произвести схема.