Тп однолинейная схема: Однолинейная схема трансформаторной подстанции: характеристика

Однолинейная схема трансформаторной подстанции: характеристика

Силовой

Автор Andrey Ku На чтение 3 мин Опубликовано

При проектировке любой трансформаторной подстанции необходимо сделать её безопасной для окружающих. Выбор схемы и составляющих основывается на общем количестве жителей и необходимом количестве электроэнергии.

Самой распространенной видом является однолинейная схема трансформаторной подстанции.

Содержание

  1. Что такое однолинейная схема?
  2. Элементы, которые присутствуют в схеме
  3. Выбор силового трансформатора
  4. Как происходит создание однолинейной схемы трансформатора
  5. Альтернативный метод

Что такое однолинейная схема?

В данном виде понятие однолинейная схема включает в себя то, что она состоит только из линий, которые обозначены как трехфазные или двухфазные. На этой схеме обозначается количество вводов, отдельные устройства-распределители (РУ), и возможное количество людей, которые потребляют электроэнергию. Также на ней должны изображаться все параметры сети, установленные мощности всего объекта.

Элементы, которые присутствуют в схеме

К составляющим подстанции относят:

  • Разрядник. При помощи этого устройства уменьшаются колебания напряжения на линии, которая входит. Происходит это из-за отражения импульсов электричества в землю или отведенный контур.
  • Масляные выключатели. Элементы, с помощью которых сеть расцепляется. Контакты выключателей постоянно расположены в масле из минералов, что повышает безопасность. Смесь необходима для создания изоляции и снижения электрических дуг.
  • Реактор. Катушка из меди с удаленным сердечником из стали. С помощью неё уменьшается вероятность короткого замыкания. Еще один плюс – экономия на оборудовании, благодаря высокому уровню защиты. Снижает возможность перегрузки однолинейной схемы трансформатора.
  • Расцепитель. Устройство, которое отключает питание подстанции в экстренной ситуации. Зачастую устанавливают два, на случай если первый откажет.
  • Силовой трансформатор. Главное устройство во всей установке. Во многом зависит от требований, которые должна выполнить подстанция.

Выбор силового трансформатора

При выборе силового трансформаторного устройства необходимо обратить внимание на его технические характеристики и стоимость. Это влияет на создания схемы трансформаторной подстанции.

Оптимальным вариантом для однолинейной схемы тп является трехфазный, трехобмоточный силовой трансформатор, с функцией понижения. Данный выбор строится на температурном показателе, при котором он будет использован и регулировке напряжения.

Как происходит создание однолинейной схемы трансформатора

Выбор той или иной схемы определяется по типу тяговой подстанции. Выделяют следующие виды:

  • Опорная;
  • Промежуточная;
  • Тупиковая.

Исходя из этого, происходит выбор типа подстанции, определения класса РУ (высшее, среднее или низшее), количество основных трансформаторов, которые обеспечивают связь устройств-распределителей, достаточное количество линий потребления.

Зачастую такая схема представлена в виде мостика, в котором присутствует выключатель в линии цепей.

Однолинейная схема трансформаторной подстанции должна обеспечить бесперебойную работу электросети, удобство эксплуатации и ремонта, безопасность местных жителей, обоснованное расположение оборудования и автоматизацию коммутации в условиях экстренной ситуации. Грамотное составление схемы обеспечивает быстроту и точность ремонтных работ.

При использовании подстанции с тяговой стороны выполняют с секцинированием двух шин-разделителей, используя два провода. И обеспечивают дополнительный запас между рычагом и запасной шиной. Секционирование шин.

Альтернативный метод

Бывают случаи, когда такой метод не подходит. Тогда используется однолинейная схема тп с двумя трансформаторами, соединение между которыми параллельно. В таком случае при вводе используют специальный прибор, который разводит входящие линии. Для этого используют обычную шину либо переносной провод из шин.

После создания схемы первым делом происходит установка разрядника. После него устанавливают расцепитель. Далее монтируют предохранитель и сам трансформатор. В конце происходит установка дополнительного расцепителя и общего рубильника, для использования ручного режима.

После предохранителя необходимо вмонтировать трансформаторы, при помощи которых напряжение становится 0,4 кВ. От этой конструкции делается отвод к нейтрали всей подстанции и на провода фаз. Последние подключаются к узлу распределения и далее к потребителям.

window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-53’, blockId: ‘R-A-1361476-53’ })})»+»ipt>»;
cachedBlocksArray[275941] = «window. yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-61’, blockId: ‘R-A-1361476-61’ })})»+»ipt>»;
cachedBlocksArray[275937] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-60’, blockId: ‘R-A-1361476-60’ })})»+»ipt>»;
cachedBlocksArray[275936] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-59’, blockId: ‘R-A-1361476-59’ })})»+»ipt>»;
cachedBlocksArray[275933] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-58’, blockId: ‘R-A-1361476-58’ })})»+»ipt>»;
cachedBlocksArray[275932] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-57’, blockId: ‘R-A-1361476-57’ })})»+»ipt>»;
cachedBlocksArray[275931] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-56’, blockId: ‘R-A-1361476-56’ })})»+»ipt>»;
cachedBlocksArray[275930] = «window. yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-55’, blockId: ‘R-A-1361476-55’ })})»+»ipt>»;
cachedBlocksArray[279590] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-51’, blockId: ‘R-A-1361476-51’ })})»+»ipt>»;
cachedBlocksArray[275939] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-49’, blockId: ‘R-A-1361476-49’ })})»+»ipt>»;
cachedBlocksArray[275935] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-47’, blockId: ‘R-A-1361476-47’ })})»+»ipt>»;
cachedBlocksArray[275929] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-45’, blockId: ‘R-A-1361476-45’ })})»+»ipt>»;
cachedBlocksArray[284875] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-40’, blockId: ‘R-A-1361476-40’ })})»+»ipt>»;
cachedBlocksArray[275942] = «window. yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-39’, blockId: ‘R-A-1361476-39’ })})»+»ipt>»;
cachedBlocksArray[275934] = «window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-1361476-17’, blockId: ‘R-A-1361476-17’ })})»+»ipt>»;

Главные схемы электрических соединений подстанций

Електроенергетика мережi, обладнання

Деталі
Категорія: Справка
  • схеми
  • КРП

В современных условиях для обеспечения надежности и экономичности электроснабжения потребителей необходима совместная работа большого числа электростанций, подстанций и связывающих их электрических сетей разных напряжений. Однако при этом электрические схемы станций и подстанций должны обеспечивать соединение их отдельных элементов достаточно просто, надежно и удобно. В условиях эксплуатации подстанций возникает необходимость изменения схемы при выводе оборудования в ремонт, ликвидации аварий. Чтобы можно было производить эти изменения электрических схем, их элементы — трансформаторы, шины распределительных устройств (РУ), воздушные и кабельные линии — соединяют друг с другом посредством коммутационных аппаратов.
Главной схемой электрических соединений или схемой первичной коммутации называется схема электрических соединений основного электрооборудования, к которому относятся трансформаторы силовые и измерительные, реакторы, коммутационные аппараты и соединяющие их проводники. Для главных схем подстанций определяющими факторами являются местоположение подстанции в энергосистеме и ее назначение, мощность, перерабатываемая на подстанции и проходящая через нее транзитом, количество и мощность трансформаторов и отходящих линий, уровни их напряжений, категории потребителей, которые питаются по этим линиям.

По способу начертания главные схемы подстанций подразделяются на многолинейные, на которых показываются все фазы электроустановки и нулевой провод, и однолинейные, на которых изображается только одна фаза, остальные ввиду их аналогичности не показываются. Графическое изображение однолинейных схем значительно проще, повышается наглядность и запоминаемость таких схем. Однолинейные схемы составляют для всей электроустановки, те участки, схемы, где по фазам есть отличия имеют многолинейное изображение.
Выбранная схема при выполнении электроустановки должна обеспечивать ряд условий:

обеспечивать надежность электроснабжения потребителей;
осуществлять эксплуатацию с минимальными затратами средств и расходом материалов;

обеспечивать безопасность и удобство обслуживания;
исключать возможность ошибочных операций персоналом в процессе срочных переключений.

Выполнение последнего условия затрудняется при очень сложной схеме электроустановки, однако значительное упрощение схемы может вызвать трудности для выполнения первого условия в отношении надежности электроснабжения. Железнодорожные потребители в основном относятся к первой и второй категориям, и для их питания используют чаще трансформаторные подстанции с двумя трансформаторами, один из которых может быть резервным. Для электроснабжения потребителей третьей категории применяют схемы однотрансформаторных подстанций.

Рис. 1. Схема однотрансформаторной подстанции с первичным напряжением 10 кВ

Однолинейная схема однотрансформаторной подстанции с первичным напряжением 10 кВ и вторичным напряжением 0,4 кВ. Подстанция (рис. 1) получает питание по воздушной линии 10 кВ. На вводе подстанции W установлен разъединитель QS и предохранитель FUX, который защищает трансформатор Т от токов КЗ, длительных перегрузок, опасных для трансформатора. От атмосферных перенапряжений, набегающих на подстанцию по воздушной линии, она защищается разрядником FV. РУ-0,4 кВ имеет одинарную систему сборных шин, на которую напряжение подается от трансформатора Т по вводу. На вводе установлен рубильник S{, предохранитель FU2 и трансформатор тока ТА. Так как трансформаторы тока могут устанавливаться не на всех фазах, то эта часть схемы показана в трехфазном изображении во избежание неясностей. Нулевой провод от нейтрали трансформатора до нейтральной шины N показывается отдельно. От сборных шин 0,4 кВ отходят линии потребителей, на которых установлены рубильники (пакетные выключатели) S2-S5 и предохранители FU1-FU6. Конструкция такой подстанции показана на рис. Как видно на рис. 1, схема подстанции очень проста, ее элементы не резервируются, и в случае отказа или повреждения любого из них часть потребителей или все (при повреждении трансформатора) остаются без электроэнергии. Такой недостаток в значительной степени устраняется при использовании подстанций с двумя трансформаторами.
Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 10 кВ и вторичным напряжением 0,4 кВ представлена на рис. 2. В РУ-10 кВ подстанции принята одинарная секционированная на две секции двумя разъединителями QS1 и QS4 система сборных шин. Это позволяет работать на одной секции без отключения другой. Вводы подстанции W2 и IVр которые снабжают электроэнергией потребители второй и третьей категорий, для удешевления и упрощения обслуживания могут выполняться на выключателях нагрузки QW1 и QW4 с заземляющими ножами. На отходящих линиях Wt и W4 и присоединениях понижающих трансформаторов устанавливают выключатели нагрузки QWV Q W2, Q W5, QWb в комплекте с предохранителями FU2, FUV FU4, FUy При этом предохранители целесообразно устанавливать перед выключателями нагрузки, считая по направлению передачи электроэнергии. На вводах применяются выключатели нагрузки ВНЗ- 16 с заземляющими ножами, на отходящих линиях и трансформаторах — ВНПЗ-17. Для учета электроэнергии, отпускаемой потребителям по линиях W] и W4, предусмотрены счетчики, подключаемые к трансформаторам тока ТА{ и ТА , и к трансформаторам напряжения TV] и TV2, которые подключаются к шинам через разъединители QS2 и QSs с заземляющими ножами типа РВЗ-10. Пунктиром показана блокировочная связь разъединителей и их заземляющих ножей, которая не позволяет включать разъединитель при включенном заземляющем ноже и включать заземляющий нож при включенном разъединителе. Защищаются от токов КЗ 7У, и TV2 предохранителями FUl и FU6. Заземление каждой секции сборных шин предусматривается заземляющими разъединителями QSX и QSb типа РВ-10.

Рис. 2. Схема двухтрансформаторной подстанции с первичным напряжением 10 кВ

Рис. 3. Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ

Рис. 3. Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ

Пой наличии воздушных линий 10 кВ должна быть предусмотрена установка разрядников РВО-10, подключаемых к секциям шин через разъединители QS2 и QSy распределительное устройство 0,4 кВ выполняется из щитов серии Щ0-70, которые в зависимости от назначения комплектуются различными аппаратами, рассчитанными на широкий диапазон токов. В РУ-0,4 кВ принята одинарная секционированная автоматическим выключателем SF2 и рубильниками S4 и S5 на две секции система сборных шин. Питание каждой секции осуществляется от своего трансформатора Г, и Т2, подключенного к шинам через автоматические выключатели 5F, и SF3 и рубильники S2 и Sr К трансформаторам тока ТА4 и Т А1 подключаются амперметры и счетчики активной и реактивной энергии. При раздельной работе секций шин предусмотрено автоматическое включение резерва [ABP). , которое осуществляется включением межсекционного автоматического выключателя SF2 (нормально он отключен) при отключении трансформатора Г, или Т2. При отсутствии АВР секционирование выполняют рубильниками. Разрядники F Vx и F V2 типа РВН-0,5 для защиты изоляции трансформаторов и оборудования РУ-0,4 кВ от перенапряжения устанавливают только при наличии воздушных линий 0,4 кВ. В цепи каждого присоединения линий устанавливаются рубильники Sv Sy Sb, Sg и предохранители F U1 -FU]0 (возможно применение автоматических выключателей). К трансформаторам тока ТАЪ, TAS, ТА6, ТАН подключаются амперметры и, при необходимости, счетчики электроэнергии. Питание собственных нужд СН подстанции выполняется от специальной шины, на которую электроэнергия поступает по вводам 0,4 кВ от трансформаторов 7, и Т2.

Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 35 кВ представлена на рис. 3. Электроэнергия подается на подстанцию под двум вводам W2 и W3 от районной или тяговой подстанции и поступает на одинарную, секционированную выключателем Qs систему сборных шин РУ-35 кВ. На каждом вводе установлены многообъемные масляные выключатели q2 и q1 типа С-35М-630 со встроенными трансформаторами тока ТА4н ТА6типа ТВ-35. Для подключения счетчиков денежного расчета применяются трансформаторы тока ТА3 и ТА5 (комплект из Двух трансформаторов имеет один номер) типа ТФЗМ-35А. К линиям W2 и W1 выключатели Q2 и Q1 подключаются линейными разъединителями с двумя заземляющими ножами QS2 и QS3 типа РНДЗ-2-35 (РДЭ-2-35), а к секциям шин — шинными разъединителями QS6 и QS1 типа РНДЭ-1-35 (РДЗ-1-35). Секционный выключатель Q5 подключается к секциям шин с помощью секционных разъединителей QS9 и QS[Q типа РНДЗ-1-35 (РДЗ-1-35). Разъединители с двух сторон выключателя ввода или секционного позволяют обеспечить безопасность производства ремонтных работ на выключателях и трансформаторах тока.

В отдельных случаях от РУ-35 кВ получают питание смежные подстанции по линиям Wх и W4. Электроэнергия поступает на шины по вводам Wг и Wъ и часть ее транзитом без переработки передается другим подстанциям. На линиях W, и W4 установлено такое же оборудование как и на W 2 и Wъ.
К каждой секции РУ-35 кВ подключается понижающий трансформатор Г, и Т2 через выключатель Q6 и Q1 со встроенными трансформаторами тока ГЛ|0 и ТАи и разъединитель QSn и QSi3 с одним заземляющим ножом, позволяющим отделить выключатель от секции при ремонте.

Трансформаторы напряжения TVlnTV2 типа 3HOM-35 и разрядники FVl и FV2 типа РВС-35 присоединяются к секциям шин через разъединители QS[, и QSW которые имеют заземляющие ножи для заземления TV и FV при ремонте и ножи для заземления секций шин. Понижающие трансформаторы Г, и Т2 могут работать параллельно на шины РУ-10 кВ, раздельно (отключен секционный выключатель Ql2) или поочередно (один в работе, второй в резерве) с возможностью автоматического включения резервного (АВР) трансформатора.
Схема РУ-10 кВ предусматривает использование одинарной секционированной выключателем системы сборных шин. Размещают оборудование РУ в закрытых помещениях или шкафах наружной установки. В обоих случаях используют комплектные устройства, состоящие из шкафов или камер, в которых размещаются выключатели и трансформаторы тока. На рис. 3 приведена схема РУ-10 кВ с выключателями Qs — Qw установленными на выкатных тележках, что позволяет обходиться без разъединителей. На каждом присоединении РУ используются стационарные заземляющие ножи, обеспечивающие безопасность ведения работ внутри шкафов. От шин 10 кВ отходят четыре линии, питающие потребителей. Потребители первой категории для надежного электроснабжения получают питание по двум линиям, отходящим от разных секций шин. При отключении или повреждении одной линии или одной секции потребитель будет получать энергию по другой линии от второй секций. Одиночная линия может быть использована для питания потребителей второй или третьей категории. Питание потребителей первой категории по такой одиночной линии возможно, если имеется резервное питание от другого источника питания. Для питания потребителей собственных нужд: релейной защиты, автоматики, телемеханики, цепей управления и сигнализации, освещения и электрического отопления, подогрева оборудования в зимнее время, освещения, а также проведения ремонтных работ предусмотрена установка двух трансформаторов собственных нужд (ТСН) Г3 и Г4 мощностью 63-160 кВ А. и Q[(>. Трансформаторы тока ТАХ2 и ТАп используются для подключения релейных защит. Учет энергии, расходуемой на собственные нужды подстанции, ведется со стороны вторичного напряжения ТСН.

К секциям шин РУ-10 кВ присоединяются трансформаторы напряжения Т V3 и Т К4типа НТМИ-10, защищаемые предохранителями FUxhF U2 типа ПКТ-10, и разрядники FV3hFVa типа РВП-10, защищающие изоляцию РУ-10 кВ от перенапряжений. Трансформатор напряжения и разрядник одной секции размещаются на общей выкатной тележке. Секционирование шин выполняется с помощью двух шкафов: в одном установлен секционный выключатель Ql2 с трансформаторами тока ТАХ6; во втором — выдвижной элемент  Т, выполняющий роль разъединителя. При использовании понижающих трансформаторов мощностью до 4000 кВ-А и сравнительно небольшой мощности КЗ при напряжении 35 кВ и реже 110 кВ находят применение схемы с выхлопными предохранителями типа ПВТ.
Однолинейная схема комплектной однотрансформаторной подстанции с первичным напряжением 110 кВ представлена на рис. 4, а ее конструктивное выполнение -— на рис. 27. От линии электропередачи по вводу Wх электроэнергия напряжением 110 (35) кВ поступает на трансформатор Г, типа ТМН-2500/110, который защищается от токов КЗ предохранителем F £/, типа ПВТ-110 и разрядником F Vx типа РВС-110 от перенапряжений. Разъединитель QS типа РНДЗ-1-110/630 служит для отключения трансформатора Тх на холостом ходу при отключенном выключателе ввода РУ-10 кВ Qx и создания видимого разрыва цепи при ремонте и замене предохранителя FUr На одной фазе ввода W х установлена аппаратура высокочастотной связи, состоящая из заградительного реактора L R, не пропускающего высокочастотные токи связи за пределы линии, и конденсатора С, через который токи связи попадают на приемо-передающую аппаратуру.

Рис. 4. Схема комплектной однотрансформаторной подстанции с первичным напряжением 110 кВ

Нейтраль первичной обмотки трансформатора обычно заземляется разъединителем QS2 типа РНД-35 или заземлитель нейтрали ЗОН-110, при работе системы напряжением 110 кВ с изолированной нейтралью заземление осуществляется через разрядник F V2, состоящий из последовательно соединенных разрядников типа РВС-35 и РВС-15.
РУ-10 кВ имеет одинарную несекционированную систему сборных шин, от которой потребители получают электроэнергию по четырем линиям W2, Wy WA и Ws, на которых установлены выключатели, Qv Q4 и Qs типа ВМП-10 или ВКЭ-10. Для подключения релейных защит, счетчиков электрической энергии и других измерительных приборов на каждой линии и на вводе установлены трансформаторы тока TA1 — ТА3. Питание обмоток напряжения измерительных приборов и реле осуществляется от трансформатора напряжения Т V, подключаемого к сборным шинам через высоковольтный контакт пальцевого типа. Разрядник F V3, защищающий изоляцию оборудования РУ-10 кВ от перенапряжений располагается на одной с трансформатором напряжения TV выкатной тележке. Шины заземляются в процессе ремонтных работ на них стационарным заземляющим ножом QSG, расположенном в высоковольтном шкафу трансформатора напряжения.

Такие подстанции используются для питания потребителей второй и третьей категории. Питание потребителей первой категории может осуществляться от данной подстанции при наличии резервного питания от другого источника. При необходимости питания потребителей первой категории от одной подстанции, на ней необходимо устанавливать не менее двух трансформаторов, подключаемых к питающим линиям напряжением 35-220 кВ с помощью отделителей и короткозамыкателей. В районах с интенсивным гололедообразованием, где работа отделителей и короткозамыкателей недостаточно надежна, они заменяются выключателем.
Однолинейная схема РУ-110 (220) кВ концевой и ответвительной подстанций представлена на рис. 5. Питание на трансформаторы Г, и Т2 поступает от линии электропередачи по вводам Ж, и Wг, на которых установлены разъединители QS1 и QS2 типа РНДЗ-2-110 с дистанционными приводами типа ПДН-1. Между вводами выполняется перемычка с двумя разъединителями QS3 и QS4> QS3 имеет привод ПДН-1, QS4 с ручным приводом ПР-90. На первичной стороне трансформаторов Г, и Т2 установлены разъединители QS5 и QS6 такие же как на вводах, быстродействующие отделители QR\ и QR2, дополненные короткозамыкателями QNS и QNr. Встроенные трансформаторы тока ТА{ и ТАг необходимы для подключения амперметра и релейных защит. Наличие перемычки с разъединителем, имеющим дистанционное управление, позволяет обеспечить питание любого трансформатора по любому вводу или двух трансформаторов по одному вводу. Второй разъединитель перемычки QS4 с ручным приводом используется при ремонте QS3 для создания видимого разрыва цепи, Трансформатор Т2 остается в работе, получая электроэнергию по вводу W2. Разрядники FV1 и FF2 THna РВС-110 защищают изоляцию РУ-110 кВ от перенапряжений.

Рис. 5. Схема РУ-110 кВ концевой и ответвительной подстанций

Однолинейная схема РУ-110 (220) кВ проходной подстанции, включаемой в рассечку линии 110 (220) кВ, показана на рис. 6. РУ-110 кВ имеет ремонтную и рабочую перемычки между вводами. Рабочая перемычка с выключателем Q типа МКП-1 10М со встроенными трансформаторами тока Т А2 типа ТВ-110 и разъединителями QSs и QS6 типа РНДЗ-1-110, необходимыми для ремонта выключателя перемычки, используется для транзита электроэнергии энергосистемы. Разъединители QSi и QS2 ремонтной перемычки нормально отключены, включаются для обеспечения транзита электроэнергии при ремонте рабочей перемычки. К трансформаторам тока Т АХ типа ТФЗМ-110 (220) подключаются приборы и реле, нормально получающие питание от ТА2, при переводе транзита энергии через ремонтную перемычку. Трансформаторы напряжения ТУ, и TV2типа НКФ-110 (220) используются для питания обмоток напряжения измерительных приборов и реле. Схема РУ между рабочей перемычкой и трансформаторами такая же как у рассмотренной выше ответвительной или концевой подстанции.

Рис. 6. Схема РУ-110 кВ проходной подстанции

  • Попередня
  • Наступна

Близьки публікації

  • Главные схемы электростанций и подстанций
  • Конструкции распределительных устройств
  • Техническое обслуживание пусковой и распределительной аппаратуры
  • Принципиальные схемы газовой защиты силового трансформатора
  • Принципиальная схема нормального режима работы электрической сети

Copyright © 2007 — 2022 Електроенергетика При цитуванні — посилання є обов`язковим (в інтернеті — активне гіперпосилання).

Наверх

Как подключить HS200 к вашей электросети

Прежде чем мы начнем, обратите внимание, что ваша розетка подходит:

Как я могу установить HS200, если моя розетка содержит только 3 провода?

Для HS200

Сначала давайте узнаем о линии электропередач. Как известно, передача электроэнергии обычно осуществляется по трехфазной четырехпроводной схеме.

Линия под напряжением/нагрузкой: Будет генерироваться напряжение (100 ~ 240 В) между линией A/B/C и линией N, мы называем линии A, B и C линией под напряжением/нагрузкой.

Нейтральная линия: Из-за трехфазного равновесия (линии A, B и C соединены вместе на линии N), через линию N не протекает ток, мы называем ее нейтральной линией.

Линия заземления: Поскольку земля является хорошим проводником, мы используем линию для соединения корпуса устройства/электроприбора с землей, чтобы избежать опасности поражения электрическим током, мы называем линию линией заземления.

Как правило, электрическая линия обеспечивает две линии под напряжением, одну нейтральную линию и одну линию заземления для установки розетки или выключателя.

Теперь давайте установим интеллектуальный коммутатор TP-Link на вашу электрическую линию.

Примечание: Если вы не знакомы с основными работами с электричеством, не устанавливайте выключатель самостоятельно, а вызовите профессионального электрика , чтобы помочь вам.

Шаг 1 Подтвердите, соответствует ли ваша электрическая линия следующим электрическим требованиям:

  1. Нейтральная линия . (Если в настенной коробке нет нейтральной линии, ОСТАНОВИТЕ установку выключателя и проконсультируйтесь с профессиональным электриком ).
  2. Однополюсный переключатель (умный переключатель TP-Link не является трехпозиционным переключателем).

3. Поскольку интеллектуальный коммутатор TP-Link необходимо настраивать через Wi-Fi, его можно устанавливать только на неметаллических лицевых панелях и в сухих помещениях.

Если вы выполнили требования к электропитанию, выполните приведенные ниже инструкции по электромонтажу.

Шаг 2: Отключите питание на автомате защиты, который управляет выключателем освещения. Используйте тестер напряжения, чтобы убедиться в отсутствии напряжения.

Шаг 3 Снимите лицевую панель и выключатель освещения, затем определите Фаза/Нагрузка , Нейтраль и Заземление линии.

Шаг 4 Подсоедините проводку интеллектуального коммутатора с помощью прилагаемых разъемов следующим образом.

Соедините каждый из двух черные провода от переключателя к имеющимся линиям под напряжением через гайки для проводов и оберните изолентой гайки для проводов, чтобы убедиться, что медный проводник
полностью скрыт. Зеленый провод на выключателе (линия заземления) к Линия заземления , Белый провод на выключателе (нейтральная линия) на Нейтральная линия .

Примечание: Следующие сценарии подключения могут быть опасными или незаконными.

  1. Если Нейтральная линия недоступна. Не устанавливать!
  2. Никогда не подключайте линию Neutral к любым линиям Switch .

Шаг 5 Установите интеллектуальный коммутатор на настенную коробку с помощью двух прилагаемых винтов и защелкните прилагаемую настенную пластину или прикрепите существующую.

Примечание: Входящая в комплект настенная панель предназначена только для установки в одинарной коробке.

Шаг 6 Восстановите питание интеллектуального переключателя на автоматическом выключателе и наслаждайтесь.

Чтобы узнать больше о каждой функции и конфигурации, перейдите в Центр загрузки , чтобы загрузить руководство для вашего продукта.

Полезен ли этот FAQ?

Ваш отзыв помогает улучшить этот сайт.

Что вас беспокоит в этой статье?

  • Неудовлетворен продуктом
  • Слишком сложно
  • Запутанное название
  • ко мне не относится
  • Слишком расплывчато
  • Другое

Мы будем рады вашим отзывам. Пожалуйста, сообщите нам, как мы можем улучшить этот контент.

Спасибо

Мы ценим ваши отзывы.
Нажмите здесь, чтобы связаться со службой технической поддержки TP-Link.

Основы системы передачи электроэнергии

Электроэнергия после выработки на генерирующих станциях (ТЭЦ, ТЭЦ, АЭС и др.) передается потребителям для использования. Это связано с тем, что генерирующие станции обычно располагаются вдали от центров нагрузки. Сеть, которая передает и доставляет энергию от производителей к потребителям, называется 9.0003 система передачи . Эта энергия может передаваться в форме переменного или постоянного тока. Традиционно переменный ток используется уже много лет, но быстро набирает популярность HVDC (высоковольтный постоянный ток).

Типичная однолинейная диаграмма, представляющая поток энергии в данной энергосистеме, показана ниже:

Электроэнергия обычно (или обычно) вырабатывается напряжением 11 кВ на электростанциях в Индии и Европе. Хотя в некоторых случаях напряжение генерации может быть выше или ниже. Генераторные машины, которые будут использоваться на электростанциях, доступны от 6 кВ до 25 кВ от некоторых крупных производителей. Это генерирующее напряжение затем повышается до 132 кВ, 220 кВ, 400 кВ или 765 кВ и т. д. Повышение уровня напряжения зависит от расстояния, на которое должна передаваться мощность. Чем больше расстояние, тем выше будет уровень напряжения. Повышение напряжения заключается в уменьшении I 2 R потери в при передаче мощности (при повышении напряжения ток уменьшается на относительную величину, так что мощность остается постоянной, и, следовательно, потери I 2 R также уменьшаются). Этот этап называется первичной передачей .

Напряжение понижено на приемной станции до 33кВ или 66кВ. Вторичные линии передачи выходят из этой приемной станции для подключения подстанций, расположенных вблизи центров нагрузки (городов и т. д.).

Напряжение снова снижено до 11 кВ на подстанции. Крупные промышленные потребители могут питаться напряжением 11 кВ напрямую от этих подстанций. Также от этих подстанций выходят фидеры. Этот этап называется первичным распространением .

Фидерные линии представляют собой воздушные линии или подземные кабели, которые передают энергию близко к точкам нагрузки (конечным потребителям) на расстояние до нескольких километров. Наконец, напряжение снижается до 415 вольт с помощью установленного на столбе распределительного трансформатора и подается к распределителям. Питание конечных потребителей осуществляется по сервисной магистрали от дистрибьюторов. 9Система вторичного распределения 0003 состоит из фидеров, распределителей и обслуживающей сети.

Различные типы систем передачи

  1. Однофазная система переменного тока
    • Однофазная, двухпроводная
    • одна фаза, два провода с заземлением посередине
    • одна фаза, три провода
  2. Двухфазная система переменного тока
    • Двухфазная, трехпроводная
    • двухфазный, четырехпроводный
  3. Трехфазная система переменного тока
    • трехфазный, трехпроводной
    • трехфазный, четырехпроводный
  4. Система постоянного тока
    • Двухпроводная система постоянного тока
    • Два провода постоянного тока с заземленной средней точкой
    • Три провода постоянного тока

Передача электроэнергии также может осуществляться по подземным кабелям. Но строительство подземной линии электропередачи обычно обходится в 4-10 раз дороже, чем строительство воздушной линии эквивалентного расстояния. Однако следует отметить, что стоимость строительства подземных линий электропередачи сильно зависит от местных условий. Кроме того, стоимость требуемого материала проводника является одной из самых значительных затрат в системе передачи. Поскольку стоимость проводника является основной частью общей стоимости, ее необходимо учитывать при проектировании. Выбор системы передачи осуществляется с учетом различных факторов, таких как надежность, эффективность и экономичность. Обычно используется система воздушной передачи.

Основные элементы линии электропередачи

В силу экономических соображений для передачи электроэнергии широко применяется трехфазная трехпроводная контактная сеть. Ниже приведены основные элементы типичной энергосистемы.

  • Проводники: три для одноцепной линии и шесть для двухцепной линии.