интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Объясните назначение и принцип действия защитного заземления( со схемами). Схема защитного заземления


3.Объясните назначение и принцип действия защитного заземления( со схемами).

Защитное заземление – преднамеренное электрическое соединение с землей или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при замыкании на корпус.

Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по назначению к потенциалу заземленного оборудования.

Область применения защитного заземления – трехфазные трехпроводные сети напряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали.

 

Рис.1 Принципиальные схемы защитного заземления:

а – в сети с изолированной нейтралью до 1000В и выше

б – в сети с заземленной нейтралью выше 1000В

1 – заземленное оборудование;

2 – заземлитель защитного заземления

3 – заземлитель рабочего заземления

rв и rо – сопротивления соответственно защитного и рабочего заземлений

Iв – ток замыкания на землю

 

Заземляющим устройством называется совокупность заземлителя – металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают два типа заземляющих устройств: выносное и контурное.

Выносное заземляющее устройство характеризуется тем, что заземлитель его вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки.

Данный тип заземляющего устройства применяют лишь при малых значениях тока замыкания на землю и, в частности, в установках напряжением до 1000В, где потенциал заземлителя не превышает допустимого напряжения прикосновения. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения электродов с наименьшим сопротивлением грунта.

Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещают по контуру площадки, на которой находится заземляемое оборудование, или распределяют по всей площадке по возможности равномерно.

Безопасность при контурном заземлителе обеспечивается выравниванием потенциала на защищаемой территории путем соответствующего размещения одиночных заземлителей.

Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводу, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей. При этом в помещениях  с повышенной опасностью и особо опасных по условиям поражения током, а также в наружных установках заземление является обязательным при номинальном напряжении электроустановки выше 42В переменного и выше 110В постоянного тока, а в помещениях без повышенной опасности – при напряжении 380В и выше переменного и 440В и выше постоянного тока. Лишь во взрывоопасных помещениях заземление выполняется независимо от назначения установки.

Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные – находящиеся в земле металлические предметы для иных целей.

Для искусственных заземлителей применяют вертикальные и горизонтальные электроды. В качестве вертикальных электродов используют стальные трубы диаметром 3…5см и стальные уголки размером от 40*60 до 60*60мм и длиной 2,5…,м.

В качестве естественных заземлителей можно использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов, а также трубопроводов, покрытых изоляцией для защиты от коррозии. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока, и поэтому использование их для целей заземления дает большую экономую. Недостатками естественных заземлителей является доступность их неэлектротехническому персоналу и возможность нарушения непрерывности соединения протяженных заземлителей.

studfiles.net

Защитное заземление для дома: особенности обустройства

Домашний уют — это то, что окружает человека в период его жизни. Но случись какая-то неурядица, и хозяин дома уже не может наслаждаться прежним теплом и комфортабельностью. В этой статье мы поговорим об электрической безопасности, а точнее обсудим вопрос, что такое защитное заземление и как его применяют на практике в домашних условиях.

Общие основы и цели заземления

Защитным заземлением считается устройство, которое соединяется с эквивалентом грунта и состоит из нетоковедущих проводников, однако, есть вероятность попадания их под напряжение. В первую очередь задача подобного устройства состоит в том, чтобы снизить силу пробойного тока до минимальной величины.

Важно! Обустройство защитного заземления—это дополнительный шаг к безопасности в вашем доме.

Данный вариант заземляющего устройства выполняется не только для бытовых условий, но еще встречается в промышленности, общественных заведениях также предохраняет помещение от влияния атмосферного электричества. Эта разновидность заземлителя используется для трехфазной и трехпроводной электрической цепи. На данном этапе мы разобрались с понятием, что называется защитным заземлением, перейдем к следующим не менее важным моментам.

Фото: защитное заземление общие цели и способы монтажа

Защитное заземление общие цели и способы монтажа

Защитное заземление: его назначение и устройство

В первую очередь, прямым назначением заземления считается ликвидация опасной ситуации в связи с пробоями электрического тока, которые могут нанести поражения человеку и бытовому оборудованию, и влекут за собой плачевные последствия. Также приспособление предупреждает выход напряжения на корпус электрического оборудования.

Присутствие заземления в доме характеризуется следующими весьма определенными преимуществами:

  • данный вариант контура очень простой в монтаже и дальнейшей эксплуатации;
  • контурная фигура в итоге получается компактной с маленькими габаритами, при этом отлично справляется с поставленными задачами;
  • все использованные детали устойчивы к коррозии, следовательно, не может быть и речи о механическом повреждении целостности конструкции;
  • соединение электродов выполняется крепежными деталями, в следствие чего обходятся без сварочных швов.

Важно! Ни в коем случае не пренебрегайте преимуществами, они играют первоочередную роль в установке контура защитного заземления.

Устройство защитного контура выполнено следующим образом: металлические части любого электрического оборудования соединяются специальными проводниками с грунтом, эти детали элементарно попадают под напряжение, когда нарушается изоляция проводки или происходит короткое замыкание. Устранение напряжения и снижение его до нормальных величин, не наносящих вред, происходит в момент уменьшения потенциала приборов, которые заземлены. Иными словами, происходит выравнивание того же потенциала за счет подъема сопротивления основания прибора.

Молниезащита или особенности монтажа заземления

В отличие от искусственного электричества заземление при молниезащите имеет совершенно другие особенности. Однако, можно выделить и одно общее сходство среди всех систем заземления, и это—использованные материалы и детали.

Фото: Устройство контура заземления

Устройство контура заземления

Конструкция защитного заземления может состоять из разного вида металлических деталей, однако, к ним есть отдельное требование такое же важное, как и нормативы относительно правил установки. Например, очень важно, чтобы элементы заземления были использованы нужного размера, как указывается в нормах и ПУЭ, прутья должны иметь гладкую структуру с диаметром не менее 5 мм. Сам металл и основа сооружения должны быть устойчивыми к воздействиям окружающей среды, то есть лучше, если электродами будут стальные элементы ведь от этого зависит долговечность защитного заземления. Известно, что сталь практически не поддается коррозии и отлично проводит электрический ток к грунту. При установке контура, следует использовать метод кольцевого, фундаментального или глубинного монтажа.

Важно! Каждый из способов монтажа защитного заземления для молниезащиты имеет индивидуальные правила. Не применяйте одинаковую тактику установки ко всем нижеперечисленным вариантам.

  • Кольцевой способ представляет собой крепление металла в виде замкнутого кольца, которое обустраивается вокруг всего здания, подвергающегося заземлению.
  • Фундаментальный тип используется еще в начале строительства, поэтому планировку подобного заземления продумывают заранее. Важно чтобы в дальнейшем из постройки выступали элементы, предназначенные для крепления к ним токоотводящих металлических проводников.
  • Глубинный метод не предусматривает строгих параметров при установке, однако приходиться руководствоваться типом почвы и ее структурой, отсюда и высчитывать оптимальную глубину залегания электродов. Доступность и простота монтажа—это большой плюс подобного способа.
Zashchitnoe zazemlenie obshchie tseli i sposoby montazha1

Линейные размеры при монтаже системы заземления

В нашей статье мы подробно разобрали для каких целей применяется защитное заземление и что из себя представляет назначение защитного заземления, следовательно, в заключение нужно выделить, что без подобного устройства в современных условиях нельзя обойтись.

Вас могут заинтересовать:

prokommunikacii.ru

Защитное заземление электроустановок

Рассмотрим общие сведения о заземлении электроустановок. Серьезную опасность представляет прикосновение к нетоковедущим металлическим частям, оказавшимся под напряжением вследствие порчи изоляции.

Пример защитного заземления

Неожиданность удара током, может привести к несчастному случаю.

Если прикосновение к токоведущим частям может быть пре­дупреждено ограждением или расположением их на не­доступной высоте, то прикосновение к частям нетокове­дущим, например, корпусам оборудования, неизбежно при всякой эксплуатации. Более того, в ряде случаев это прикосновение является нормальной рабочей операцией. Моторист обязан, например, периодически касаться ру­кой корпуса электродвигателя, чтобы проверить на ощупь степень нагрева его деталей. Работающий с переносным электроинструментом находится в длитель­ном контакте с его корпусом.

Рабочий, обслуживающий станок, электродвигатель которого установлен на одной станине или на одном валу с ним, длительно связан через станок с корпусом электродвигателя и т. п. Про­бой изоляции у такого вида электрооборудования неиз­бежно влечет за собой переход напряжения на корпус двигателя, на инструмент и станок, в результате чего ра­ботник оказывается под воздействием электрического тока.

Неожиданность этого явления и неподготовленность к нему рабочего зачастую приводят к несчастному случаю.

Уменьшение или устранение опасности при переходе напряжения на корпуса и нетоковедущие конструктив­ные детали электрического оборудования достигается одной из следующих мер: защитным заземлением, за­щитным отключением, покрытием нетоковедущих частей изоляцией или изготовлением их из изолирующего ма­териала, применением изолирующих подставок, пониже­нием напряжения и т. д.

Наиболее надежной мерой защиты человека от пере­хода напряжения на нетоковедущие части служит зазем­ление — металлическое соединение с землей нетоковеду­щих металлических частей электрической установки, ко­торые, будучи расположены вблизи токоведущих частей, могут оказаться с ними в соприкосновении.

Защитному заземлению подлежат корпуса электри­ческих машин, трансформаторов, реостатов, контролле­ров, металлические кожухи выключателей, штепселей, каркасы щитов, металлические оболочки кабелей, корпуса муфт, приводы электрической аппаратуры, фермы, колонны и прочие нетоковедущие части электрических установок, которые могут случайно оказаться под напряжением.

В зависимости от напряжения и системы электроснабжающей сети с изолированной или глухозаземленной нейтралью трансформаторов (генераторов) защитное заземление выполняют по-разному (рис. 1).

Рисунок 1

Рисунок 1. а)сеть с изолированной нейтралью, б)сеть с глухозаземленной нейтралью.

Защитное заземление в установках с изолированной нейтралью (рис. 1,а) силового трансформатора (генера­тора) осуществляют соединением с землей нетоковеду­щих частей установок, которые могут оказаться под на­пряжением при нарушении изоляции и к которым воз­можно прикосновение людей.

Создавая между корпусом и землей металлическое соединение большой проводимости, достигают того, что ток, проходящий через тело человека, включенное па­раллельно этому соединению, становится неопасным.

В сети с глухим заземлением нейтрали (рис. 1,б) си­лового трансформатора (генератора) для заземления соединяют нетоковедущие части установок с заземлен­ным нулевым проводом. В таких установках заземление служит для надежного и быстрого автоматического от­ключения установки при замыканиях на корпус повреж­денных участков сети.

При замыкании на корпус электродвигателя про­изойдет короткое замыкание между поврежденной фазой и нулевым заземленным проводом, в цепи возникнет ток короткого замыкания, и поврежденное оборудование ав­томатически отключится от сети, так как сгорят предо­хранители или отключится автомат.

Для быстрого и надежного отключения поврежден­ного участка ток короткого замыкания должен превы­шать не менее чем в три раза номинальный ток плавкой вставки предохранителя или в полтора раза ток уставки ближайшего автоматического выключателя.

Поделитесь полезной статьей:

Top

fazaa.ru

Современные системы заземления

Заземление является неотъемлемой частью всех энергетических систем. Представляет собой основную меру предотвращения поражения электротоком. Электрическая сеть с использованием защитного заземления обеспечивает безопасность:

  • человека при обслуживании электроустановок;
  • работы электроприборов.

Процесс сооружения контура заземления

Для обеспечения стабильной работы электросетей необходимо знать, какая система заземления должна быть внедрена в каждом конкретном случае.

Системы заземления, виды, особенности и требования к ним описаны в Правилах устройства электроустановок.

По способу действия разделяют на два типа:

  • Естественное. Стационарные металлоконструкции, заглубленные в землю постоянно (железобетонные фундаменты строений и др.). Регулировать величину сопротивления таких ЗУ невозможно, поэтому их применение в качестве единственного заземления электроустановок недопустимо.
  • Искусственное. Намеренное соединение электрооборудования с заземляющим устройством.

Устройство ЗУ

Все ЗУ состоят из: заземлителя (одной металлоконструкции либо сложной системы), контура, заземляющего проводника (ЗП), который соединяет электроустановку с контуром.

Проверка величины сопротивления контура

Заземлителем называется токопроводящая часть – множество соединенных между собой проводников, которые имеют прямой контакт с землей. Выполняется из стали либо из меди.

Нормы для отдельно взятых электроустановок регламентируется действующим ПУЭ. Качество системы заземления определяется величиной сопротивления (чем ниже значение, тем эффективнее система).

Повышают величину сопротивления растеканию тока путем увеличения площади электродов, уменьшением сопротивления грунта (забивание дополнительных электродов, увеличение глубины заложения ЗУ) и др.

Классификация искусственного заземления

  1. ЭУ до 1 кВ:
  • с изолированной нейтралью;
  • с глухозаземленной нейтралью.
  1. ЭУ выше 1 кВ:
  • с глухозаземленной (эффективно заземленной) нейтралью,
  • с изолированной (заземленной) на дугогасящий реактор нейтралью.

Применение каждой системы зависит от особенностей электросети, количества и характера электроустановок и др. Выбор типа сети для электроустановок устанавливает местная энергоснабжающая организация (в техусловиях обязательно указывается тип системы заземления).

Системы заземления в сетях до 1 кВ

  • TN-сеть с глухозаземленной нейтралью – заземляющий контур соединен непосредственно с нулем на ПС. ЭУ соединены с нейтралью на трансформаторе нулем.

TN-система с глухозаземленной нейтралью

Условие работоспособности данного вида заземления – величина тока между токопроводящей частью и фазой при КЗ должна быть больше, чем номинальный ток срабатывания коммутационного аппарата за допустимое время.

Системы TN разработаны для защиты оборудования при случайном прикосновении к поверхности неисправной изоляции.

Преимущества:

  • При повреждении целостности изоляционных покрытий (при возникновении больших токов) срабатывает защита.
  • При повреждении оборудования образуются низкие величины напряжения на токопроводящих частях, что уменьшает вероятность поражения электротоком.

Различают подвиды TN-системы:

  • TN-С. Подвид системы с глухозаземленной нейтралью, в которой защитный и рабочий ноль совмещен в PEN-проводнике по всей длине линии электропередачи (защитное зануление).
  • TN-S. В таком исполнении защитный и рабочий ноль электросети разделен по всей ее длине. Является наиболее безопасной, но и дорогостоящей системой. Редко применяется для электроустановок, удаленных от источника питания сети (в виду большого удорожания строительства).
  • TN-С-S – подвид системы с глухозаземленной нейтралью. Является гибридом TN-С и TN-S систем, т.е. совмещение PE- и N-проводников происходит лишь на части ЛЭП. Обычно совмещение происходит до вводно-учетного устройства электроустановок. Является самым популярным видом, т.к. обеспечивает высокую надежность работы энергосистемы по разумной цене.

Применение УЗО в системе TN-С-S

Разновидность выбирают в зависимости от конкретных условий.

Какую систему выбрать?

В бытовых сетях целесообразно применение системы с глухозаземленной нейтралью (TN).

Применение TN-С-заземления запрещено, поэтому при модернизации старых электропроводок выбирают TN-С-S и TN-S исполнения. Т.к. сооружение TN-S требует значительных капиталовложений, TN-С-S остается самой применяемой из сопоставления цены и качества.

IT-система (изолированная нейтраль). Ноль имеет заземление через приборы с большим сопротивлением. В настоящее время применяется редко.

TT-система (заземленная нейтраль). Является лучшим решением для заземления мобильных электроустановок (бытовки, строительные вагончики и др.). В схеме обязательно наличие УЗО и контура заземления с сопротивлением 4 Ом для сетей 0,4 кВ.

Система ТТ – лучший вариант для заземления мобильных электроустановок

Рабочий ноль в данной системе имеет заземление, а токопроводящие части заземлены независимым контуром заземления (не связанным с нулем).

При модернизации старых систем заземления существует вероятность некоторых трудностей. Потенциал может находиться на поверхности электроприборов при отгорании нулевого проводника и образовавшегося перекоса фаз. При ошибочном подключении фазного провода вместо нулевого, также может находиться потенциал на поверхности приборов.

В частном доме заменить TN-С проводку на TN-С-S не составит труда. Необходимо соорудить эффективный контур заземления и правильно подключить его к проводке (к ШВУ). В многоквартирных домах переделывать схему таким образом запрещено.

Модернизация сети в частном доме

Если в бытовой электросети не предусмотрен контур заземления, то соединение защитного и рабочего нуля запрещено. В схемы для предотвращения  поражения электротоком человека следует включать электроустройства защитного отключения или дифференциальные автоматы.

При модернизации сети следует сооружать TN-С-S-систему, а домашнюю проводку прокладывать медным трехжильным кабелем типа ВВГнг (не распространяющим горение).

Для защиты электросети необходимо применять устройства защитного отключения нескольких уровней: общедомового на 100 или 300 мА для предотвращения пожаров, групповые и отдельные УЗО на 30 мА, и УЗО на 10 мА для защиты от поражения электротоком в детских комнатах и помещениях с повышенной влажностью.

Устройство защитного отключения

Принцип работы системы заземления

Работает за счет:

  • стабилизации напряжения до условно безопасной величины;
  • установки устройства защитного отключения;
  • для электросетей с глухозаземленной нейтралью срабатывание защиты при попадании фазы на заземленный элемент.

Наиболее работоспособным является применение системы заземления в совокупности с устройством защитного отключения. При такой схеме аварийный участок электросети отключается за кратчайшее время. Также в цепи не наблюдается возникновение опасных потенциалов.

Системы заземления при неисправности сети

Наиболее часто встречающаяся неисправность – возникновение фазного напряжения на корпусе электрооборудования из-за нарушения целостности защитных кожухов. При наличии импульсных источников вторичного электропитания при отсутствии защитного заземления на корпусах приборов может находиться напряжение. Защиту от поражения электротоком в таких случаях можно произвести различным присоединением приборов к электропроводке.

Типы присоединения электроприборов к сети:

  • Есть заземление, отсутствует устройство защитного отключения. При протекании больших токов срабатывает расцепитель. Не является мерой, полностью обеспечивающей защиту организма от поражения электрическим током. При больших значениях номинального тока коммутационных аппаратов (25 А, например) на предохранителях при обычном сопротивлении (4 Ом), потенциал может составлять 0,1кВ, что является смертельно опасным.
  • В сети нет заземления, но присутствует УЗО (ДА). При протекании потенциала на поверхности прибора, УЗО сработает лишь в том случае, если в цепи появится ток утечки (прикосновение к неисправному устройству). Пострадавший получает удар током от 10 до 30 мА на время срабатывания УЗО.
  • Есть заземление и устройство защитного отключения. Является наиболее безопасной схемой, т.к. при возникновении потенциала электроток идет по заземляющему проводнику в землю. При этом происходит немедленное срабатывание УЗО (на отходящей линии, группового или на вводе в дом). При этом, если какой-нибудь элемент выйдет из строя, электросеть будет частично исправна.

Наиболее часто встречающиеся ошибки в реализации систем заземления:

  • Использование непредназначенных для заземления PE-проводников. Применение в качестве заземляющего проводника металлических труб недопустимо, т.к. в инженерных системах часто используют вставки из пластиковых трубопроводов. Кроме этого, соединение труб может быть неисправно из-за коррозии или на участке инженерной сети могут проводиться ремонтные работы, что приводит к неэффективности СУП и вероятности поражения электрическим током при прикосновении к токопроводящим поверхностям.
  • Объединение PE- и N-проводников на недопустимых для этого участках (за точкой разделения). Это приводит к беспричинным отключениям УЗО, а также присутствию токов на PE-проводнике.
  • Разделение PEN-проводника в бытовой электросети, т.к. PE-проводник все равно остается связанным с рабочей нулевой жилой – сохраняется фазный потенциал, который также может присутствовать на корпусе проводника. При перестановке местами фазных жил, при разрыве (отгорании) нулевого провода появляется опасность поражения электрическим током при прикосновении к токопроводящим поверхностям электроприборов.
  • Заземление низковольтных (телефонных кабелей, телевизионных и интернет сетей) отдельно от общего. При наличии двух и более заземляющих устройств может возникнуть разность потенциалов из-за разных токов на цепях. Это увеличивает вероятность поражения электротоком и выхода из строя слаботочных сетей. Система уравнивания потенциалов предотвращает подобные аварийные ситуации.

Системы уравнивания потенциалов

При возникновении аварийной ситуации, когда ЗУ находится под напряжением, его сопротивления недостаточно для обеспечения безопасности людей. СУП предназначены для защиты от ударов электротоком, когда он наведен на заземляющее устройство.

Система соединяет воедино все точки электросети, а также доступные для контакта металлоконструкции здания, инженерные коммуникации (трубы водо,- и теплоснабжения и др.), системы молниезащиты.

Организация СУП в TN-C-системе запрещена. В жилищах старого типа для организации СУП применяется соединение электрощитовых с элементами водопровода.

Присоединение с заземлителями выполняют отдельными защитными PE-проводниками. Допускается организация СУП в составе системы внутреннего электроснабжения.

Запрещено использовать шлейфы для соединения PE-проводников СУП. После ГЗШ совместное использование PE,- и N-проводника недопустимо.

Выделяют две системы уравнивания потенциалов: основную и дополнительную.

Главная заземляющая шина (ГЗШ) – элемент заземляющего устройства электроустановки

Состав основной системы уравнивания потенциалов:

  • Главная заземляющая шина. Установка предполагается в вводно-учетных и распределительных щитах. От нее отходят PE-проводники групповых отходящих фидеров и проводники уравнивания потенциалов ко всем металлоконструкциям жилища.
  • Контур заземления. От него проложена стальная полоса заземления к главной заземляющей шине.
  • «Сетка» заземляющих проводников.
  • ЗП. Элемент системы, которым присоединяют отдельные части в единую систему.

Включать в схему PE-проводника автоматы с расцепителями запрещено, т.к. в этом случае нарушается основное требование системы защиты – целостность линии.

Для соединения отдельных элементов СУП используют радиальную схему, т.е. для каждой части здания (ВРУ) должен предусматриваться отдельный проводник.

Дополнительная СУП применяется для обеспечения безопасности во влажных помещениях.

Состав:

  • соединительные элементы;
  • коробка уравнивания потенциалов.

Порядок монтажных работ:

  • согласовать расположение коробки;
  • соединить шинку ВРУ с шинкой КУП, материал проводника – медный;
  • присоединение к системе всех металлических элементов, которые находятся в комнате (труб горячего и холодного водоснабжения, отопления, стоков, ванны), а также бытовых розеток и выключателей;
  • затем происходит соединение защитных проводников с шиной PE КУП;
  • завершающим этапом является проверка целостности проводников и замеры электрического сопротивления.

Соединение труб с СУП можно производить металлическими хомутами.

Видео. Правильное заземление

Существует несколько систем заземления, каждая из которых должна применяться согласно требованиям и возможности реализации. После выбора системы заземления необходимо правильное внедрение ее в сеть потребителя. Только качественно обустроенные электросети гарантируют безопасную их эксплуатацию и стабильную работу электроустановок.

Оцените статью:

elquanta.ru

Объясните назначение и принцип действия защитного заземления( со схемами)

Защитное заземление – преднамеренное электрическое соединение с землей или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при замыкании на корпус.

Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по назначению к потенциалу заземленного оборудования.

Область применения защитного заземления – трехфазные трехпроводные сети напряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали.

 

Рис.1 Принципиальные схемы защитного заземления:

а – в сети с изолированной нейтралью до 1000В и выше

б – в сети с заземленной нейтралью выше 1000В

1 – заземленное оборудование;

2 – заземлитель защитного заземления

3 – заземлитель рабочего заземления

rв и rо – сопротивления соответственно защитного и рабочего заземлений

Iв – ток замыкания на землю

 

Заземляющим устройством называется совокупность заземлителя – металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают два типа заземляющих устройств: выносное и контурное.

Выносное заземляющее устройство характеризуется тем, что заземлитель его вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки.

Данный тип заземляющего устройства применяют лишь при малых значениях тока замыкания на землю и, в частности, в установках напряжением до 1000В, где потенциал заземлителя не превышает допустимого напряжения прикосновения. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения электродов с наименьшим сопротивлением грунта.

Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещают по контуру площадки, на которой находится заземляемое оборудование, или распределяют по всей площадке по возможности равномерно.

Безопасность при контурном заземлителе обеспечивается выравниванием потенциала на защищаемой территории путем соответствующего размещения одиночных заземлителей.

Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводу, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей. При этом в помещениях с повышенной опасностью и особо опасных по условиям поражения током, а также в наружных установках заземление является обязательным при номинальном напряжении электроустановки выше 42В переменного и выше 110В постоянного тока, а в помещениях без повышенной опасности – при напряжении 380В и выше переменного и 440В и выше постоянного тока. Лишь во взрывоопасных помещениях заземление выполняется независимо от назначения установки.

Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные – находящиеся в земле металлические предметы для иных целей.

Для искусственных заземлителей применяют вертикальные и горизонтальные электроды. В качестве вертикальных электродов используют стальные трубы диаметром 3…5см и стальные уголки размером от 40*60 до 60*60мм и длиной 2,5…,м.

В качестве естественных заземлителей можно использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов, а также трубопроводов, покрытых изоляцией для защиты от коррозии. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока, и поэтому использование их для целей заземления дает большую экономую. Недостатками естественных заземлителей является доступность их неэлектротехническому персоналу и возможность нарушения непрерывности соединения протяженных заземлителей.

megaobuchalka.ru

Защитное заземление

Защитным заземлением называют преднамеренное электрическое соединение с землей или ее эквивалентом металлических не-токоведущих частей электроустановок, которые могут оказаться под напряжением.

Заземляют все электроустановки, работающие при номинальном напряжении переменного тока более 50 В, постоянного и выпрямленного тока более 120 В (кроме светильников, подвешенных в помещениях без повышенной опасности поражения электрическим током на высоте не менее 2 м при условии изоляции крючка для подвески светильника пластмассовой трубкой).

Область применения защитного заземления:

сети напряжением до 1000 В — трехфазные трехпроводные с изолированной нейтралью, однофазные двухпроводные, изолированные от земли, а также двухпроводные постоянного тока с изолированной средней точкой обмоток источника тока;

сети переменного и постоянного тока с любым режимом нейтральной или средней точки обмоток источников тока напряжением свыше 1000 В.

Заземляющее устройство (рис. 8.3) состоит из заземлителя и проводника, соединяющего металлические части электроустановок с заземлителем. В качестве искусственных заземлителей применяют заглубляемые в землю стальные трубы, уголки, штыри или полосы; естественных — уложенные в земле водопроводные или канализационные трубы, кабели с металлической оболочкой (кроме алюминиевой), обсадные трубы артезианских колодцев и т. п.

Принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения и шага в случае появления электрического потенциала вследствие замыкания тока на металлические корпуса электрооборудования, разряда молнии или других причин.

Так как сопротивление тела человека Rч значительно больше сопротивления заземляющего устройства Rз, то сила тока Iч, протекающего через человека, оказывается намного меньшей, чем сила тока /з, стекающего на землю через заземлитель. Однако в этом случае полностью опасность поражения током не исключают, что относят к первому недостатку защитного заземления. Второй недостаток — значительное увеличение опасности поражения током при обрыве в цепи заземляющего устройства или ослаблении крепления заземляющего проводника. Третий недостаток проявляется в трехфазных сетях с изолированной нейтралью при хорошем состоянии изоляции двух фаз электроустановки и пробое изоляции третьей. В этом случае напряжение первых двух фаз относительно земли возрастает с фазного до линейного, что может вызвать повреждение изоляции в другой электроустановке со своим защитным заземлением. Возникает большой ток замыкания на землю, близкий по значению к току короткого замыкания двух фаз. Напряжение на корпусах обеих электроустановок зависит от линейного напряжения и приводит к появлению опасности поражения током даже при нормативных значениях сопротивления заземляющих устройств.

Рис. 8.3. Принципиальная схема защитного заземления

Каждую электроустановку следует присоединять к заземляющей магистрали отдельным проводником. Последовательное соединение заземляемых частей не допускается. Соединения должны быть надежными, обычно их выполняют сваркой или с помощью болтов. Не разрешается прокладывать в земле неизолированные алюминиевые проводники из-за их быстрой коррозии. С целью защиты от нее заземляющие проводники в сырых помещениях устраивают на расстоянии не ближе 10 мм от стен.

Наибольшие допустимые значения сопротивления заземляющего устройства Rз для электроустановок с напряжением до 1000 В составляют:

10 Ом при суммарной мощности генераторов или трансформаторов, питающих данную сеть, не более 100 кВ· А;

4 Ом во всех остальных случаях.

Рис. 8.4. Схемы заземлителей:

а — стержневого вертикального круглого сечения у поверхности земли; б — стержневого круглого сечения, вертикально заглубленного в землю; в — горизонтальной полосы, заглубленной в землю

Сопротивление заземляющего устройства можно определять двумя методами: расчетным (теоретическим) и практическим.

Сопротивление, Ом, стержневого вертикального заземлителя с диаметром Округлого сечения у поверхности земли (рис. 8.4, а).

Значения р могут быть от 1 (морская вода) до 106 (граниты). При колебаниях влажности грунтов сильно изменяется их удельное сопротивление, например, при снижении влажности красной глины с 20 до 10 % оно возрастает в 13 раз. Значительно увеличивается ρ в случае промерзания грунта. Вот почему стержневые заземлители рекомендуют забивать на глубину, большую глубины промерзания, и по возможности ниже уровня грунтовых вод.

Сопротивление, Ом, стержневого вертикально заглубленного заземлителя круглого сечения (рис. 8.4, б).

Сопротивление заземлителя, Ом, выполненного в виде горизонтальной полосы (рис. 8.4, в), заглубленной в землю.

Рис. 8.5. Схема измерения сопротивления заземления с помощью вольтметра и амперметра

Сопротивление заземления проверяют специальными приборами-измерителями М-416, МС-08 и др. Если его контролируют не в период максимального промерзания грунта, то показания прибора следует умножить на коэффициент сезонности.

При отсутствии специальных приборов можно использовать вольтметр и амперметр. В этом случае в качестве источника тока служит трансформатор (обычный сварочный) мощностью около 5 кВт со вторичным напряжением 36...120 В, который может обеспечить достаточно большую силу тока (I= 15...20 А), так как при малых значениях I не достигают необходимой точности замеров.

Для измерения забивают дополнительный заземлитель Дз и зонд Зз (рис. 8.5). Сопротивление заземлителя определяют по закону Ома:

Rз = U/I.

С помощью омметров М-372 обычно измеряют сопротивление цепи "оборудование — заземлитель". Сопротивление контура вместе с сопротивлением проводника и есть полное сопротивление заземляющего устройства.

Сопротивление заземляющих устройств измеряют не реже 1 раза в год. Внешний осмотр проводят не реже 1 раза в 6 мес, а в помещениях с повышенной опасностью поражения электрическим током и особо опасных — не реже 1 раза в 3 мес. Предыдущая К содержанию Вперед Полезная информация:

ohrana-bgd.narod.ru

Заземление

Защитное заземление

Опасность поражения электрическим током и его воздействие на нетоковедущие контакты

Электротравмы возникают при попадании человека под действие напряжения или при прикосновении к токопроводящему участку, потенциал которого отличается от потенциала земли. Так же опасность поражения током возможна при прикосновении к двум точкам в электроустанвке с различными потенциалами. Статистика говорит, что в производстве на электротравмы приходится 0,5 – 1 % всех случаев, при этом смертельные случаи составляют 20 – 40% от общего числа поражений электрическим током. Чаще всего смертельное поражение происходит в оборудовании с питанием от 127 до 380 Вольт. Опасность поражения электрическим током заключается в том, что организм человека не в состоянии дистанционно определить наличие и силы тока, а его защитная реакция проявляется только уже под воздействием на тело электрического тока, когда речь уже идет о непосредственном поражении. Во время протекания тока он вызывает непроизвольные сокращения мышц, в том числе и органов, жизненно важных для человека, что нарушает их нормальную жизнедеятельность. Дополнительную опасность несут в себе электроустановки повышенного напряжения выше 1000В., где опасность поражения заключается в приближении к токопроводящим шинам и удара током электрической дуги.

Во время протекания тока через организм человека, происходит нагрев тканей, ожоги (термическое воздействие), разложение жидкостей, крови (электролитическое), нарушение обменных процессов в организме, мышечный спазм (биологическое).

При протекании через организм токов 0,6 – 1,5 мА переменной частоты 50 Гц или 5 – 7 мА постоянного тока человек начинает ощущать их воздействие. Когда неотпускающий ток начинает вызывать судорожные сокращения мышц, его значение составляет: 10 – 15 мА для переменного значения и 50 – 80 мА для постоянного. При значении переменного тока в 100мА 50Гц и постоянного тока в 300мА начинается фибрилляция сердца (сбой его ритма работы).

Для электронных устройств попадание электрического тока на нетоковедущие части (к примеру, корпус), либо на питающие или информационные линии с другим потенциалом (короткое замыкание), приводит к гарантированному выходу устройства из строя. Причем в зависимости от величины напряжения и площади замыкания степень выгорания электронных деталей экспотенциальна. Другим, не менее опасным фактором влияния постороннего напряжения на нетоковедущие элементы является статическое электричество. Статический заряд, приходящий на плату с электронными компонентами, даже приложенный к корпусу, способен полностью вывести ее основные элементы из строя. Чаще всего страдает основной управляющий процессор. В современной электронике выход из строя процессора, припаянного к плате BGA монтажом (когда контакты располагаются непосредственно под чипом), ведет к полной замене модуля из-за высокой сложности и технологичности ремонта, либо отсутствия в свободной продаже запасных радиозапчастей. Хорошим примером может служить попадание молнии, либо подключение телевизионного выхода видеокарты к телевизору на «горячую», ведущее к выгоранию видеопроцессора карты из-за разности потенциалов, подключение спутникового конвертера (головки) при вставленном кабеле во включенный спутниковый ресивер, ведущее к выгоранию последнего, ремонт электроники без заземляющего браслета. Так же на практике довольно часто встречается ситуация, когда корпус системного блока начинает бить током. Это происходит из-за конструкции его блока питания. При высыхании одного из 2-х сетевых электролитов происходит изменение потенциала средней точки, которая через развязывающие конденсаторы находится на корпусе компьютера. Примеров может быть огромное множество. Уберечь себя и электронику от нежелательного воздействия посторонних электрических токов помогает заземление.

Защитное заземление

Защитное заземление представляет собой преднамеренное электрическое соединение металлических нетоковедущих частей оборудования, которое может оказаться под напряжением, с землей или ее эквивалентом. Такая мера защиты является наиболее эффективной мерой защиты электронного и электрооборудования, которое может запитываться от промышленной сети до 1000 вольт. Его функциональное назначение заключается в снижении напряжения прикосновения либо в приложенном неконтролируемом потенциале извне. При этом за счет минимально возможного сопротивления заземления, стремящегося в идеале к 0, происходит выравнивание потенциалов оказавшихся под действием напряжения устройства и земли. В результате ток протекает по наименьшему сопротивлению заземления непосредственно в землю, защищая при этом заземляемый объект и человека в том числе. В установках с напряжением питания выше 1000 В. и большими токами, проходящими через заземление, должна быть предусмотрена токовая автоматически разрывающая питающую цепь защита, позволяющая отключить поврежденный участок. В этом случае пробоя питающей фазы на корпус речь идет об однофазном коротком замыкании.

Существуют правила устройства электроустановок (ПУЭ), согласно которым, при напряжении переменного тока 380 В., а так же постоянного тока 400 В. и выше, защитное заземление должно применяться в обязательном исполнении во всех электроустановках. Если оборудование применяется в особо опасных помещениях, то заземлению подлежат электроприборы с необходимым питанием для сети переменного тока от 42 В. и выше, для сети постоянного тока от 110 В. То же правило соответствует применению заземления во взрывоопасных установках.

Защитному заземлению подлежат любые нетоковедущие части, на которые теоретически возможен пробой изоляции, наведение статического напряжения, или попадание токов извне. Кроме того, защитные металлические гофры кабельных силовых трасс во избежание пробоя проводов и попадания напряжения на себя также необходимо заземлять.

Правилами ПУЭ не регламентируется заземление электрических шкафов и электрооборудования, если оно установлено на металлических конструкциях с заземлением, либо имеющих надежный электрический контакт металлических частей с землей. В качестве заземлителя в этом случае может выступать арматура, оттяжки, кронштейны и т.д.

Конструкция заземления и заземляющих устройств

К заземляющим устройствам относят совокупность заземлителей, которыми могут выступать металлические проводники или группы проводников, соединенных между собой и грунтом. В зависимости от расположения заземляющих устройств по отношению к заземляемому оборудованию заземление может быть выносным (сосредоточенным) или контурным (распределенным).

Выносные заземлители

В случае применения выносных заземлителей их располагают сосредоточенно на равном расстоянии от общей заземляющей шины, как и заземляемое оборудование. На рисунке выносного заземления представлено: 1 – заземлители, 2 – заземляющие проводники, 3 –заземляемое оборудование. Заземлители расположены на удаленном расстоянии от оборудования для предотвращения растекания тока на устройства и появления контурных заземляющих токов.

В данной схеме при прикосновении человека к корпусу оборудования, на котором появится напряжение, через его тело пройдет ток значительно меньший по отношению к его величине, которая пройдет через заземляющие шины к заземлителям. Причем, чем меньше сопротивление шины и заземлителей, тем ниже будет величина тока через человека. Учитывая эти факторы, стоит отметить, что выносное заземление обеспечивает достаточную безопасность человека до тех пор, пока напряжение на оборудовании не превысит некоторой пороговой величины. Если на корпусе оборудования появятся токи большой величины (токи короткого замыкания), то часть из них пройдут через тело человека, что чревато электрическим ударом. Для предотвращения этой ситуации применяют контурное заземление.

Заземлители контурного заземления

Данный вид заземления обусловлен размещением заземлителей по всему периметру или внутри площадки, где расположено заземляемое оборудование. Все заземлители между собой соединены электрической связью. В случае замыкания на корпус происходит стекание тока в землю по ближайшему заземлителю, где самая большая разность потенциалов. Если рассматривать напряжение на всей территории площадки, то в отличие от применения выносного заземления его величина будет значительно меньше. Данное напряжение называется шаговым. Если человек одной рукой или другой частью тела прикоснется к устройству, а другой частью тела прикоснется к заземлителю, при этом он будет расположен между заземлителями, то через его тело протечет, в случае замыкания, значительный ток. В то же время напряжение над заземлителем (под ногами человека ток весь уходит в землю) будет практически рано 0.

Вокруг площадки напряжение шага будет весьма значительным, поэтому для его рассеивания в земле, если рядом расположены узкие проходы или проезд транспорта, закапывают металлические шины. Эти шины не соединены с заземляющим устройством и между собой. В этом случае распределение потенциала по земле происходит равномерно, а напряжение шага значительно уменьшается.

Типы заземлителей

Заземлители разделяются на искусственные и естественные. Искусственные заземлители устанавливаются ручным способом и производятся из металлоконструкций. Естественные заземлители несут в себе производственные и строительные электропроводящие конструкции и коммуникации (железные трубы, арматура фундамента). Главное условие – их хороший контакт с землей. Нельзя использовать в качестве естественных заземлителей трубопроводы горючих газов или жидкостей (газо- и нефтепроводы). Для оптимальной защиты устройств применяют естественное заземление в первую очередь.

Искусственное заземление изготовляют из стали.

По себестоимости дешевле всего такое заземление можно изготовить из электродов, вертикально вкопанных в землю. Все электроды должны быть соединены между собой. Вертикальные электроды выполняют из стержней с диаметром 10 – 14 мм. и длиной не менее 5 метров. Так же можно применить уголки. Для горизонтальной связи применяют полосу из стали сечением 4 х 12мм., либо прутки с диаметром не менее 1см. Заземляющие проводники с заземлителями для минимального сопротивления должны быть соединены сваркой, а с заземляемым оборудованием также сваркой или с помощью болтового соединения.

На рисунке слева представлены: а – вертикальный электрод в грунте, б – сварное соединение заземлителей с заземляющими проводниками, в – сварные соединения заземляющих проводников.

Как мы уже упоминали – чем ниже сопротивление заземления, тем меньший ток пройдет через человека, поэтому очень важен фактор минимизации сопротивления заземляющего устройства. Суммарное сопротивление заземления зависит от суммы всех сопротивлений при протекании тока от устройства к земле. Сопротивление заземления состоит из сопротивления материалов и сварных соединений.

Ниже мы приведем данные сопротивления заземления, при условии напряжения на заземляющем устройстве не более 10 кВ. Если напряжение на заземляющем устройстве превышает 5 кВ, то необходимо предусмотреть меры по защите и изоляции кабелей связи, проходящих по земле.

>Применение заземления в быту

Разговор о применении заземления в бытовых помещениях возникает, когда - есть необходимость прикасания человеком к металлоконструкциям здания и одновременно к металлизированному корпусу радиоэлектронного оборудования, - наличие сырости в помещении, либо влажности более 75% (пример: обязательно заземление электропечи в бане или сауне), - пол помещения выполнен из металла, либо любого другого токопроводящего материала.

Для осуществления заземления металлического оборудования, у которого есть опасность оказаться под напряжением достаточно применение медного неизолированного провода с сечением не менее 4 кв. см. от устройства к заземлителю, либо контурной заземляющей шине из стали или металла с низким сопротивлением. Физическое осуществление заземления происходит с помощью варки или болтового соединения в хорошо доступном и просматриваемом месте. Если применяется соединение болтом, то необходимо заранее предусмотреть защитные меры места соединения от коррозирования (регламентируется для помещений с повышенной влажностью). В случае применения защитного заземления или зануления в бытовых розетках в качестве третьего заземляющего контакта, прокладка заземляющего провода должна производиться укладкой в стене с последующим оштукатуриванием. При этом не допускаются перекрестия заземляющих проводов с питающей линией (все провода должны идти параллельно).

Нельзя осуществлять последовательное заземление металлических корпусов единой шиной от одной единицы к другой, так как есть опасность возникновения контурных токов. Так же не допускается использовать единое заземление на устройства, если они питаются от разных линий электропередач.

Применение заземления при работе с электроникой

Бытовое заземление в современных жилищах сегодня является неотъемлемой частью электрической разводки. Для защиты потребителей и безопасной их эксплуатации применяют розетки и переноски с дополнительным контактом заземляющей нейтрали, маркирующийся буквой N.

В целях защиты слаботочных радиоэлектронных цепей во время ремонта, сборки и наладки устройств следует применять специальные заземляющие браслеты. Со стороны заземлителя браслет с помощью захватного устройства крепится к заземляющей шине, другая сторона выполнена в виде гибкой ткани с наличием металлизированной контактной площадки. Контактная площадки должна плотно соприкасаться с кожным покровом человека. Как правило, браслет одевают на запястье. Заземляющий браслет так же называют антистатическим.

Помимо основных средств борьбы со статическим электричеством существуют и дополнительные меры: антистатическая одежда в виде халатов и обуви, специальные пакеты (их можно встретить при покупке компьютерных материнских плат или жестких дисков), специализированная мебель и т.д.

elektronika-muk.ru


Каталог товаров
    .