Содержание
Однолинейная схема электроснабжения – назначение и виды
Оглавление
Одной из важных составляющих современных зданий и сооружений, промышленных объектов является система электроснабжения. Чтобы точно разобраться во всех тонкостях прокладки линий электропередач, установки трансформаторных подстанций (ТП), комплектных трансформаторных подстанций (КТП), щитов, шкафов, используют однолинейную электрическую схему. Это документ, который визуально отображает все основные элементы электрической сети, важные характеристики используемого оборудования, расчетные данные, способы взаимодействия разных элементов сети между собой. Однолинейная схема электроснабжения объекта является обязательным элементом исполнительной документации.
Понятие и назначение однолинейной схемы
Однолинейная схема электроснабжения – разновидность нормативно-технической документации, которую должны иметь в наличии все частные лица и организации, эксплуатирующие электрические сети. На этом документе отображают все компоненты электрической сети с указанием их типа и основных технических параметров. Все электрические соединения выполняют одной линией, независимо от количества фаз. Составление однолинейных схем электроснабжения регламентируется ГОСТ 2.702-2011. Главным назначением этого документа является предоставление реальной визуальной конфигурации электрической сети объекта. На основании этой информации ответственные лица принимают решения о режимах работы электрооборудования, возможных видах переключений и других изменений конфигурации для исключения простоя.
Виды однолинейных электрических схем
Однолинейная схема электроснабжения выполняется в двух различных вариантах:
- Расчетная схема. Разрабатывается на этапе проектирования и содержит информацию о расчетных нагрузках, планируемых типах оборудования, коммуникации между ними. Такая разновидность однолинейных схем предназначена для согласования с контролирующими органами, представителями заказчика.
- Исполнительная однолинейная схема. Составляется после ввода оборудования в эксплуатацию. Она отображает все реальные взаимосвязи и типы оборудования, которые участвуют в приеме, преобразовании и распределении электроэнергии.
Для каждого конкретного случая составление однолинейных схем должно осуществляться индивидуально на основании требуемой функциональности, масштаба и предназначения документа.
Пример: простая однолинейная схема электроснабжения
Как составить однолинейную схему электроснабжения
Профессиональная разработка проектной документации и однолинейной схемы в частности, играет важную роль для положительного решения вопроса с контролирующими органами, быстрого введения объекта в эксплуатацию. При подготовке документации учитывают все требования ГОСТ 2.702-2011 «Единая система конструкторской документации» (ЕСКД). При составлении схем электроснабжения не требуется подробная детализация. Главная цель однолинейной схемы – дать общее представление о конфигурации системы электроснабжения. Использование такой подачи материала позволяет быстро ознакомиться с параметрами сети, качественно оценить уровень её надежности, сложности и функциональности.
Что должна включать однолинейная схема электроснабжения
Однолинейная электрическая схема электроснабжения должна отображать следующие основные данные:
- Границы балансовой принадлежности между потребителем и поставщиком электроэнергии.
- Узлы учета электроэнергии с установленными трансформаторами тока и указанием их коэффициента трансформации.
- Вводно-распределительные устройства, трансформаторные подстанции, распределительные пункты, главные распределительные щиты и другие крупные узлы приема и распределения электроэнергии с указанием наличия устройств автоматического ввода резерва (АВР).
- Данные о силовом оборудовании, системах освещения, длины магистральных линий, способы их прокладки и марки кабеля.
- Характеристики всех выключателей, разъединителей, переключателей, предохранителей, разрядников и другой коммутационной аппаратуры.
- Информация о величине тока, мощности и характере электрической нагрузки, подключаемой к схеме электроснабжения.
Разновидности однолинейных схем
В зависимости от основного назначения, все однолинейные схема классифицируют на несколько групп:
- Структурные. Включают данные об электроустановках, в том числе отображает их взаимосвязь с помощью линий электропередач, трансформаторов и других способов.
- Функциональные. Они предназначены для передачи потенциальных действий потребителей электроснабжения. На этой схеме указывают взаимодействие потребителей электрической энергии, их характер нагрузки.
- Монтажные. Отображают принятые проектные решения в части способа и места монтажа электрооборудования. Они согласовываются со строительными планами, соответствующими ГОСТ и СНиП.
Кроме перечисленных выше схем существуют электрические специальные схемы, которые используются для отображения компонентов электрической сети по отдельности.
Разница однолинейной и принципиальной схемы
Принципиальные электрические схемы подробно описывают марку, тип, технические параметры используемого электрооборудования. С помощью принципиальной схемы можно полностью отследить все взаимосвязи между элементами электрической сети. В отличие от них, простая однолинейная схема электроснабжения отображает только основные взаимосвязи без детализации проложенных дополнительных линий связи.
Особенности проектирования однолинейной схемы электроснабжения
Наличие однолинейной схемы является обязательным условием для подключения объекта к сети поставщика электрической энергии. Перед началом разработки однолинейной схемы необходимо запросить у поставщика электроэнергии технические условия (ТУ), которые будут отображать установленные лимиты в мощности подключаемой нагрузки.
На основании полученных ТУ, проектировщики формируют пакет документации, где рассчитывают размер нагрузки, конфигурацию будущей электрической сети: тип и характеристики защитной аппаратуры, длина и марка кабелей, подбор трансформаторов, распределительной аппаратуры, место и способ монтажа. На основании этой документации создается однолинейная схема, которая обобщает проектную документацию и полученные результаты расчетов. Вся проектная документация и однолинейная схема в том числе, согласовываются у поставщика электроэнергии, который выдавал технические условия.
Порядок разработки ОСЭ
Многие начинающие специалисты часто задаются вопросом, как сделать однолинейную схему электроснабжения? Ответ на этот вопрос можно найти в ПУЭ, где четко указано, что вся исполнительная документация должна отвечать требованиям (техническим условиям на подключение) поставщика электроэнергии. В технических условиях отражены основные требования к суммарной мощности потребления электрической энергии, техническим параметрам узлов учета, защитных устройств. Только после полного изучения ТУ можно начинать приступать к работе над однолинейной схемой и другими исполнительными документами.
Какую информацию должна нести ОСЭ
Однолинейная схема электроснабжения объекта должна в полной степени отражать реальную конфигурацию электрической сети во всех возможных режимах работы. Кроме основных технических характеристик и наименований электрооборудования, на однолинейной схеме могут указывать:
- Разделение электрической сети по типам: распределительная, магистральная, групповая.
- Все возможные режимы работы: ремонтные, аварийные, работа устройств АВР и прочие.
- Расчет потерь электроэнергии в сети электроснабжения.
Построенная с учетом этих требований схема может дополняться другими техническими документами, которые не требуют отдельного согласования со стороны поставщика электроэнергии.
Этапы разработки
Постараемся максимально точно описать, как составить однолинейную схему электроснабжения с учетом всех требований нормативно-технической документации. Алгоритм действий в этом случае будет иметь следующую последовательность:
- Обратиться к поставщику электроэнергии для получения технических условий на присоединение.
- Получить технические условия, где будут четко прописаны все основные требования к нагрузке, узлу учета, надежности.
- Произвести расчет однолинейной схемы электроснабжения объекта с учетом требований ТУ, необходимого уровня надежности, размера бюджета.
- Согласовать исполнительную документацию с поставщиком электроэнергии.
- При необходимости доработать исполнительную документацию с учетом замечаний от поставщика электрической энергии.
Требования ГОСТ и нюансы оформления
При составлении однолинейных схем электроснабжения следует руководствоваться широким перечнем нормативно-технической документации:
- ГОСТ 2. 710-81.
- ГОСТ 2.755-87.
- ГОСТ 2.702-2011.
- ГОСТ 2.721-74.
- ГОСТ 2.709-89.
Основные правила, которых придерживаются при составлении однолинейных схем:
- Все силовые цепи и элементы электрических сетей выделяют утолщенной линией.
- Электрические сети маркируют с помощью арабских цифр и латинских букв. Буквами обозначают фазы, а цифрами – последовательность. Маркировка осуществляется от источника к электрической нагрузке.
- При наличии участков цепи с большим количеством контактов, необходимо указывать полярность.
- Маркировку размещают над изображением соответствующего участка цепи или слева от него.
- Все характеристики электрической цепи с целью упрощения чтения допускается выносить в отдельные таблицы.
- На свободном поле однолинейной электрической схемы разрешено указывать техническую информацию следующего характера: назначение элемента, марка и сечение кабеля, требования к монтажу.
- При выполнении схемы на нескольких листах, следует все позиционные обозначения элементов схемы осуществлять с применением сквозной нумерации.
Условно-графическое отображение компонентов цепи
Все условно-графические элементы однолинейной схемы выполняются с использованием простых геометрических фигур, линий и маркировки: квадраты, треугольники, прямоугольники, окружности, пунктирные и сплошные линии, тушевание, буквенно-цифровые обозначения. Каждый элемент схемы должен соответствовать требованиям ГОСТ и правильно отображать соответствующий компонент электрической сети. Чтобы грамотно составить однолинейную схему, следует четко знать условные обозначения по ГОСТ:
Проверка и утверждение проекта
Окончательным этапом работы на ОСЭ объекта является согласование у поставщика электроэнергии, который выдал технические условия. Получив разрешение от поставщика можно приступать к реализации проекта путем закупки необходимого оборудования, расходных материалов или передачи этих функций специализированной электромонтажной организации.
Как читать электрические схемы для новичков.
Условные обозначения.
Электрическая схема представляет собой условное графическое изображение компонентов, входящих в состав электрической цепи, связанных между собой проводниками. При этом возле каждого элемента, входящего в схему может указываться обозначение буквенное и цифровое.
Делается такая схема на этапе проектирования разводки электросети на объекте любой сложности, а также при создании электрического или электронного устройства. Электросхемы составляют квалифицированные инженеры. При этом они руководствуются действующими нормативно-техническими документами и ГОСТами.
Главный документ – ПУЭ-7 с дополнениями и изменениями. Именно он является основополагающим при составлении электрических схем, а также при осуществлении монтажа и в период эксплуатации.
Электросхема является официальным документом
Она прикладывается к каждому электротехническому изделию, по ней осуществляют электромонтажные и ремонтные работы. Поэтому очень важно научиться читать электросхемы. Начинать необходимо с условного обозначения элементов, из которых строится электрическая цепь.
Основные устройства, входящие в состав схемы, разделили по функциям:
- вырабатывающие ток, т.е. источники электроэнергии;
- использующие или преобразующие электроток;
- передающие ток и помогающие его передавать.
Для все изделий и комплектующих имеются условные обозначения, которые специалисты чертят с соблюдением размеров и в соответствии с ГОСТами.
Попробуем разобраться на примере разводки электрики в квартире. Готовая схема будет выглядеть следующим образом:
Рис. 1 – Простейшая схема разводки проводов с установочными элементами по помещениям квартиры
На рис. 1 имеется все необходимое для того, чтобы осуществить монтаж электрики в квартире небольшого размера. Условное обозначение составляющих тоже понятно. Ключевыми изделиями являются провода, светильники, выключатели, розетки, автоматы и электрический щит.
Провода, как видно из чертежа, обозначаются прямыми линиями. Они могут пересекаться и, если в этом месте образуется электрическая связь, то ставиться точка, которая свидетельствует о ней. Теперь это соединение является электрическим узлом.
Рис. 2 – Графическое обозначение пересечения и соединения проводов на схемах
Также обозначаются линии электрической связи, шина, кабель. Корпус аппарата, машины или прибора и заземление условно обозначаются следующими знаками:
Более подробно об обозначении проводов на планах указано в ГОСТ 21.614-88. Там же в таблице 3 имеется полная информация об изображении выключателей, переключателей и розеток штепсельных.
Условное обозначение светильников следующее:
Более подробно об условном обозначении светильников на чертежах указано в ГОСТ 21.210 — 2014.
Люстра имеет следующее условное обозначение:
Схема электрическая однолинейная
Такая схема дает представление о подаче электрической энергии на любой объект. Именно ее наличие дает право получить технические условия и заключить договор на поставку электроэнергии от энергоснабжающей компании.
Для каждого объекта схема однолинейная принципиальная своя. Представляет собой чертеж с указанием последовательности подключения на основную фазу всех составляющих, входящих в цепь, которые показаны условными знаками.
Например, она может выглядеть так:
Рис. 3 – Пример исполнения однолинейной схемы
На чертеже можно увидеть условные обозначения автоматических выключателей, счетчика электроэнергии, УЗО с их техническими характеристиками и сечение проводов. Отсюда вытекают требования к выполнению однолинейной схеме.
Она должна содержать такие данные:
- точку подключения и разграничения ответственности;
- технические данные вводного устройства, прибора коммерческого учета, коммутационных аппаратов, питающего кабеля и другие необходимые данные. Кроме того выполняют расчеты нагрузок и потерь электроэнергии, мощность.
Электрическая однолинейная схема электроснабжения объекта выполняется с учетом требований ГОСТ 2.702-75
Внимание! Основное правило чтения электрических схем – слева направо, двигаясь сверху вниз.
Последовательность изучения, а значит, и чтение выполняют по следующему алгоритму:
- читают название схемы;
- определяют количество контуров и ветвей в них;
- читают условные обозначения возле каждого элемента;
- читают дополнительную информацию, если она имеется на чертеже.
Это поможет понять назначение каждого элемента и принцип работы.
Символы электрических трансформаторов — Символы однолинейных трансформаторов
Ниже приведен список различных типов символов трансформаторов. Список символов однострочного трансформатора приведен ниже в конце поста.
Трансформатор с двумя обмотками
Это общий символ трансформатора с двумя обмотками, представленный одной линией. Двухобмоточные трансформаторы состоят из двух обмоток, соединенных вместе посредством переменного магнитного потока.
Однофазный двухобмоточный трансформатор
Это SLD (однолинейная схема) представление однофазного двухобмоточного трансформатора. Такой трансформатор имеет две обмотки, то есть первичную и вторичную, которые используются одной фазой. Он имеет две первичные клеммы и две вторичные клеммы.
Трансформатор с воздушным сердечником
Эти символы обозначают трансформатор с воздушным сердечником. Трансформатор с воздушным сердечником не имеет магнитного сердечника, вместо этого обмотка намотана на пластик (немагнитный материал) или сердечник отсутствует вовсе. В магнитном сердечнике есть потери в сердечнике, которые увеличиваются с частотой, поэтому трансформатор с воздушным сердечником используется для радиочастотных приложений.
Трансформатор с реактором насыщения
Это тип трансформатора, сердечник которого можно специально насыщать. Насыщение сердечника — это точка, в которой сердечник полностью намагничен и создает максимальный магнитный поток. Насыщение сердечника контролируется с помощью управляющей обмотки постоянного тока. Во время насыщения реактивное сопротивление уменьшается, что приводит к увеличению тока.
Трансформатор с железным сердечником
Сердечник этого трансформатора состоит из железа. Железо обладает высокой магнитной проницаемостью, что позволяет ему проводить большой магнитный поток, что увеличивает индукцию между обмотками. Недостатком железного сердечника являются потери на вихревые токи (потери в сердечнике), которые зависят от частоты питания. Таким образом, они используются для низкочастотных приложений.
Трансформатор с ферритовым сердечником
Этот символ обозначает трансформатор с ферритовым сердечником. Феррит представляет собой магнитный материал с очень высокой магнитной проницаемостью, которая увеличивает магнитный поток внутри сердечника трансформатора. Кроме того, феррит имеет очень низкую электропроводность, что снижает потери на вихревые токи внутри сердечника.
Трансформатор переменного тока
Трансформатор переменного тока — это тип трансформатора, который может обеспечить переменное вторичное напряжение из того же первичного напряжения. Он может изменять выходное напряжение, изменяя количество витков, используя разные точки ответвления или переменную связь. Вариак — самый распространенный автотрансформатор переменного тока.
Однофазный трансформатор с отдельной обмоткой
Это SLD-представление однофазного трансформатора с отдельными обмотками для первичной и вторичной клемм. Двойная пунктирная линия представляет две клеммы для каждой обмотки.
Экранированный трансформатор
Экранированный трансформатор имеет электростатический экран между первичной и вторичной обмотками, который предотвращает передачу огромных скачков напряжения и высокочастотного шума. Экран заземлен & Емкость между экраном и первичной обмоткой предотвращает передачу шума из-за высокой частоты.
Трансформатор регулирования тока
Трансформатор такого типа обеспечивает постоянный ток даже при повышении или понижении напряжения. Трансформатор с запасным сердечником регулирует ток путем насыщения сердечника с помощью управляющей обмотки постоянного тока.
Трансформатор регулирования напряжения
Регулирование напряжения трансформатора означает поддержание постоянного вторичного напряжения в диапазоне нагрузки. Этот тип трансформатора регулирует свое напряжение, т.е. обеспечивает постоянное напряжение при увеличении или уменьшении тока нагрузки.
Трансформатор с подвижным магнитом
Как следует из названия, напряжение в катушке этого трансформатора индуцируется движением магнита в непосредственной близости от катушки. В фонокартридже используется трансформатор ММ, который преобразует движение иглы в электрический сигнал за счет перемещения магнита, прикрепленного к его кончикам.
Трансформатор с регулируемым сердечником
Такой тип трансформатора имеет регулируемый сердечник, который увеличивает или уменьшает потокосцепление между обмотками для увеличения или уменьшения протекающего тока. Трансформаторы такого типа используются для регулирования тока при сварке.
Трансформатор тока
Трансформатор тока — тип измерительного трансформатора, используемый для снижения сильного переменного тока в линии до безопасного уровня для целей измерения. Ток, создаваемый во вторичной обмотке, пропорционален току в первичной обмотке (проводнике) и измеряется путем подключения к нему обычного амперметра.
Трансформатор тока с двумя сердечниками
Трансформатор тока такого типа имеет два сердечника. Через оба сердечника трансформатора проходит один проводник (первичный). Двойной сердечник трансформатора увеличивает мощность трансформатора.
Трансформатор тока с двумя сердечниками и двумя вторичными линиями
Это трансформатор тока с двумя сердечниками, каждый из которых имеет два сердечника с отдельной вторичной обмоткой. Каждая обмотка имеет разное соотношение витков, что обеспечивает доступ к двум различным значениям тока для каждой отдельной обмотки.
Трансформатор тока с 3 проводниками
Такой тип ТТ также известен как CBCT (Трансформатор тока уравновешивания сердечника). Он имеет 3 первичных проводника (3 фазы), проходящих через его сердечник. Суммарная векторная сумма тока в нормальном состоянии равна нулю. Когда есть ток замыкания на землю, разница появляется через CBCT, который подключен к системе сигнализации.
Одноядерный ТТ с двумя вторичными и 3 первичными проводниками
Этот символ обозначает трансформатор тока, имеющий 2 вторичные обмотки на одном сердечнике. Через его сердечник проходят 3 первичных проводника. Индивидуальная вторичная обмотка обеспечивает различный номинальный ток и соотношение витков.
Одноядерный трансформатор тока с двумя вторичными обмотками
Такой тип трансформатора тока имеет две вторичные обмотки на одном сердечнике. Каждая обмотка обеспечивает разное соотношение витков, предлагая разные номинальные токи.
Дроссель
Дроссель состоит из двух отдельных обмоток, намотанных на один и тот же сердечник в противоположных направлениях. Он используется для блокировки высокочастотного тока, в то время как он позволяет постоянный ток и переменный ток с низкой частотой.
Понижающий трансформатор
Понижающий трансформатор — это тип трансформатора, который преобразует высокое первичное напряжение в низкое вторичное. Он также преобразует низкий первичный ток в высокий вторичный ток. Понижающий трансформатор имеет меньшее количество витков во вторичной обмотке, чем в первичной. Преобразование зависит от коэффициента трансформации трансформатора.
Повышающий трансформатор
Повышающий трансформатор преобразует низкое первичное напряжение в высокое вторичное. Он также преобразует высокий первичный ток в низкий первичный ток. Он в основном используется для линейной передачи, чтобы уменьшить потери в линии, возникающие в линии передачи, а также для удовлетворения требований к напряжению в цепи. У него меньше первичных витков, чем вторичных витков.
Трансформатор с центральным отводом
Трансформатор с центральным отводом имеет точку ответвления в центре вторичной обмотки, что позволяет нам получить доступ к половине числа витков вторичной обмотки. Напряжение между центральной точкой ответвления и любым концом обмотки составляет половину напряжения полной обмотки.
Трансформатор с полярностью обмотки
Полярность обмотки трансформатора обозначается точками. если ток входит в первичную пунктирную клемму, напряжение, индуцированное во вторичной пунктирной клемме, будет положительным. Если ток покидает первичную пунктирную клемму, напряжение, индуцированное во вторичной пунктирной клемме, будет отрицательным. Они в основном используются для параллельного подключения трансформаторов для увеличения их мощности.
Трехобмоточный трансформатор
Помимо первичной и вторичной обмотки, существует еще одна обмотка, называемая третичной обмоткой, поэтому она известна как трехобмоточный трансформатор. Не путайте это с 3-фазным трансформатором, потому что 3-фазный трансформатор имеет только 2 обмотки, то есть первичную и вторичную. Третичная обмотка используется для обеспечения реактивной мощности, где это необходимо, или для питания вспомогательной нагрузки с различными уровнями напряжения и мощности.
Автотрансформатор
Трансформатор такого типа имеет только одну катушку. Витки катушки разделены в фиксированной пропорции, которая действует как первичная и вторичная одновременно. между катушкой и вторичным напряжением отсутствует электрическая изоляция, что является результатом как самоиндукции, так и электропроводности. Небольшой размер, более низкая стоимость и высокая эффективность являются основными преимуществами автотрансформатора.
Однофазный автотрансформатор
Этот символ SLD обозначает однофазный автотрансформатор. Он имеет только одну обмотку, которая используется одним и тем же фазным проводом. Есть две входные клеммы, а также две выходные клеммы, взятые из одной катушки. Они используются для однофазных приложений.
Переменный автотрансформатор
Переменный автотрансформатор, также известный как Variac, имеет скользящую щетку, которая непрерывно перемещается по обмотке, увеличивая или уменьшая коэффициент трансформации трансформатора. Напряжение во вторичной обмотке меняется из-за изменения коэффициента трансформации.
Автотрансформатор с железным сердечником
Этот символ обозначает автотрансформатор, обмотка которого намотана на сердечник из железа. Железный сердечник увеличивает магнитный поток, что увеличивает самоиндукцию между витками.
Трехфазный трансформатор напряжения
Этот символ обозначает трехфазный трансформатор напряжения. Он состоит из 6 обмоток, намотанных на один сердечник. На каждой стороне по 3 обмотки, то есть первичная и вторичная. Однако обмотки могут быть соединены в любой из этих двух наиболее распространенных конфигураций звезда или треугольник.
Трехфазный трансформатор, соединенный звездой
Первичная и вторичная обмотки такого трехфазного трансформатора соединены вместе в звезду или звезду. Конфигурация «звезда» представляет собой 4-проводную 3-фазную систему с нейтральным выводом.
3-фазный трансформатор – асинхронный регулятор
Индукционный регулятор представляет собой электрическую машину переменного тока, аналогичную асинхронному двигателю, используемую для обеспечения постоянного переменного напряжения. Первичная и вторичная обмотки соединены последовательно. Его выходное напряжение зависит от коэффициента трансформации, и он может обеспечивать постоянное напряжение в диапазоне от 0 до максимального выходного напряжения.
3 однофазных трансформатора, соединенных звездой/звездой
Этот символ используется для трех однофазных трансформаторов, первичная и вторичная обмотки которых соединены звездой. Конфигурация звезды получается путем объединения одного конца всех трех обмоток в нейтральную точку.
Трехфазный автотрансформатор, соединенный звездой
Этот символ означает, что конфигурация звезды представляет собой трехфазный автотрансформатор. В трехфазном автотрансформаторе всего три обмотки, которые действуют как первичная и вторичная обмотки. Может быть несколько точек ответвления для переменного вторичного напряжения.
3-фазный трансформатор, соединенный звездой-треугольником
Также известный как 3-фазный трансформатор звезда-треугольник (или звезда/треугольник) представляет собой 3-фазный трансформатор, первичная обмотка которого соединена вместе по схеме звезда или звезда, а вторичная обмотка подключен по схеме треугольник. Он преобразует трехфазную трехпроводную систему в трехфазную четырехпроводную. вторичная обмотка соединена звездой или звездой. Он преобразует 4-проводную (трехфазную) систему в 3-проводную (трехфазную) систему.
3-фазный трансформатор, соединенный по схеме звезда-треугольник, с переключателем ответвлений
Этот символ обозначает 3-фазный трансформатор, соединенный по схеме звезда-треугольник с переключателем ответвлений. Переключатель ответвлений используется для регулирования выходного напряжения путем изменения коэффициента трансформации трансформатора. Устройство РПН переключается между многими точками ответвления, обеспечивая переменное передаточное отношение.
3-фазный трансформатор, соединенный звездой/звездой, с точками подключения
Это трехфазный трансформатор, соединенный по схеме «звезда-звезда», с несколькими точками ответвления для переменного напряжения. Каждая точка подключения обеспечивает фиксированное выходное напряжение в зависимости от соотношения витков относительно первичной обмотки.
3-фазный трансформатор, соединенный звездой-зигзагом
Первичная обмотка такого типа 3-фазного трансформатора соединена звездой или звездой, а вторичная обмотка соединена зигзагом или звездой. Каждая фаза зигзагообразного трансформатора состоит из двух половинок. Зигзагообразная конфигурация обеспечивает нейтраль для заземления или питания однофазной нагрузки.
Ниже приведен список символов однолинейного трансформатора.
Родственные электрические и электронные символы:
- Основные электрические и электронные символы
- Символы двигателей
- Символы генератора и генератора переменного тока
- Обозначения резисторов
- Обозначения конденсаторов
- Символы индуктора
- Символы предохранителей и автоматических выключателей
- Символы переключателей и кнопок
- Символы реле
- Символы диодов
- Транзистор, MOSFET и IGFET Обозначения
- Символы тиристора, диака и симистора
- Электронные логические схемы и символы программирования
- Символы цифровых логических элементов
- Символы цифровых триггеров и защелок
- Символы электронных фильтров
Однолинейная электрическая схема — Часть вторая ~ Ноу-хау в области электротехники
В предыдущем разделе « Однолинейная электрическая схема — Часть первая » я перечислил типы электрических схем, с которыми может иметь дело любой инженер-электрик. Это были следующие типы:
- Блок-схемы
- Принципиальные схемы
- Графические диаграммы
- Схемы подключения
- Однолинейные диаграммы
- Другие типы диаграмм
Сегодня я продолжу объяснение других типов электрических схем следующим образом.
5- Однолинейная схема
Однолинейная схема представляет собой принципиальную схему, где «однолинейная» схема представляет три фазы трехфазной системы питания. В дополнение к отображению номиналов и размеров электрооборудования и проводников цепи, правильно нарисованная однолинейная схема также покажет электрически правильное распределение мощности относительно тока, протекающего от источника питания к нижестоящим нагрузкам или щитам.
Важность однолинейных схем:
- Используется для анализа электрической системы здания,
- Обслуживающий персонал зданий и электрики полагаются на однолинейные схемы, чтобы показать им путь вокруг электрической системы,
- Неточность в этой документации и отсутствие регулярного обновления однолинейных схем, поскольку электрические системы неизбежно растут с течением времени, часто приводят к увеличению времени простоя при возникновении системных сбоев,
- Руководители объектов могут использовать информацию, содержащуюся в однолинейных диаграммах, для значительного повышения эффективности обслуживания,
- Однолинейная схема дает несколько преимуществ объекту, который она описывает, в частности: выявление возможных проблемных мест, улучшенное соответствие требованиям безопасности и повышенная безопасность персонала.
Построение Однолинейных схем:
- Однолинейная схема представляет собой упрощенное представление трехфазной энергосистемы; Вместо представления каждой из трех фаз отдельной линией или клеммой представлен только один проводник.
- Электрические элементы, такие как автоматические выключатели, трансформаторы, конденсаторы, шины и проводники, показаны стандартными схематическими символами.
- Элементы на схеме не отражают физические размеры или расположение электрооборудования.
- На однолинейных схемах питания компоненты обычно располагаются в порядке убывания уровней напряжения. Самая высокая составляющая напряжения показана в правом верхнем углу рисунка. Чтобы выяснить, как питание подается на компонент, начните с компонента и проследите поток энергии в обратном направлении по чертежу. Этот метод будет наиболее полезен при поиске правильного автоматического выключателя, чтобы изолировать компонент для обслуживания
- Вы можете читать однолинейную диаграмму сверху вниз или слева направо на диаграмме.
На однолинейной схеме представлена следующая информация:
- Типовые обозначения производителей и номинальные характеристики устройств.
- Соотношения трансформаторов тока и мощности, отводы для использования в многоступенчатых трансформаторах и соединения двухступенчатых трансформаторов.
- Номинальные соединения обмоток силового трансформатора по схеме «звезда» и «треугольник»
- Номинальные параметры автоматического выключателя в вольтах и амперах.
- Номинал отключения, тип и количество катушек отключения на автоматических выключателях.
- Номинальные параметры выключателей и предохранителей в вольтах и амперах.
- Функция реле.
- Размеры, тип и количество входящих и исходящих кабелей.
- Напряжение, фаза и частота входных и выходных цепей. Доступные токи короткого замыкания и заземления в системе энергокомпании, а также тип используемого заземления.
- Точки измерения и тип измерения.
- Величина нагрузки на все фидеры.
Разработка однолинейной схемы (согласно IEEE и ANSI)
Чтобы ознакомиться с методом однолинейной разработки ANSI и IEEE, вы должны знать следующие элементы:
A- Сокращения, используемые для основных Счетчики:
Рис. (1): Сокращения, используемые для основных счетчиков |
Сокращения, используемые для обозначения основных счетчиков, приборов и других устройств (не включая реле, которые перечислены на рис. 2), перечислены в рис.1 выше.
B- ANSI Стандартные функции устройства Номера
Рис. номер (см. рис. 2 ), который размещается рядом с символом устройства или внутри него на всех схемах подключения и монтажных чертежах, чтобы можно было легко определить его функцию и работу.
При создании однолинейной схемы используются три этапа (согласно IEEE и ANSI) :
1- Preliminary One-Line Diagram
Используя данные однолинейной схемы, проектировщик выполнит некоторые расчеты короткого замыкания следующим образом:
Примечание: расчеты, выполненные в соответствии со ссылкой на (ANSI C37.010: Руководство по применению высоковольтных автоматических выключателей переменного тока, рассчитанных на основе симметричного тока), определяют только номинальные параметры автоматических выключателей среднего и высокого напряжения.
2- Частично развернутая однолинейная схема
|