интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Термопара ТХА, ТХК, хромель-алюмель, ТПП: принцип работы. Термопара схема подключения


описание, устройство, схема :: SYL.ru

Принцип действия и устройство термопары предельно просты. Это обусловило популярность данного прибора и широкое применение во всех отраслях науки и техники. Термопара предназначается для измерения температур в широком диапазоне – от -270 до 2500 градусов по Цельсию. Устройство вот уже не одно десятилетие является незаменимым помощником инженеров и ученых. Работает надежно и безотказно, а показания температуры всегда правдивые. Более совершенного и точного прибора просто не существует. Все современные устройства функционируют по принципу термопары. Работают в тяжелых условиях.

Назначение термопары

Данное устройство преобразовывает тепловую энергию в электрический ток и позволяет измерять температуру. В отличие от традиционных ртутных градусников, способно работать в условиях как экстремально низких, так и экстремально высоких температур. Данная особенность обусловила широкое применение термопары в самых разнообразных установках: промышленные металлургические печи, газовые котлы, вакуумные камеры для химико-термической обработки, духовой шкаф бытовой газовой плиты. Принцип работы термопары всегда остается неизменным и не зависит от того, в каком устройстве она монтируется.

От надежной и бесперебойной работы термопары зависит работа системы аварийного отключения приборов в случае превышения допустимых лимитов температур. Поэтому данное устройство должно быть надежным и давать точные показания, чтобы не подвергать риску жизнь людей.

Принцип действия термопары

Термопара имеет три основных элемента. Это два проводника электричества из разных материалов, а также защитная трубка. Два конца проводников (их еще называют термоэлектродами) спаяны, а два других подключаются к потенциометру (прибор для измерения температуры).

Если говорить простым языком, принцип работы термопары заключается в том, что спай термоэлектродов помещается в среду, температуру которой необходимо измерить. В соответствии с правилом Зеебека, возникает разность потенциалов на проводниках (иначе – термоэлектричество). Чем больше температура среды – тем более значимой является разница потенциалов. Соответственно, стрелка прибора отклоняется больше.

В современных комплексах измерения на смену механическому устройству пришли цифровые индикаторы температуры. Однако далеко не всегда новый прибор превосходит по своим характеристикам старые аппараты еще советских времен. В технических вузах, да и в научно-исследовательских учреждениях, и по сей день пользуются потенциометрами 20-30-летней давности. И они демонстрируют поразительную точность и стабильность измерений.

Эффект Зеебека

На данном физическом явлении основан принцип работы термопары. Суть заключается в следующем: если соединить между собой два проводника из разных материалов (иногда используются полупроводники), то по такому электрическому контуру будет циркулировать ток.

Таким образом, если нагревать и охлаждать спай проводников, то стрелка потенциометра будет колебаться. Засечь ток также может позволить и гальванометр, подключенный в цепь.

В том случае, если проводники выполнены из одного и того же материала, то электродвижущая сила не будет возникать, соответственно, нельзя будет измерить температуру.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

Материалы проводников

Принцип действия термопары основан на возникновении разности потенциалов в проводниках. Поэтому к подбору материалов электродов необходимо подходить очень ответственно. Различие в химических и физических свойствах металлов является основным фактором работы термопары, устройство и принцип действия которой основаны на возникновении ЭДС самоиндукции (разности потенциалов) в цепи.

Технически чистые металлы для применения в качестве термопары не подходят (за исключением АРМКО-железа). Обычно используются различные сплавы цветных и благородных металлов. Такие материалы имеют стабильные физико-химические характеристики, благодаря чему показания температуры всегда будут точными и объективными. Стабильность и точность – ключевые качества при организации эксперимента и производственного процесса.

В настоящее время наиболее распространены термопары следующих видов: E, J, K.

Термопара типа E

В качестве материалов для проводников используются константан и хромель. Изделия данного типа хорошо зарекомендовали себя по части надежности и точности показаний. Свидетельств тому – многочисленные положительные отзывы специалистов. Однако данный состав демонстрирует точность измерений лишь в положительном диапазоне температур до 600 градусов по Цельсию включительно.

Термопара типа J

По принципу работы термопара не отличается от предыдущей. Однако хромель уступил место технически чистому железу, что позволило существенно расширить диапазон рабочей температуры с сохранением стабильности показаний. Он составляет от -100 до 1200 градусов по Цельсию.

Термопара типа K

Это, пожалуй, самый распространенный и применяемый повсюду тип термопары. Пара хромель - алюминий отлично работает при температурах от -200 до 1350 градусов по Цельсию. Данный тип термопары отличается большой чувствительностью и фиксирует даже незначительный скачок температуры. Благодаря такому набору параметров, термопара применяется и на производстве, и для научных исследований. Но есть у нее и существенный недостаток – влияние состава рабочей атмосферы. Так, если данный вид термопары будет работать в среде CO2, то термопара будет давать некорректные показания. Данная особенность ограничивает применение устройств такого типа. Схема и принцип работы термопары остаются неизменными. Разница лишь в химическом составе электродов.

Проверка работы термопары

В случае выхода из строя термопары не подлежит ремонту. Теоретически можно, конечно, ее починить, но вот будет ли прибор после этого показывать точную температуру – это большой вопрос.

Иногда неисправность термопары не является явной и очевидной. В частности, это касается газовых колонок. Принцип работы термопары все тот же. Однако она выполняет несколько иную роль и предназначается не для визуализации температурных показаний, а для работы клапанов. Поэтому, чтобы выявить неисправность такой термопары, необходимо подключить к ней измерительный прибор (тестер, гальванометр или потенциометр) и нагреть спай термопары. Для этого не обязательно держать ее над открытым огнем. Достаточно лишь зажать его в кулак и посмотреть, будет ли отклоняться стрелка прибора.

Причины выхода из строя термопар могут быть разными. Так, если не надеть специальное экранирующее устройство на термопару, помещенную в вакуумную камеру установки ионно-плазменного азотирования, то с течением времени она будет становиться все более хрупкой до тех пор, пока не переломается один из проводников. Кроме того, не исключается и вероятность неправильной работы термопары из-за изменения химического состава электродов. Ведь нарушаются основополагающие принципы работы термопары.

Газовая аппаратура (котлы, колонки) также оснащается термопарами. Основной причиной выхода из строя электродов являются окислительные процессы, которые развиваются при высоких температурах.

В том случае, когда показания прибора являются заведомо ложными, а при внешнем осмотре не были обнаружены слабые зажимы, то причина, скорее всего, кроется в выходе из строя контрольно-измерительного прибора. В этом случае его необходимо отдать в ремонт. Если имеется соответствующая квалификация, то можно попытаться устранить неполадки самостоятельно.

Да и вообще, если стрелка потенциометра или цифровой индикатор показывают хоть какие-то «признаки жизни», то термопара является исправной. В таком случае проблема, совершенно очевидно, кроется в чем-то другом. И соответственно, если прибор никак не реагирует на явные изменения температурного режима, то можно смело менять термопару.

Однако прежде чем демонтировать термопару и ставить новую, нужно полностью убедиться в ее неисправности. Для этого достаточно прозвонить термопару обычным тестером, а еще лучше – померить напряжение на выходе. Только обычный вольтметр здесь вряд ли поможет. Понадобится милливольтметр или тестер с возможностью подбора шкалы измерения. Ведь разность потенциалов является очень маленькой величиной. И стандартный прибор ее даже не почувствует и не зафиксирует.

Преимущества термопары

Почему за столь долгую историю эксплуатации термопары не были вытеснены более совершенными и современными датчиками измерения температуры? Да по той простой причине, что до сих пор ей не может составить конкуренцию ни один другой прибор.

Во-первых, термопары стоят относительно дешево. Хотя цены могут колебаться в широком диапазоне в результате применения тех или иных защитных элементов и поверхностей, соединителей и разъемов.

Во-вторых, термопары отличаются неприхотливостью и надежностью, что позволяет успешно эксплуатировать их в агрессивных температурных и химических средах. Такие устройства устанавливаются даже в газовые котлы. Принцип работы термопары всегда остается неизменным, вне зависимости от условий эксплуатации. Далеко не каждый датчик другого типа сможет выдержать подобное воздействие.

Технология изготовления и производства термопар является простой и легко реализуется на практике. Грубо говоря – достаточно лишь скрутить или сварить концы проволок из разных металлических материалов.

Еще одна положительная характеристика – точность проводимых измерений и мизерная погрешность (всего 1 градус). Данной точности более чем достаточно для нужд промышленного производства, да и для научных исследований.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

www.syl.ru

Подключаем термопару к микроконтроллеру - Как подключить - AVR project.ru

 Термопары широко применяются там где необходимо точно померить высокие температуры, температуры вплоть до 2500°C. То есть там, где цифровые датчики бы сразу сдохли от перегрева, применяются термопары. Разновидностей термопар существует достаточно много, но самое большое распространение получили хромель-алюмелевые (тип К) термопары, из-за своей дешевизны и практически линейному изменению термоэдс. Этот вид термопар ставятся в водонагреватели и другие бытовые приборы с контролем температуры, их повсеместно используют для контроля температуры при плавке металла, с помощью этих термопар контролируется нагрев жала в паяльной станции. Поэтому будет весьма полезно познакомиться с ними поближе. 

 Термопара это два проводника из разных металлов и имеющих общую точку контакта (спай). В точке этого контакта возникает разность потенциалов. Эта разность потенциалов зовется термоэдс и напрямую зависит от температуры, в которой находится спай. Металлы подбираются таким образом, чтобы зависимость термоэдс от температуры нагрева была наиболее линейна. Это упрощает расчет температуры и сокращает погрешность измерений. 

  Так широко применяемые хромель-алюмелевые термопары имеют достаточно высокую линейность и стабильность показаний на всем диапазоне измеряемых температур. Ниже приведен график для хромель-алюмелевых термопар (тип К) показывающий, зависимость возникающей термоэдс от температуры спая (в конце статьи будет ссылка на график с большим разряшением):

 Таким образом значение термоэдс достаточно умножить на нужный коэффициент и получить температуру, не заморачиваясь с табличными значениями и аппроксимацией - один коэффициент на весь диапазон измерений. Очень просто и понятно.  Но встает вопрос о подключении термопары к микроконтроллеру. Понятно что если на выходе термопары напряжение, тогда задействуем АЦП, но разность потенциалов на выходе термопары слишком мала, чтобы уловить хоть что-то. Поэтому прежде его нужно увеличить, например, применив операционный усилитель.

 Берём стандартную схему неинвертирующего включения операционного усилителя:

Отношение входного и выходного напряжений описывается простой формулой:

Vout/Vin = 1 + (R2/R1)

 От значений резисторов обратной связи R1 и R2 зависит коэффициент усиления сигнала. Величину усиления сигнала нужно подбирать с учетом того, что будет использоваться в качестве опорного напряжения. 

 Допустим опорным будет напряжение питания микроконтроллера 5V. Теперь необходимо определится с диапазоном температур, которые собираемся измерять. Я взял пределом измерения 1000 °C. При этом значении температуры на выходе термопары будет потенциал примерно 41,3мВ. Это значение должно соответствовать напряжению в 5 вольт на входе АЦП. Поэтому операционник должен иметь коэффициент усиления не менее 120. В итоге родилась такая схема:

 В загашнике у меня нашлась давно собранная плата с этим операционником, собирал как предусилитель для микрофона, ее я и применил:

 Собрал на бредборде такую схему подключения двухстрочного дисплея к микроконтроллеру:

 

 Термопара тоже валялась без дела долгое время - она шла в комплекте с моим мультиметром. Спай закрыт в металлическую гильзу. 

Код  Bascom-AVR для работы с термопарой:

$regfile = "m8def.dat"$crystal = 8000000Dim W As Integer'подключение двухстрочного дисплеяConfig Lcdpin=Pin,Rs=Portb.0,E=Portd.7,Db4=Portd.6,Db5=Portd.5,Db6=Portb.7,Db7=Portb.6Config Lcd = 16 * 2Cursor OffCls'считывание значения с АЦП по прерыванию от таймераConfig Timer1 = Timer , Prescale = 64On Timer1 Acp'конфигурация АЦПConfig Adc = Single , Prescaler = Auto , Reference = AvccEnable InterruptsEnable Timer1DoClsRem Температура:Lcd "Teјѕepaїypa:"LowerlineLcd WWaitms 200Loop'работа с АЦПAcp:Start Adc                                  'запуск АЦПW = Getadc(1)W = W / 1.28                               'подгоняем замеры под действ. температуруReturnEnd

 Число 1,28 в знаменателе получил опытным путем, подгоняя значение считанное с АЦП в известное значение температуры.

 Коротко расскажу как это происходило у меня. В качестве эталона замера температуры выступил пар в кипящем чайнике. Для чистоты эксперимента сначала замерил температуру пара мультиметром, подсоединив к нему термопару. Удостоверившись в правильности показаний, замерил температуру уже новоиспеченным девайсом и подгоняя коэффициент деления, установил значение 100°C.

    

 После выставления первой контрольной точки, хорошо было бы повторить вышеописанное при другой известной температуре, но дальше экспериментировать не стал. В пламени зажигалки измерил ~700 °C (что похоже на правду), а вот при комнатной температуре девайс выдавал под 50°C, наверно дело в мусоре младших разрядов АЦП. Но думаю собрать, например, терморегулятор для паяльника вполне сгодится.

 

avrproject.ru

Термопары, термопреобразователи сопротивления - выбор, подключение, установка. Низкая цена

В данной статье приведены основные технические характеристики термопреобразователей сопротивления, ГОСТ 6651-94 (Общие технические требования и методы испытаний) и преобразователей термоэлектрических (далее термопары), ГОСТ 6616-94 (Общие технические условия, а также рекомендации по правильному выбору термопреобразователей, их установке, подключению и обслуживанию. 

(Также см. статью: Что такое температура? Как правильно измерять температуру? Что выбрать: термосопротивление или термопару? Советы по применению.) 

Термины и определения

Термоэлектрический эффект - генерирование термоэлектродвижущей силы (термо-ЭДС), возникающей из-за разности температур между двумя соединениями различных металлов или сплавов, образующих часть одной и той же цепи. 

Термопара - два проводника из разнородных материалов, соединенных на одном конце и образующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Соединение при измерении (рабочий конец для термопар) - соединение, подлежащее воздействию температуры, которую необходимо измерить.

Соединение при контроле (свободный конец для термопары) - соединение термопары, находящееся при известной температуре, с которой сравнивают измеряемую температуру.

Длина монтажной части - для термопреобразователей сопротивления и термопар с неподвижным штуцером или фланцем - расстояние от рабочего конца защитной арматуры до опорной плоскости штуцера или фланца; для термопреобразователей сопротивления и термопар с подвижным штуцером или фланцем, а также без штуцера или фланца - расстояние от рабочего конца защитной арматуры до головки, а при отсутствии ее - до мест заделки выводных проводников. 

Длина наружной части - расстояние от опорной плоскости неподвижного штуцера или фланца до головки. 

Длина погружаемой части - расстояние от рабочего конца защитной арматуры до места возможной эксплуатации при температуре верхнего предела измерения. 

Диапазон измеряемых температур - интервал температур, в котором выполняется регламентируемая функция термопреобразователя по измерению. 

Рабочий диапазон - интервал температур, измеряемых конкретным термопреобразователем и находящийся внутри диапазона измеряемых температур. 

Номинальное значение температуры применения - наиболее вероятная температура эксплуатации, для которой нормируют показатели надежности и долговечности. 

Показатель тепловой инерции - время, необходимое для того, чтобы при внесении термометра сопротивления или термопары в среду с постоянной температурой разность температур среды и любой точки внесенного в нее преобразователя стала равной 0,37 того значения, которое будет в момент наступления регулярного теплового режима. 

Допуск - максимально допустимое отклонение от номинальной зависимости сопротивления (термопреобразователя сопротивления) или ЭДС (термопары) от температуры, выраженное в градусах Цельсия. 

Чувствительный элемент (ЧЭ) - элемент термопреобразователя, воспринимающий и преобразующий тепловую энергию в другой вид энергии для получения информации о температуре. 

Измерительный ток термопреобразователя сопротивления - ток, вызывающий изменение сопротивления термопреобразователя сопротивления при 0°С не более 0,1% его номинального значения.

 

Термопреобразователи сопротивления, основные технические характеристики

 

  Тип ТС

Класс допуска

Допускаемое отклонение сопротивления от номинального значения при 0°С, %

Значение W100

Диапазон измеряемых температур, °С

Предел допускаемого отклонения сопротивления от НСХ, °С

Номинальное

Наименьшее допускаемое

Платиновый (ТСП)

А

0,05

1,3850

1,3910

1,3845

1,3905

-220…+850

±(0,15 + 0,002 |t|)

В

0,1

1,3850

1,3910

1,384

1,390

-220…+1100

±(0,3 + 0,005 |t|)

С

0,2

1,3850

1,3910

1,3835

1,3995

-100…+300

±(0,6 + 0,008 |t|)

Медный (ТСМ)

А

0,05

1,4260

1,4280

1,4255

1,4275

-50…+120

±(0,15 + 0,002 |t|)

В

0,1

1,4260

1,4280

1,4250

1,4270

-200…+200

±(0,25 + 0,0035 |t|)

С

0,2

1,4260

1,4280

1,4240

1,4260

-200…+200

±(0,5 + 0,0065 |t|)

 

Схемы соединений внутренних проводников термопреобразователя сопротивления с ЧЭ и их условные обозначения

 

При использовании схемы 2 (двухпроводная схема) сопротивление соединительных проводов термопреобразователя сопротивления не должно превышать 0,1% номинального значения сопротивления термопреобразователя при 0°С.

В двухпроводной схеме к сопротивлению ЧЭ добавлено сопротивление соединительных проводников, что приводит к сдвигу характеристики при 0°С и уменьшению W100.

На практике эта проблема решается за счет измерительного прибора, к которому подключается термопреобразователь сопротивления, путем задания соответствующих корректировок по смещению и наклону характеристики.

Термопреобразователь с двухпроводной схемой подключения внутренних проводников может подключаться к прибору по трехпроводной схеме с использованием трехжильного кабеля.

При использовании термопреобразователей сопротивления с трехпроводной схемой подключения, прибор автоматически вычитает из сопротивления полной цепи сопротивление соединительных проводов. Сопротивление внутренних проводов и жил кабеля при этом должны быть между собой одинаковы.

Если входная электрическая схема прибора представляет собой мост, в одно плечо которого подключается термопреобразователь сопротивления, то достаточно, чтобы были одинаковы сопротивления двух проводов: 1 и 2. 

Мостовая схема подключения термопреобразователя сопротивления

термопреобразователя сопротивления

 

 

 

 

Наиболее точные термопреобразователи сопротивления имеют четырехпроводную схему подключения. Для этой схемы не требуется равенство в сопротивлениях проводников. Каждый конкретный тип термопреобразователя имеет свой более узкий по сравнению с приведенным в таблице основных характеристик диапазон измеряемой температуры. Это связано с технологией сборки термопреобразователя сопротивления и применяемыми при этом материалами.

Необходимо помнить, что для точного измерения температуры вся погружаемая часть термопреобразователя сопротивления должна находиться в измеряемой среде.

Термопары, основные технические характеристики

 

Тип термопары

Класс допуска

Диапазон измеряемых температур, °С

Предел допускаемого отклонения от НСХ, °С

Хромель-копелевый ХК (L)

2

-40…+300

+300…+800

±2,5

±0,0075 |t|

3

-200…-100

-100…+100

±0,015 |t|

±2,5

Хромель-алюмелевыый ХА (K)

1

-40…+375

+375…+1000

±1,5

±0,004|t|

2

-40…+333

+333…+1200

±2,5

±0,0075 |t|

3

-200…-167

-167…+40

±2,5

±0,0075 |t|

Термопара хромель-алюмель ХА(K) обладает наиболее близкой к прямой термоэлектрической характеристикой. Термоэлектроды изготовлены из сплавов на никелевой основе. Хромель (НХ9,5) содержит 9...10%Сг; 0,6...1,2%Со; алюмель (НМцАК) - 1,6...2.4%Al, 0,85...1,5%Si, 1,8...2,7%Mn, 0.6...1.2%Со. Алюмель светлее и слабо притягивается магнитом; этим он отличается от более темного в отожженном состоянии совершенно немагнитного хромеля. Благодаря высокому содержанию никеля хромель и алюмель лучше других неблагородных металлов по стойкости к окислению. Учитывая почти линейную зависимость термо-ЭДС термопары хромель - алюмель от температуры в диапазоне 0...1000°С, ее часто применяют в терморегуляторах.

Термопара хромель-копель ХК(L) обладает большей термо-ЭДС, чем термопара ХА(K), но уступает по жаростойкости и линейности характеристики. Копель (МНМц 43-0,5) - серебристо-белый сплав на медной основе, содержит 42,5-44,0%(Ni+Со), 0,1-1,0%Mn. Даже в сухой атмосфере при комнатной температуре на его поверхности быстро образуется окисная пленка, в дальнейшем удовлетворительно предохраняющая сплав от дальнейшего окисления.

Номинальные статические характеристики термопар приведены в ГОСТ Р 8.585-2001.

Схемы включения

Рабочий конец термопары погружается в среду, температуру которой требуется измерить. Свободные концы подключаются к вторичному прибору. Если температура свободных концов постоянна и известна, то подключение может быть сделано медным проводом, а если не постоянна и неизвестна, то оно выполняется специальными удлинительными (компенсационными) проводами. В качестве последних используются два провода из различных материалов. Провода подбираются так, чтобы в паре между собой они имели такие же термоэлектрические свойства, как и рабочая термопара. При подсоединении к термопаре компенсационные провода удлиняют ее и дают возможность отвести холодный спай до измерительного прибора.

Удлинительные провода

Также смотрите кабели высокотемпературные и термопарные, соединители медные и термопарные, разъемы со склада. 

Стандартные удлинительные провода маркируются. При включении этих проводов в цепь термопар необходимо соблюдать полярность, иначе при измерениях возникает погрешность, равная удвоенной погрешности, которую старались устранить с помощью удлинительных проводов. Промышленность выпускает удлинительные провода в виде скомплектованного (двухжильного) кабеля с жилами различных цветов.

Основные характеристики термопар и удлинительных проводов

 

Термопара

Условное обозна-чение НСХ

Материал термоэлектрода

Материал удлинительного

провода, марка и цвет оплетки

ТермоЭДС, мВ при t=100°С, t0=0°C

Сопро-тивление   1 м. Ом  для сечения, мм2

положит.

отрицат.

положит.

отрицат.

1

2,5

Платинородий - платина

ПП (R, S)

Платинородий (90%Pt+10%Rh)

Платина

Медь П,

красный   или розовый

Медно-никелевый (99,4%Сu  +0,6%Ni) зеленый

0,64 ± 0,03

0,05

2,5

Платинородий – платино-родий

ПР (B)

Платинородий (70%Pt+30%Rh)

Платинородий (94%Pt+6% Rh)

-

-

-

0,05

0,02

Хромель - алюмель

ХА (K)

Хромель (89%Ni+9,8% Cr+1% Fe+ 0,2% Mn)

Алюмель (94% Ni+2% Al+ 2,5% Mn+1% Si+ 0,5% Fe)

Медь М,

красный или разовый

Константан (42%Ni+58%Cu), коричневый

4,10 ± 0,16

0,52

0,02

Хромель - копель

ХК (L)

To же

Копель (55%Cu+45%Ni+Co)

Хромель ХК, фиолетовый  

или черный

Копель, желтый, оранжевый

6,95 ± 0,2

1,15

0,21

Железо - копель

ЖК

Железо

То же

Железо ЖК, белый

То же

5,57

0,60

0,46

Медь - копель

МК (M)

Медь

То же

Медь МК, красный или розовый

То же

4,76

0,50

0,24

Медь - константан

МКт (T)

Медь

Константан (42%Ni+58%Cu)

То же

Константан, коричневый

или черный

4,10 ± 0,16

0,52

0,20

Вольфрам - рений-

вольфрам - рений

ВР

(A1, A2, A3)

Вольфрам-рений

Вольфрам-рений

То же

Медно  -никелевыи синий или  голубой

1,33 ± 0,03

0,20

0,21

Вольфрам - молибден

ВМ

Вольфрам

Молибден

То же

Медно- никелевыи  (99,7%Cu+ 0,3%Ni)

0,40 ± 0,03

0,05

0,04

В связи с высокой стоимостью термопарных кабелей по сравнению, например, с медными при значительной удаленности прибора от датчика более целесообразно в ряде случаев присоединение датчика к прибору осуществлять четырехжильным медным кабелем. При этом две жилы кабеля подключаются к термоэлектродам термопары, а две - к термосопротивлению, контролирующему температуру свободных концов термопары. Как в этом случае, так и при подключении термопары непосредственно к зажимам прибора, необходимо обеспечить хороший тепловой контакт термосопротивления с выводами термопары.

При измерении температуры до +600°С более предпочтительным является использование термопары ХК(L), имеющей в 1,5…2 раза большую термо-ЭДС, чем ХА(K).

С другой стороны, для ТП ХК(L) не существует недорогого термокомпенсационного провода. Поэтому при большой удаленности датчика от прибора лучше применять ТП ХА(K) и удлинительный провод МК.

Сравнительные характеристики термопар и термопреобразователей сопротивления

В данной таблице приведены сравнительные эксплуатационные характеристики термопреобразователей сопротивления и термоэлектрических преобразователей («+» - преимущество, «-» - недостаток).

 

Тип

преобразователя

Характеристики

Диапазон

измеряемой

температуры

Точность измерения

Инерционность

Цена преобразователя

Цена подсоединения преобразователя

ТП

+

-

+

+

-

ТС

-

+

-

-

+

Также смотрите термопреобразователи сопротивления, термопары, датчики температуры с токовым выходом, чувствительные элементы нашего производства. А также кабели высокотемпературные и термопарные, соединители медные и термопарные, разъемы со склада. 

Читайте также статьи из разделов:• Измерение температуры и влажности, датчики температуры и влажности• Автономные регистраторы• Автоматизация, приборы для автоматизации• Медицинские приборы

relsib.com

Термопара – устройство и принцип работы простым языком

Практически каждое отопительное оборудование требует применения дополнительных элементов, предостерегающих систему от перегрева. Одним из таких контролеров считается термопара. Принцип ее работы заключается в регулярном измерении температурного режима для поддержания заданного значения.

Термопара

Общие характеристики

Согласно Номинальных статических характеристик преобразования ГОСТ Р8.585-2001 термопара – устройство, состоящее из 2-х разнородных контактирующих друг с другом проводников, предназначенное для измерения температуры. При изменении температурного режима на одном участке создается напряжение, вследствие чего происходит конвертация температуры в электроток.

Термопары

Термопары

Конструкция элемента устроена из двух разнотипных проводников, которые соединяются друг с другом в одном узле. Существует три типа соединений:

  • спайка;
  • ручная скрутка;
  • сварка.

Зачастую в виде проводящих электроэнергию элементов применяется металлический проводник, однако встречаются случаи, когда вместо него используют полупроводниковые устройства. 

Параметры устройства определяет материал, из которого изготовлены проводники. Понятно, что любой металл образует сопротивление, значит будет производить электроток. Но для корректной работы термопары используются определенные сплавы, которые выдают прогнозируемые вводные и точно с минимальной погрешностью определяют зависимость между температурой и сопротивлением. Для определенного диапазона должен использовать определенный материл.

Говоря простым языком, термопара, в зависимости от материалов, из которых состоят проводники, позволяет определять температурный режим в разнообразных диапазонах значений. В целом, термопара определяет температуру ориентировочно от -250°С до +2 000°С.

ВИДЕО: Измерение температуры с помощью термопары

Принцип действия термопары

Вне зависимости от имени производителя, работа всех термопар основывается на термоэлектрической схеме, разработанной в 1821 году известным физиком Т.И. Зеебеком. Принцип действия термопары заключается в поочередном соединении двух разновидных переходника в одно замкнутое кольцо. Первый узел предназначен для нагрева, в результате чего, по кольцу образовывается электрический движущий заряд, который называется – термо-ЭДС. Под влиянием ЭДС-силы, по цепочке протекает электрически ток.

Принцип работы термопары

Схематическая работа устройства

Сама область нагрева называется узлом нагревательного предназначения, второй конец обозначается как холодный спай.

Чтобы измерить значение микро или милливольт электрической движущей силы, следует разъединить кольцо и соединить его при помощи микровольтметра. Количество милливольт полностью зависит от интенсивности нагрева соединений и температурного режима холодного узла. Принцип работы простым языком базируется на разности значений температуры двух соединительных спаев, между холодным и горячим обозначением.

Получается, что если область спая двух разных проводов нагреть, то в зоне несоединенных концов образуется разносторонний потенциал, измеряемый специальным инструментом. Преобразователи, разработанные по инновационным технологиям, возникшую разность электрической силы переводят в цифровые символы, обозначающие температурный режим нагрева соединенных узлами частей.

Конструкция устройства

Устройство производится разных форм и размеров. Подразделяется по конструктивному производству на два основных типа:

  • термопары, не имеющие корпуса;
  • с кожухом, служащим в качестве защиты.

В первом случае устройство в месте соединения не имеет закрытого корпуса, выполняющего защитную функцию от разнообразных воздействий внешней окружающей среды. Данный вид обеспечивает быстрое определение инертности и температурного режима, не затрачивая на процесс много времени.

Термопара для котельного оборудования

Термопара для котельного оборудования

Второй тип производится подобно зонду, который выполнен из металлической трубы с хорошей внутренней изоляцией, способной противостоять высоким температурным показателям. Изнутри термопар оснащен термоэлектрической системой. Конструкция с защитным корпусом не поддается воздействиям агрессивной среды.

Разновидности термопары

Принцип работы термопара достаточно прост и понятен, однако, прежде чем создать устройство своими руками, следует знать, чем отличаются такие модификации как ТХА,TKX, ТПП, ТСП, ТПР и ТВР, а также, по каким критериям и группам они распределяются.

  • Группа Е – состоит из комбинированного материала - хромель-константан. Соединительный спай обладает повышенной производительностью – более 69 мкВ/оС, подходящей для криогенного применения. Помимо всего, система не имеет магнитные свойства, а температурный режим варьируется от – 50°С до + 740°С.
  • Группа J – термоэлектроны производятся из положительного железа и отрицательного типа константаны. Разбег функционирования данной серии термопара меньше, чем в прошлой группе -40°С - + 750°С, однако показатель чувствительности более высокий – 50 мкВ/°С.
  • Группа К – самый распространенный тип устройств, состоящий из комбинации материалов – алюминий и хромель. Производительность системы равняется 40 мкВ/°С, функционирование происходит в пределах температурных показателей от – 200°С до 1 350°С. Следует помнить, что даже при низком уровне окисления в диапазоне температуры 800-1050°С, элемент из хромеля отсоединяется и приобретает намагниченное состояние, что называется «зеленая гниль». Данный фактор отрицательно сказывается на функционировании регулятора.
  • Группа М – применяется в комплектациях печей вакуумного вида. Рабочие силы варьируются от -260 до + 1400°С с максимальной погрешностью в 2 градуса.

Принцип работы термопары

Принцип работы термопары

  • Группа N – устройство выпускается для использования в устройствах обладающих температурными обозначениями – 270 и 1300°С, что является гарантией хорошей работоспособности и устойчивости перед окислительными процессами. Чувствительность не превышает 40 мкВ/°С.
  • Группы В, S, R отличаются стабильной работой с более пониженным ЭДС – 10мкВ/°С. Из-за плохой чувствительности, используется исключительно для определения повышенных температур.
  • Группы В, С, S – первый символ обозначает модификацию, подходящую для измерения температуры до 1 800оС, S – 1 600°С, С – до 1 500.
  • Рениево-вольфрамовые термопары применяются для измерения высоких температур 25 000°С и менее. Также устройство предназначено для устранения окислительной атмосферы, разрушающей материал.

Термопары хромель-алюмель

Термопары хромель-алюмель

Монтаж

Принципиальной разницы между установкой российского или европейского оборудования нет – схема везде одинакова. Мы опишем самый простой способ.

  1. Откручиваете гайку внутри резьбового соединения к газопроводу.
  2. На самой термопаре откручиваете компенсационный винт.
  3. В отверстие монтажного кронштейна вставляете термопару.
  4. Протрите место соединения ветошью резьбовое соединение и гайку.
  5. Закрутите соединение до упора, но не затягивайте слишком сильно. Если есть необходимость, можно использовать прокладку.

Контролер газовой плиты должен быть соединен максимально плотно, но чтобы его можно было снять по мере надобности.

Термопара для печи

Термопара для печи

Обратите внимание на то, чтобы обе трубы были направлены строго вниз.

Теперь разбираемся, как работает. Концевой выключатель всегда расположен на несколько сантиметров ниже пленума под автоматом контроля безопасности плиты. Когда пленум нагревается до предела, выключатель дает сигнал на отключение горелки и сразу же срабатывает вентилятор. В этот момент происходит резкое снижение температуры.

На некоторых устройствах вентилятор не останавливается. Причиной этого может быть выключенный контроль вентилятора (посмотрите на рычаг, он должен быть на отметке «вкл») либо выход из строя термостата. Как вариант, может быть установлен ручной режим вместо автоматического.

После установки устройства необходимо проверить правильность работы. И если настройка происходит в лабораторных условиях, то калибровать термопару можно и собственноручно.

Для этого снимаете крышку блока управления и смотрите на циферблат. Со стороны вентилятора есть 2 датчика, которые изначально настроены на 25°F. Вам нужно выставить верхний на 115°F, нижний – не меньше 90°F.

Если во время градуировки или калибровки отчетливо слышен запах газа, необходимо проверить уплотнители или вызвать службы газа на предмет выявления утечки.

Преимущества и недостатки применения измерителя

Температурный датчик, невзирая на простоту в устройстве, обладает как преимуществами, так и недостатками.

Плюсы:

  • Широкий диапазон температурных режимов, делающих устройство самым устойчивым контактным датчиком перед высокими показателями.
  • В результате нарушения целостности спая можно полностью заменить узел или создать прямой контакт непосредственно через измеряемые системы.
  • Простота устройства, прочность и большой эксплуатационный срок.

Термопара арбат

Термопара "Арбат"

Минусы:

  • При установке температурного датчика необходимо регулярно контролировать изменения напряжения холодных спаев. Для облегчения задачи требуется приобрести дополнительный термистор. Также можно заменить устаревший прибор полупроводниковым сенсором, способным автоматически вносить изменения в ТЭДС.
  • Подверженность к поражению коррозией, в результате чего происходит термоэлектрическая недостаточность и нарушение градуировочных характеристик.
  • Электроды состоят из материалов, которые не считаются химически инертным, поэтому при нарушении герметичности корпуса система становится подверженной агрессивным процессам окружающей среды.
  • Длинные термопарные провода образовывают электромагнитное поле.
  • Возникают сложности в процессе создания вторичного преобразователя сигналов из-за несущественного взаимодействия ТЭДС и температурных режимов.
  • Для стабильной работы с термической инерцией, обязательным условием термопара считается обеспечение качественной электроизоляцией, заземление функционирующих спаев, предостерегающих от возникновения утечки в землю.

ВИДЕО: Сравнение термосопротивления и термопары. Основы измерения температуры от Emerson

www.portaltepla.ru

5 Основные способы соединения термопар Термобатарея

5. Основные способы соединения термопар

Термобатарея. Для измерения малых разностей температур двух объектов А и В обычно применяют систему из нескольких после­довательно соединенных термопар, образующих термобатарею (рис. 5.1).

Рис. 5.1. Схема термобатареи

При последовательном соединении нескольких (n) термопар их ТЭДС суммируется. В идеализированной системе, когда характеристики всех термопар одинаковы, а температуры всех спаев на объекте А равны между собой, что справедливо и для объекта В, суммарная ТЭДС будет в n раз больше ТЭДС, развиваемой единичной термопарой. Поэтому принято считать, что использование термобатареи из n термопар в n раз повышает точность измерения разностей температур. В действитель­ности это положение справедливо только в общих чертах, так как неод­нородность термоэлектродов приводит к различию характеристик термопар. Кроме того, практически очень трудно обеспечить равенство температур всех спаев, смонтированных на одном объекте, так как неизбежно возникают различия в тепловых сопротивлениях между отдельными спаями и объектом. Ощутимо повлиять на нарушение равенства температур отдельных спаев может и значительно большая пространственная протяженность термобатареи по сравнению со спаем одной термопары (вследствие неоднородности температурного поля объекта). Следует также иметь в виду, что градуировка термобатареи сопряжена со значительными трудностями и осуществляется с меньшей точностью, чем градуировка отдельной термопары. Все это вместе взятое может привести к тому, что использование термобатареи позволит только снизить относительную погрешность отсчета ТЭДС, но ощутимо не повысит точности измерения разностей температур объектов.

Дифференциальная термопара. Так обычно называют двухспайную термопару, которую можно рассматривать как две термопары с рабочими концами при температурах t и t1 включенные навстречу друг другу (рис. 5.2).

Рис. 5.2 Схема дифференциальной термопары

Дифференциальная термопара образуется общим термоэлектродом b, концы которого в местах спаев контактируют со вторым термоэлектродом а. Концы термоэлектрода а выведены в зону с однородной температурой t0. В этом месте подключают соединительные провода, идущие к измерительному прибору. При такой схеме включе­ния суммарная ТЭДС дифференциальной термопары определяется по уравнению

Eab(t,t1)=eab(t)-eab(t1). (5.1)

Независимо от вида кривой, характеризующей ТЭДС, развивающуюся между термоэлектродами а и b в интервале температур от t1 до t, если этот интервал не превышает 15-20 градусов, то эту зависимость приближенно допустимо рассматривать как линейную. Тогда выражение для суммарной ТЭДС дифференциальной термопары можно записать в виде

Eab(t,t1)=kab(t-t1). (5.2)

Таким образом, ТЭДС дифференциальной термопары в широком интервале температур прямо пропорциональна измеряемой разности температур t-t1 на ее рабочих концах.

Коэффициент пропорциональности k для данной пары термоэлектро­дов определяется по результатам градуировки [12, 18], которую целесообразно выполнить при значениях температур t и t1 близких к тем, которые будут наблюдаться в условиях эксплуатации термопары. Необходимо учитывать, что дифференциальная термопара предназначена для измерения небольших разностей температур ∆t=t-t1. Поэтому погрешность измерения числовых значений температур t и t] при градуировке термопары может стать причиной значительной относительной погрешности последующего измерения ∆t.

Многоспайная термопара. Такие термопары (рис. 5.3) приме­няют, например, для измерения температур в скважинах, на различных глубинах в резервуарах с жидкостью и т. п.

Рис. 5.3. Схема многоспайной термопары

К одному общему термоэлектроду в ряде точек (I, II, III и т.д.) присоединяют отрезки (1-I, 2-II, 3-III и т. д.) второго термоэлектрода. Термоэлектродвижущую силу каждой из образующихся термопар измеря­ют поочередным подключением измерительного прибора с помощью переключателя S.

Параллельное соединение термопар. Принципиальная схема такого соединения показана на рис. 5.4.

Рис. 5.4. Параллельное соединение в группы однотипных термопар

Такой способ подключения термопар применяется для сигнализации перегрева в одной из точек объекта (с большим числом термопар, установленных в разных его местах), а также для нахождения среднего арифметического значения температур в ряде точек. Параллельное соеди­нение может быть использовано для однотипных термопар с термо­электродами а и b с близкими термоэлектрическими характеристиками. При равенстве температур на рабочих концах всех термопар выходной сигнал системы будет соответствовать некоторому среднему значению ТЭДС всех термопар. Если сопротивления всех термопар одинаковы, то при местном перегреве ТЭДС одной из термопар возрастает на величину ∆Е, а выходной сигнал всей системы возрастает на величину ∆Е/n вследствие шунтирования данной термопары всеми остальными n термопарами системы.

6. Поправка на температуру свободных концов. Удлинительные (компенсационные) провода. Устройство унификации

Согласно общепринятому положению о Международной прак­тической температурной шкале стандартная градуировка термопар производится при температуре свободных концов t = 0°С. Однако в практике температурных измерений, особенно в промышленных условиях, поддерживать температуру свободных концов при 0°С часто бывает сложно и неудобно, а иногда и просто невозможно. В боль­шинстве случаев гораздо удобнее поддерживать температуру свободных концов постоянной, но отличной от 0°С (обозначим такую температуру t1≠0 °C). В связи с тем, что во время градуировок выдерживается температура свободных концов t0=0°С, а в процессе эксплуатации термоэлектрических преобразователей температура t1, возникла необходимость введения поправки к измеренной величине ТЭДС термопары, обусловленной изменением температуры свободных концов от t0 до t1. To есть необходимо найти разность E(t,t0)-E(t,t1), где t-измеряемая температура рабочего конца.

ТЭДС для температуры свободного конца t0 определяется выра­жением вида

E(t,t0)=e(t)-e(t0), (6.1)

а для температур свободного конца t1

E(t,t1)=e(t)-e(t1). (6.2)

Откуда

E(t,t0)-E(t,t1)= e(t1)-e(t0). (6.3)

Очевидно, что разность, стоящая в правой части последнего выражения, характеризует ТЭДС данной термопары при температуре рабочего конца t1 и температуре свободных концов t0.

Поэтому можно записать, что

E(t,t0)-E(t,t1)=E(t1,t0), или (6.4)

E(t,t0)=E(t,t1)+E(t1,t0). (6.5)

Следовательно, второе слагаемое в правой части (6.5) - величина E(t1,t0) представляет собой ту поправку, которую надо добавить к измеряемому при температуре свободных концов t1 значению ТЭДС, чтобы получить значение ТЭДС, соответствующее температуре t0 свободных концов термопары.

Таким образом, нет необходимости в условиях эксплуатации термоэлектрического преобразователя сохранять ту температуру ее свободных концов, которая поддерживалась при градуировке термопары. Исправление искаженных результатов измерения ТЭДС достигается введением поправки по уравнению (6.5). Необходимо лишь точно знать температуру свободных концов термопары t1 в условиях эксплуатации и обеспечить ее постоянство в течение всего периода измерений. Последнее требование в производственных условиях выполнить довольно сложно, так как термоэлектроды стараются делать небольшой длины для удобства транспортировки, эксплуатации и экономии термоэлектродных материалов (особенно при наличии в них драгоценных металлов). Часто головка термоэлектрического преоб­разователя со свободными концами из-за близкого расположения к горячим поверхностям (печей, парогенераторов, трубопроводов и т.п.) нагревается в процессе работы до различных температур, изменяющихся во времени и достигающих значений 60-70 °С, а иногда и намного выше (до 200 °С).

Для удаления свободных концов от мест со значительными колебаниями температуры применяют удлинительные (компен­сационные) провода c, d (рис. 6.1).

Рис. 6.1. Цепь термопары с удлинительными проводами.

Причем при комплектовании удлинительных проводов должно быть обеспечено равенство

Eab(t1, t0) = Ecd(t1, t0). (6.6)

Существует два способа подбора удлинительных проводов. При первом способе подбирают провода, идентичные по своим термоэлектрическим свойствам термоэлектродам (т.е. в паре с соответствующим термо­электродом они обеспечивают в определенном интервале температур практически нулевую ТЭДС - поэлектродную компенсацию). Этот способ является наиболее универсальным и применяется для измерений с повышенной точностью.

При втором способе (суммарной компенсации) удлинительные провода должны развивать ТЭДС термопары, для которой они пред­назначены (т. е. подбирается пара удлинительных проводов, у которой номинальная статическая характеристика в заданном интервале тем­ператур соответствует номинальной статической характеристике термо­электрического преобразователя). Это равенство должно соблюдаться в интервале температур, при которых могут находиться свободные концы термопар (обычно от 0 до 100 °С).

Для удлинительных проводов суммарной компенсации должно выполняться требование равенства температур мест подсоединения удлинительных проводов к свободным концам термопары, а для удлинительных проводов поэлектродной компенсации соблюдение этого требования необязательно.

Основные характеристики термопар и удлинительных компенсационных) проводов.

Термопара

Марка проволоки

Химический состав термоэлектродов

Положительного

отрицательного

Платинородий-платиновая

ПП-10

Платинородий (90%Pt+30%Rh)

Платина

(100%Pt)

Платинородий-платонородиевая

ПР-30/6

Платинородий (70%Pt+30%Rh)

Платинородий (94%Pt+6%Rh)

Хромель-алюмелевая

ХА

Хромель (89%Ni+9,8%Cr+

+1%Fe+0,2%Mn)

Алюмель

(94%Ni+2%А1+ +2,5%Mn+l%Si+0,5%Fe)

Хромель-копелевая

ХК

То же

Копель

(55%Cu+45%Ni)

Железо-копелевая

ЖК

Железо (100%Fe)

То же

Медь-копелевая

МК

Медь

(100%Cu)

»»

Медь-константановая

МК

Медь

(100%Cu)

Константан

(42%Ni+58%Cu)

Вольфрам-рениевая

ВР5/20

Вольфрам-рений

(95%W+5%Re)

Вольфрам-рений

(80%W+20%Re)

Вольфрам-рениевая

ВР10/20

Вольфрам-рений

(90%W+10%Re)

Вольфрам-рений

(80%W+20%Re)

Вольфрам-молибденовая

ВМ

Вольфрам (100%W)

Молибден (100%Мо)

Вольфрам-молибденовая

ЦНИИЧМ-1

Вольфрам

(100%W)

Молибден-алюминий (99,5%Мо+0,5%А1)

Таблица 6.1

Химический состав удлинительного провода. Марка и цвет оплетки

ТЭДС при t=100°С и t0=0°С, мВ

Сопротивление 1м, Ом для сечения

положительного

отрицательного

1 мм2

2,5 мм2

Медь П, красный

Медно-никелевый (99,4%Cu+0,6%Ni), зеленый

0,64±0,03

0,05

0,02

Медь

Медь

-

0,05

0,02

Медь М, красный

Константан (42%Ni+58%Cu), коричневый

4,10±0,16

0,52

0,21

Хромель ХК, фиолетовый

Копель, желтый

6,95±0,2

1,15

0,46

Железо ЖК, белый

Копель, желтый

5,57

0,60

0,24

Медь МК, красный

То же

4,76

0,50

0,20

То же

Константан, коричневый

4,10±0,16

0,52

0,21

»»

Медно-никелевый (97,6%Cu+2,4%Ni), синий или голубой

1,33±0,03

(1,40±0,03)

0,20

0,08

»»

Медно-никелевый (98,8%Cu+l,2%Ni)

0,97±0,02

0,10

0,04

»»

Медно-никелевый (99,7%Cu+0,3%Ni), белый

0,40±0,03

0,05

0,02

Медь

Медь

-

0,05

0,02

Стандартные удлинительные провода маркируются. При их включении в цепь термоэлектрического преобразователя необходимо соблюдать полярность. Несложно показать [18], что при неправильной полярности включения удлинительных проводов возникает погрешность, равная удвоенному значению погрешности, обусловленной нагревом свободных концов термопары от t0 до t1(см. рис. 6.2.):

Е-Е1 =Еab(t,t0)-E1=2Eab(t1,t0). (6.7)

textarchive.ru

Простой усилитель термопары

Несколько лет назад я столкнулся с необходимостью измерения температуры с помощью термопар. Существенно мне помог в этом один человек, которому я до сих пор благодарен. Не сильно вдаваясь в теоретические аспекты, хочу предложить простой вариант усилителя термопары. Этот усилитель повторили несколько человек и тоже были получены хорошие результаты.

 

 

 

 

                                                                              Основная схема.

 

Основа усилителя взята из технического описания фирмы «Analog Devices» на операционный усилитель ОР213. Данный ОУ можно отнести к точным ОУ с малым тепловым дрейфом нуля

Сразу скажу, что на фирменной схеме допущена досадная ошибка. Точка соединения резисторов R8 и R6 должна быть исключена. Схема позволяет измерять температуру в диапазоне 0 – 1000 оС с точностью 0,02 оС при применение данного ОУ и термопары К-типа. Эта термопара обладает наиболее близкой к прямой термоэлектрической характеристикой. Термоэлектроды изготовлены из сплавов на никелевой основе. Хромель (НХ9,5) содержит 9...10 %Сг; 0,6...1,2 % Со; алюмель (НМцАК) — 1,6...2.4 % Al, 0.85...1,5 Si, 1,8...2,7 % Mn. 0.6...1.2 % Со. Алюмель светлее и слабо притягивается магнитом; этим он отличается от более темного в отожженном состоянии совершенно немагнитного хромеля. Благодаря высокому содержанию никеля хромель и алюмель лучше других неблагородных металлов по стойкости к окислению. Учитывая почти линейную зависимость термоЭДС термопары хромель — алюмель от температуры в диапазоне 0...1000°С, ее наиболее часто применяют в терморегуляторах.

Подключение электродов термопары к разъемам платы усилителя образует еще один источник термоЭДС (холодный спай) напряжение на котором вносит существенную ошибку в истинные показания. Для устранения этой погрешности применяют разные методы. В данном случае для компенсации напряжения холодного спая применен простой и эффективный способ. Как можно ближе к разъему подключается кремневый диод. Известная зависимость тока p-n перехода от температуры позволяет сформировать компенсационное напряжение для коррекции ошибки холодного спая.

ОУ питается напряжением +12В, максимальное выходное напряжение ОУ будет составлять, за счет внутреннего падения напряжения, чуть больше 10В. Схема на ОУ представляет усилитель с ОС с коэф. усиления около 200. Резистор R6 осуществляет балансировку опорного напряжения ОУ ( установку нуля).

Точный стабилизатор напряжения REF02EZ позволяет получить из  напряжения питания стабилизированное напряжение для питания входных делителей ОУ с точностью около 1мВ.

Значения резисторов, особенно входных делителей, должны быть как можно точней соответствовать указанным на схеме.

Практическая реализация.

Всем хороша данная схема, но комплектующие не дешевы, а заявленная точность не всегда нужна в большинстве случаев. Самое распространенная задача, это измерять температуру до 400 о С с точностью +/- 1-2 оС. Под эту задачу и была разработана простая и дешевая схема.

 

 

Не используется опорный стабилизатор, Применен более дешевый и распространенный ОУ LM358. Напряжение питания 5В, поэтому максимально можно измерить реально 375 оС. Относительно большой температурный дрейф ОУ определяет ошибку измерения, не более 2 оС. Для увеличения помехоустойчивости по переменному току применен конденсатор С1. Резистором R12 можно корректировать коэф усиления в зависимости от применяемой термопары. В диапазоне до 400 оС многие типы термопар достаточно линейны, поэтому появляется возможность применения любой подходящей термопары. Хорошие результаты получаются с термопарами от цифровых мультиметров. Так как микросхема LM358 содержит два ОУ, то удобно реализовать на одной микросхеме двухканальный вариант.

Особенности при изготовлении.

Термокомпенсационный диод желательно разместить снизу печатной платы, так чтобы его корпус был как можно физически был ближе к разъему. Хорошо применить термопасту. Резисторы можно применить как SMD типа, так и обычные 0,125 Вт. Я обычно применяю последовательно соединенные резисторы стандартного ряда.

2,74К=2,7К+39

53,6=27+27

3,95К=3,9К+51

Калибровка

В домашних условиях калибровка проще всего сделать по двум точкам 0 и 100 градусов. Термопара погружается в талую воду, выставляется показания 0 градусов R6. Термопара погружается в кипящую воду, выставляется показания 100 градусов R12. Еще раз проверить 0 и 100, при необходимости подкорректировать. Можно проверить температуру тела 36,6 градусов.

Пример программной реализации.

Напряжение на выходе ОУ прямо пропорционально измеренной температуре. Если на вых. ОУ 1,00В, то это соответствует температуре 100 оС . Если на выходе 2,58В, то 258 градусам. Для измерения применен встроенный АЦП микроконтроллера фирмы МИКРОЧИП. Опорное напряжение равно напряжению питания 5,12В, при применение стабилизатора напряжения типа 7805 напряжение на его выходе обычно соответствует этому значению. АЦП 10 разрядное, 1024 уровней квантования. Один уровень квантования 0,005В. При измерении напряжения на выходе ОУ с помощью АЦП получаем следующий результат:

Пример: Uвых = 2,87В /0,005=574, уровней квантования АЦП.Для упрощения вывода результата на индикацию, необходимо полученный результат разделить на два.

574/2= 287 (0х11F) остается преобразовать полученное число в двоично-десятичный вид и вывести на применяемый индикатор.

Хочу отметить, что если необходимо измерять температуру больше 400 градусов, то напряжение питания ОУ и соответственно выходное напряжение ОУ будет больше опорного напряжения АЦП. В этом случае, как самый простой вариант, удобно использовать делитель напряжения на выходе ОУ с коэф. 2. ( два одинаковых резистора по 10 кОм). Программное деление необходимо исключить.

; RA0 - активный входной канал АЦП,

;----------------------------------------------------------------------------------------------

izm_U ;измеряем напряжение АЦП результат в ADS_L, ADS_H

;----------------------------------------------------------------------------------------------

movlw b'01000001' ; Включение АЦП; выбор аналогового канала AN0;

movwf ADCON0       ; источник Fosc/8; состояние ожидания.

movlw .6

movwf reg

decfsz reg ; задержкa

goto $-1

bsf ADCON0,2 ; Включение преобразования.

btfsc ADCON0,2 ; Ожидание окончания

goto $-1 ; преобразования.

bcf ADCON0,ADON ; Выключение модуля АЦП

;-------------------------------------------------------------------------------------------------------

movf ADRESH,w ; перепишем результат преобразования

movwf ADS_H

bsf STATUS,RP0

movf ADRESL,w

clrf STATUS

movwf ADS_L

;---------------------------------------------------------------------------------------------------------

rrf ADS_H ; результат делим на 2

rrf ADS_L

;---------------------------------------------------------------------------------------------------------

call bin2_10 ; преобразование двоичного числа в двоично-десятичное

call IND ; вывод на индикацию

подпрограммы bin2_10 и IND, не привожу, т.к. каждый применяет свой удобный вариант для применяемого индикатора.

Заключение.

Данная схема прекрасно измеряет и более высокие температуры до 1000 градусов. Единственно, надо знать тип термопары. Распространенные советские термопары хромель-копель измеряют до 800 градусов и немного нелинейны с 300 - 600 градусов. Если применить термопары К-типа, то результаты хорошие до 1000 градусов, с точностью +\- 2 градуса.  Так же нужно повысить напряжение питания ОУ  и применить делитель напряжения на вых ОУ.

chipmk.ru

Подключение термопары к микроконтроллеру

Подробности Категория: Микроконтроллеры Опубликовано 25.06.2016 14:25 Автор: Admin Просмотров: 1278

В данной статье речь пойдет о подключении термопары к микроконтроллеру Atmega8. Термопара представляет собой два проводника из разных металлов спаянных в одной точке. В этой точке при разных температурах возникает термоэдс. Метталлы берутся такими чтобы зависимость термоэдс от температуры была наиболее линейна. Это снижает погрешность измерений и облегчает расчет температуры.

Термопары испольщуются там где нам нужно измерить высокую температуру до 2000 градусов. При таких температурах цифровые датчики сразу бы вышли из строя. Есть много разных видов теромопар, но наибольшей популярностью пользуются термопары типа K (хромель-алюминий), это связано с их практически линейным графиком изменения теромоэдс. Такие термопары устанавливаются в различные виды водонагревателей, паяльных станций, их используют в установках по плавке металла.

 График зависимости термоэдс от температуры для термопар типа K практически линейный на всем диапазоне температуры.

 termopara-i-mk

 Измеренно значение термоэдс нужно преобразовать в температуру. Преобразование осуществляется при помощи коэффициента который постояннен для всего диапазано измерения температуры.

 Для измерения термоэдс будем использовать АЦП (аналого-цифровой преобразователь). Для того чтобы подлючить термопару к микрокнтроллеру используется ОУ (операционный усилитель) который включается по неинвертирующей схеме. Дело в том что значение эдс очень мало и его необходимо усилить при помощи ОУ.\

amplifer

 Для того чтобы найти отношение входного и выходного напряжения нужно воспользоваться формулой:

 Vout/Vin=1+(R2/R1)

От номинала сопротилений R1 и R2 которые выполняют функцию обратной связи, зависит отношение входного и выходного напряжения. Уселение сигнала должно выбирать исходя из выбранного ИОН - источника опорного напряжения. Например если в качестве ИОН выбрано напряжения в 5 В, а максимальный предел измеряемой температуры 1000 градусов, при такой температуре термоэдм состовит 41.3 мВ. Это напряжение необходимо будет преобразовать в 5 В на входе в АЦП. Т.е нам нужно чтобы при такой температуре на входе в АЦП было напряжение в 5 В. Коэффициент усиления получился равным 120.

Подключение термопары к микроконтроллеру

Подключение термопары к микроконтроллеру

В результате получилась такой модуль:

Операционный усилитель собранном виде

Схема подключения двухстрочного дисплея к микрокнтроллеру

Схема подключения двухстрочного дисплея к микрокнтроллеру

А так выглядит теомапара которая шла в комплекте с мультиметром

termopara-i-mk5

 

Код программы 

$regfile = "m8def.dat" $crystal = 8000000 Dim W As Integer 'подключение двухстрочного дисплея Config Lcdpin=Pin,Rs=Portb.0,E=Portd.7,Db4=Portd.6,Db5=Portd.5,Db6=Portb.7,Db7=Portb.6 Config Lcd = 16 * 2 Cursor Off Cls 'считывание значения с АЦП по прерыванию от таймера Config Timer1 = Timer , Prescale = 64 On Timer1 Acp 'конфигурация АЦП Config Adc = Single , Prescaler = Auto , Reference = Avcc Enable Interrupts Enable Timer1 Do Cls Rem Температура: Lcd "Teјѕepaїypa:" Lowerline Lcd W Waitms 200 Loop 'работа с АЦП Acp: Start Adc 'запуск АЦП W = Getadc(1) W = W / 1.28 'подгоняем замеры под действ. температуру Return End

 Число 1.28 бы подогнато опытным путем. В качестве эталонной температуры была температура кипения воды 100 градусов. Зная температуру и подгоняя коэффициент добиваемся аналогичных показаний на дисплее.

 100etlnpretermopara100pre

После того как выставил показания, измерил температуру в пламени зажигалки, прибор показал значение в 700 градусов. При комнатной температуре 25 градусов прибор почему то показывал 50.

Печатная плата для ОУ

Оригинал статьи

  • < Назад
  • Вперёд >
Добавить комментарий

www.radio-magic.ru


Каталог товаров
    .