Содержание
Типы выпрямителей переменного тока.
Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.
Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.
Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.
Однополупериодный выпрямитель.
Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.
Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.
Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.
Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.
Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.
К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.
Двухполупериодные выпрямители.
Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.
Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.
Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.
Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.
Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.
Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.
Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.
О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop — VF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.
Большой интерес вызывает выпрямитель с удвоением напряжения.
Выпрямитель с удвоением напряжения.
Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)
Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.
Развитием схемы стало создание умножителя на полупроводниковых диодах.
Умножитель напряжения.
Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.
На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.
Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.
Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.
Трёхфазные выпрямители.
Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.
Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.
Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.
В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.
Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.
Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Какие бывают припои?
Обзор термовоздушной паяльной станции.
Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.
Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.
В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.
В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).
Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.
Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.
Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.
На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.
Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.
Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax
где: π — константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.
Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.
Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.
Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А». Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».
Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.
Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.
По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.
Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax
где: π — константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):
Трёхфазные выпрямители
Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.
На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.
За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.
На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).
За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».
При конструировании блоков питания для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:
— максимальное обратное напряжение диода –
Uобр ;
— максимальный ток диода –
Imax ;
— прямое падение напряжения на диоде –
Uпр .
Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.
Максимальное обратное напряжение диода
Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой
p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.
Значение максимального тока
Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.
Прямое падение напряжения на диоде –
Uпр, это то напряжение, которое падает на кристалле
p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух
p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.
Схемы выпрямителей предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.
Схемы выпрямителя переменного тока
» Примечания по электронике
Основы схем выпрямителей переменного тока, используемых в цепях питания электроники, с подробной информацией о диодных выпрямителях, включая схемы однополупериодных и двухполупериодных выпрямителей, включая мостовой выпрямитель.
Схемы блока питания. Учебное пособие. Включает:
Обзор электроники блока питания.
Линейный источник питания
Импульсный источник питания
Сглаживание конденсатора
Защита от перенапряжения
Характеристики блока питания
Цифровая мощность
Шина управления питанием: PMbus
Бесперебойный источник питания
Первым элементом блока питания электроники, которому будет соответствовать любая входящая мощность, являются цепи трансформатора и выпрямителя переменного тока. Этот элемент любого источника питания электроники преобразует поступающую мощность в форму, приемлемую для цепей сглаживания и регулирования.
При работе от источника переменного тока трансформатор используется для преобразования входного сетевого напряжения в правильное значение, необходимое для схемы электроники источника питания. Результирующая форма волны напряжения представляет собой переменный ток. Это должно быть исправлено, чтобы мощность могла быть сглажена и отрегулирована для использования электронными схемами. Для этого используется схема выпрямителя переменного тока. Хотя на первый взгляд схема выпрямителя может показаться очень простой, существует несколько различных форм схемы выпрямителя переменного тока, которые можно использовать. Выбор фактической схемы выпрямителя переменного тока будет зависеть от ряда факторов, а также может повлиять на тип используемого трансформатора.
Схемы однополупериодных и двухполупериодных выпрямителей
В схемах выпрямителя переменного тока
могут использоваться диоды в различных конфигурациях цепей. Используя диоды по-разному, можно достичь разных уровней производительности. Существует два основных типа цепей выпрямителя переменного тока:
- Цепи однополупериодного выпрямителя
- Цепи двухполупериодного выпрямителя
Из двух форм схемы выпрямителя переменного тока чаще используется схема двухполупериодного выпрямителя, особенно в приложениях, где требуется производительность. Полупериодный выпрямитель обычно используется в приложениях, где требуется мощность для небольшой вспомогательной цепи и где потребляется меньший ток.
Цепи однополупериодного выпрямителя
Как следует из названия, в схемах однополупериодного выпрямителя переменного тока в процессе выпрямления используется только половина формы волны переменного тока. Другими словами, они пропускают одну половину цикла и блокируют другую половину. Это означает, что питание подается на выход схемы выпрямителя — часто сглаживающая схема только в течение половины цикла, и это оставляет половину цикла, когда питание не подается. Соответственно, напряжение на любом сглаживающем конденсаторе падает в течение этого периода по мере того, как цепь нагрузки снимает заряд со сглаживающего конденсатора. Соответственно уровни пульсаций выше, чем при двухполупериодном выпрямлении, как будет показано ниже.
Схемы однополупериодных выпрямителей относительно просты. Процесс выпрямления можно осуществить с помощью одного диода. Именно простота схемы делает схему однополупериодного выпрямителя привлекательной для многих приложений. В нем используется минимум компонентов, и он способен обеспечить достаточное напряжение для многих применений.
При выборе диодов для использования в цепях выпрямителей переменного тока важным параметром является номинальное обратное напряжение. Это называется пиковым обратным напряжением, PIV. Для однополупериодного выпрямителя PIV для диода должно быть как минимум в два раза больше пикового напряжения формы волны переменного тока. Причина этого в том, что следует исходить из того, что сглаживающий конденсатор будет удерживать пиковое напряжение формы волны переменного тока. Затем, когда диод находится в непроводящей части сигнала, сигнал переменного тока достигает своего пика, диодный выпрямитель увидит этот пик поверх пикового напряжения, удерживаемого конденсатором, то есть вдвое превышающего пиковое значение сигнала. Стоит отметить, что пиковое значение синусоиды в 1,414 раза превышает среднеквадратичное значение. Таким образом, номинал PIV для диода должен быть в 2 раза больше среднеквадратичного значения сигнала переменного тока в 1,414 раза. Вдобавок к этому стоит оставить достаточный запас для компенсации любых всплесков, которые могут появиться на линии предложения.
Цепи двухполупериодного выпрямителя
Схемы двухполупериодных выпрямителей
могут использовать обе половины входящей формы волны, и в этом смысле они более эффективны, чем однополупериодные разновидности. Однако для достижения этого в этих схемах выпрямителя требуется использование большего количества диодов.
Цепь двухполупериодного выпрямителя переменного тока обеспечивает два различных пути, по одному для каждой половины цикла. Таким образом, один диод из набора диодов проводит одну половину цикла, тогда как другой диод из набора диодов проводит другую половину цикла.
Мостовые выпрямители
Схема мостового выпрямителя используется во многих схемах двухполупериодного выпрямителя. Состоит из четырех диодов и представляет собой эффективную форму выпрямления. Ввиду этого многие производители изготавливают блоки мостовых выпрямителей, содержащие четыре диода. Часто, когда эти мостовые выпрямители пропускают значительные уровни тока, они рассеивают некоторую мощность и нагреваются. Чтобы предотвратить их перегрев, эти мостовые выпрямители часто изготавливаются в формате, позволяющем прикрепить их болтами к радиатору той или иной формы.
Резюме
Цепи выпрямителя переменного тока
широко используются во всех видах электронного оборудования. Везде, где используется источник питания переменного тока, будет включена схема выпрямителя, потому что схемы электроники используют постоянный ток для питания для своей работы. Хотя источники питания могут не являться непосредственной частью работы оборудования, они необходимы, поскольку без какой-либо формы источника питания вся схема не будет работать. Поскольку в сетях питания используется переменный ток из-за характеристик передачи, а также необходимо использовать переменный ток, чтобы можно было использовать трансформаторы, всегда можно найти цепи выпрямителя переменного тока. В этих схемах мостовые выпрямители также очень распространены, потому что они представляют собой дешевую и эффективную форму компонента для использования в этих схемах.
Дополнительные схемы и схемы:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Транзисторная конструкция
Транзистор Дарлингтона
Транзисторные схемы
схемы полевых транзисторов
Символы цепи
Вернитесь в меню проектирования схем . . .
Что такое выпрямитель? Типы выпрямителей, работа и применение
В электронике наиболее часто используется схема выпрямителя , поскольку почти каждый электронный прибор работает на DC (Постоянный ток) , но наличие Источников постоянного тока ограничено, например, электрические розетки в наших домах обеспечивают AC (Переменный ток) . Выпрямитель является идеальным кандидатом для этой работы в промышленности и дома для преобразования AC в DC . Даже наши зарядные устройства для сотовых телефонов используют выпрямители для преобразования AC от наших домашних розеток в DC . Различные типы выпрямителей используются для конкретных приложений.
У нас в основном есть два типа типов напряжения, которые широко используются в наши дни. Они бывают переменного и постоянного напряжения. Эти типы напряжения могут быть преобразованы из одного типа в другой с помощью специальных схем, разработанных для этого конкретного преобразования. Эти преобразования происходят везде.
Наше основное питание, которое мы получаем от электросетей, носит переменный характер, а приборы, которые мы используем в наших домах, обычно требуют небольшого напряжения постоянного тока. Этот процесс преобразования переменного тока в постоянный называется выпрямлением. Преобразованию переменного тока в постоянный предшествует дальнейший процесс, который может включать фильтрацию, преобразование постоянного тока в постоянный и так далее. Одной из наиболее распространенных частей электронного блока питания является мостовой выпрямитель.
Для многих электронных схем требуется выпрямленный источник постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока. Простой мостовой выпрямитель используется в различных электронных силовых устройствах переменного тока.
Другой способ взглянуть на схему выпрямителя состоит в том, что можно сказать, что она преобразовывает токи вместо напряжений. Это имеет более интуитивный смысл, потому что мы привыкли использовать ток для определения природы компонента. Короче говоря, выпрямитель принимает ток, который имеет как отрицательную, так и положительную составляющие, и выпрямляет его так, что остается только положительная составляющая тока.
Мостовые выпрямители широко используются в источниках питания, обеспечивающих необходимое постоянное напряжение для электронных компонентов или устройств. Наиболее эффективными коммутационными устройствами, характеристики которых полностью известны, являются диоды. Теоретически вместо диодов можно использовать любой твердотельный переключатель, которым можно или нельзя управлять.
- Запись по теме: Типы диодов и их применение
Обычно типы выпрямителей классифицируются на основе их выходной мощности. В этой статье мы обсудим многие типы выпрямителей, такие как:
- Однофазные выпрямители
- Трехфазные выпрямители
- Управляемые выпрямители
- Неуправляемые выпрямители
- Однополупериодные выпрямители
- Двухполупериодные выпрямители
- Мостовые выпрямители
- Выпрямители с центральным отводом
Содержание
Что такое выпрямитель?
Выпрямитель представляет собой электрическое устройство, состоящее из одного или нескольких диодов, которое преобразует
0062 переменный ток ( переменный ток ) в постоянный ток ( постоянный ток ). Он используется для выпрямления, где приведенный ниже процесс показывает, как он преобразует переменный ток в постоянный.
Что такое выпрямление?
Выпрямление — это процесс преобразования переменного тока (который периодически меняет направление) в постоянный ток (течение в одном направлении).
- Запись по теме: Различные типы реле, их конструкция, работа и применение
Типы выпрямителей
В основном существует два типа выпрямителей:
- Неуправляемый выпрямитель
- Управляемый выпрямитель
Мостовые выпрямители бывают многих типов, и основанием для классификации может быть множество, например, тип питания, конфигурация мостовой схемы, возможности управления и т. д. Мостовые выпрямители можно в целом разделить на однофазные и трехфазные выпрямители на основе тип ввода, на котором они работают. Оба этих типа включают в себя эти дополнительные классификации, которые можно разделить как на однофазные, так и на трехфазные выпрямители.
Дальнейшая классификация основана на коммутационных устройствах, используемых в выпрямителе, и включает неуправляемые, полууправляемые и полностью управляемые выпрямители. Некоторые из типов выпрямителей обсуждаются ниже.
В зависимости от типа схемы выпрямления выпрямители делятся на две категории.
- Однополупериодный выпрямитель
- Двухполупериодный выпрямитель
Однополупериодный выпрямитель преобразует только половину волны переменного тока в сигнал постоянного тока, тогда как двухполупериодный выпрямитель полностью преобразует сигнал переменного тока в постоянный.
Мостовой выпрямитель является наиболее часто используемым выпрямителем в электронике, и в этом отчете речь пойдет о его работе и изготовлении. Простая мостовая схема выпрямления является наиболее популярным методом двухполупериодного выпрямления.
Мы подробно обсудим как управляемые, так и неуправляемые (полупериодные и двухполупериодные мостовые) выпрямители с принципиальными схемами и работой следующим образом.
- Запись по теме: Типы трансформаторов и их применение
Неуправляемый выпрямитель:
Тип выпрямителя, выходное напряжение которого не может регулироваться , называется неуправляемым выпрямителем .
Выпрямитель использует для работы переключатели. Выключатели могут быть различных типов, в широком смысле, управляемые выключатели и неуправляемые выключатели. Диод — это однонаправленное устройство, которое позволяет току течь только в одном направлении. Работа диода не контролируется, так как он будет работать, пока он смещен в прямом направлении.
При такой конфигурации диодов в любом заданном выпрямителе выпрямитель не полностью контролируется оператором, поэтому такие типы выпрямителей называются неуправляемыми выпрямителями. Он не позволяет мощности изменяться в зависимости от требований нагрузки. Таким образом, этот тип выпрямителя обычно используется в постоянных или фиксированных источниках питания.
- Запись по теме: Фильтры, типы фильтров и их применение
В неуправляемом выпрямителе используются только диоды, и они дают фиксированное выходное напряжение, зависящее только от AC ввод.
Типы неуправляемых выпрямителей:
Неуправляемые выпрямители подразделяются на два типа:
- Однополупериодные выпрямители
- Двухполупериодный выпрямитель
Однополупериодный выпрямитель:
Тип выпрямителя, который преобразует только полупериод переменного тока (AC) в постоянный ток (DC), известен как однополупериодный выпрямитель.
- Положительный однополупериодный выпрямитель:
Однополупериодный выпрямитель, преобразующий только положительный полупериод и блокирующий отрицательный полупериод.
- Выпрямитель отрицательной полуволны:
Однополупериодный выпрямитель преобразует только отрицательный полупериод переменного тока в постоянный.
Во всех типах выпрямителей однополупериодный самый простой из всех, поскольку он состоит только из одного диода .
Диод пропускает ток только в одном направлении, известном как прямое смещение . Нагрузочный резистор RL включен последовательно с диодом.
- Запись по теме: Различные типы датчиков с приложениями
Положительный полупериод:
Во время положительного полупериода диодная клемма анод станет положительной, а катод станет отрицательной, известной как прямое смещение . И это позволит позитивному циклу протекать.
Отрицательный полупериод:
Во время отрицательного полупериода анод становится отрицательным, а катод становится положительным, что известно как обратное смещение . Таким образом, диод заблокирует отрицательный цикл.
Таким образом, когда источник переменного тока подключен к однополупериодному выпрямителю, через него будет проходить только полупериода , как показано на рисунке ниже.
Выход этого выпрямителя подключен к нагрузочному резистору RL . если мы посмотрим на график вход-выход , он показывает пульсирующий положительный полупериод входа.
На выходе однополупериодного выпрямителя слишком много пульсаций и использование этого выхода в качестве источника постоянного тока нецелесообразно. Чтобы сгладил этот пульсирующий выход, через резистор введен конденсатор . Конденсатор будет заряжаться во время положительного цикла и разряжаться во время отрицательного цикла, чтобы выдавать плавный выходной сигнал.
Такие типы выпрямителей тратят впустую мощность полупериода входа переменного тока.
- Запись по теме: Типы переключателей. Его конструкция, работа и применение
Двухполупериодный выпрямитель:
Двухполупериодный выпрямитель преобразует положительных и отрицательных полупериода переменного тока (переменного тока) в постоянный ток (постоянный ток). Он обеспечивает двойное выходное напряжение по сравнению с однополупериодным выпрямителем
Двухполупериодный выпрямитель состоит из более чем одного диода.
Существует два типа двухполупериодных выпрямителей.
- Мостовой выпрямитель
- Выпрямитель с центральным отводом
Мостовой выпрямитель
Мостовой выпрямитель использует четыре диода для преобразования обоих полупериодов входного переменного тока в постоянный на выходе.
В выпрямителе этого типа диоды подключены особым образом, как показано ниже.
Положительный полупериод:
Во время положительного полупериода входа диод D1 & D2 становится прямым смещением, а D3 & D4 становится обратным смещением. Диоды D1 и D2 образуют замкнутый контур, который обеспечивает положительное выходное напряжение на нагрузочном резисторе RL .
Отрицательный полупериод:
Во время отрицательного полупериода диод D3 и D4 смещается в прямом направлении, а D1 и D2 — в обратном. А вот полярность на нагрузочном резисторе RL остается прежним и обеспечивает положительный выход на нагрузке.
Выход двухполупериодного выпрямителя имеет низкие пульсации по сравнению с однополупериодным выпрямителем, но тем не менее он не является гладким и устойчивым.
Чтобы выходное напряжение было плавным и стабильным, на выходе установлен конденсатор , как показано на рисунке ниже.
Зарядка и разрядка конденсатора, обеспечивающие плавный переход между полупериодами.
- Запись по теме: Типы предохранителей — их конструкция, работа и применение
Работа схемы мостового выпрямителя
Из схемы видно, что диоды подключены особым образом. Это уникальное расположение дало конвертеру его имя. В мостовом выпрямителе напряжение, подаваемое на вход, может быть от любого источника. Это может быть трансформатор, который используется для повышения или понижения напряжения, или это может быть сеть нашего домашнего источника питания. В этой статье мы используем трансформатор 6-0-6 с центральным отводом для обеспечения напряжения переменного тока.
В первой фазе работы выпрямителя, во время положительного полупериода, диоды D3-D2 смещаются в прямом направлении и становятся проводящими. Диоды D1-D4 смещаются в обратном направлении и не проводят ток в течение этого полупериода, действуя как открытые переключатели. Таким образом, на выходе мы получаем положительный полупериод. И наоборот, в отрицательный полупериод диоды D1-D4 смещаются в прямом направлении и начинают проводить, тогда как диоды D3-D2 смещаются в обратном направлении и не проводят в этот полупериод.
- Запись по теме: Типы катушек индуктивности и их применение
Снова получаем на выходе положительный полупериод. В конце процесса выпрямления отрицательная часть переменного тока преобразуется в положительный цикл. На выходе выпрямителя два полуположительных импульса той же частоты и амплитуды, что и на входе.
В отличие от работы однополупериодного выпрямителя, у мостового выпрямителя есть еще одна ветвь, которая позволяет проводить отрицательную половину волны напряжения, чего полумостовой выпрямитель не имел. Таким образом, среднее напряжение на выходе мостового выпрямителя вдвое больше, чем у полумостового выпрямителя.
Несмотря на то, что мы используем четыре отдельных силовых диода для изготовления двухполупериодного мостового выпрямителя, предварительно изготовленные компоненты мостового выпрямителя доступны «в готовом виде» в диапазоне различных величин напряжения и тока, которые можно использовать непосредственно для создания работающего выпрямителя. схема.
Форма волны выходного напряжения после выпрямления не соответствует постоянному току, поэтому мы можем попытаться преобразовать ее в форму волны постоянного тока, используя конденсатор для фильтрации. Сглаживающие или накопительные конденсаторы, подключенные параллельно нагрузке к выходу схемы двухполупериодного мостового выпрямителя, увеличивают средний уровень постоянного тока на выходе до требуемого среднего постоянного напряжения на выходе, поскольку конденсатор действует не только как фильтрующий компонент, но и также периодически заряжается и разряжается, эффективно увеличивая выходное напряжение.
Конденсатор заряжается до тех пор, пока сигнал не достигнет своего пика и не будет равномерно разряжаться в цепь нагрузки, когда сигнал начнет снижаться. Поэтому, когда выход становится низким, конденсатор поддерживает подачу надлежащего напряжения в цепь нагрузки, тем самым создавая постоянный ток.
- Запись по теме: Типы батарей и элементов и их применение
Преимущества мостового выпрямителя:
- Низкие пульсации выходного сигнала постоянного тока
- Высокий КПД выпрямителя
- Низкие потери мощности
Недостатки мостового выпрямителя:
- Мостовой выпрямитель более сложный, чем двухполупериодный выпрямитель
- Больше потерь мощности по сравнению с двухполупериодным выпрямителем с отводом от средней точки.
Выпрямитель с центральным ответвлением
Двухполупериодный выпрямитель этого типа использует трансформатор с центральным отводом и два диода.
Трансформатор с центральным отводом представляет собой трансформатор двойного напряжения с двумя входами ( I1 и I2 ) и три выходных клеммы ( T1, T2, T3 ). Клемма T2 подключена к центру выходной катушки, которая действует как эталонное заземление ( 0 вольт, ссылка ). Клемма T1 производит положительного напряжения , а клемма T3 создает отрицательного напряжения по отношению к T2 .
- Запись по теме: Типы цифровых логических элементов — таблицы истинности булевой логики и приложения
Конструкция выпрямителя с центральным отводом приведена ниже:
Положительный полупериод:
Во время входного положительного полупериода T1 будет производить положительное, а T2 — отрицательное напряжение. Диод D1 станет прямым смещением, а диод D2 станет обратным смещением. Это создает замкнутый путь от T1 к T2 через нагрузочный резистор RL , как показано ниже.
Отрицательный полупериод:
Теперь во время ввода отрицательного полупериода T1 будет генерировать отрицательный цикл, а T2 будет генерировать положительный цикл. Это поставит диод D1 в режим обратного смещения, а диод D2 в режим прямого смещения. Но полярность нагрузочного резистора RL остается той же, поскольку ток проходит путь от T3 к T1 , как показано на рисунке ниже.
Выходной сигнал DC выпрямителя с центральным отводом также имеет пульсации, и он не является плавным и устойчивым DC . Конденсатор на выходе удалит пульсации и создаст устойчивый выход DC .
- Запись по теме: Типы резисторов | Фиксированный, переменный, линейный и нелинейный
Управляемый выпрямитель:
Тип выпрямителя, выходное напряжение которого может изменяться или изменяться , называется управляемый выпрямитель .
Необходимость в управляемом выпрямителе становится очевидной, когда мы рассматриваем недостатки неуправляемого мостового выпрямителя. Чтобы превратить неуправляемый выпрямитель в управляемый, мы используем твердотельные устройства с регулируемым током, такие как SCR, MOSFET и IGBT. У нас есть полный контроль над тем, когда тиристоры включаются или выключаются, в зависимости от подаваемых на них стробирующих импульсов. Как правило, они более предпочтительны, чем их неконтролируемые аналоги.
Состоит из одного или нескольких SCR ( Кремниевый выпрямитель ).
SCR , также известный как тиристор , представляет собой диод с тремя выводами. Эти клеммы: Анод , Катод и вход управления, известный как Затвор .
Подобно простому диоду, SCR проводит ток при прямом смещении и блокирует ток при обратном смещении, но начинает прямую проводимость только при наличии импульса на входе затвора . Таким образом, выходным напряжением можно управлять с помощью входа затвора.
- Запись по теме: Типы интегральных схем. Классификация интегральных схем и их ограничения
Типы управляемого выпрямителя
Существует два типа управляемого выпрямителя.
Однополупериодный управляемый выпрямитель
Однополупериодный управляемый выпрямитель состоит из одного SCR (кремниевого управляемого выпрямителя).
Однополупериодный управляемый выпрямитель имеет ту же конструкцию, что и однополупериодный неуправляемый выпрямитель, за исключением того, что мы заменяем с SCR , как показано на рисунке ниже.
SCR не работает при обратном смещении, поэтому он блокирует отрицательный полупериод.
Во время положительного полупериода SCR будет проводить ток при одном условии, когда на вход затвора подается импульс. Вход затвора, конечно же, представляет собой периодический импульсный сигнал, предназначенный для активации тиристора SCR в каждом положительном полупериоде.
Таким образом, мы можем контролировать выходное напряжение этого выпрямителя.
- Запись по теме: Счетчик и различные типы электронных счетчиков
Выход SCR также представляет собой пульсирующее постоянное напряжение/ток . Эти импульсы удаляются с помощью конденсатора , параллельного нагрузочному резистору RL .
Двухполупериодный управляемый выпрямитель
Тип выпрямителя, который преобразует положительный и отрицательный полупериод переменного тока в постоянный, а также управляет выходом амплитуда известна как двухполупериодный управляемый выпрямитель.
Как и неуправляемый выпрямитель, управляемый двухполупериодный выпрямитель бывает двух типов.
- Связанная запись: Типы конденсаторов | Фиксированный, переменный, полярный и неполярный
Управляемый мостовой выпрямитель
В этом выпрямителе диодный мост заменен мостом SCR ( Тиристорный ) с такой же конфигурацией, как показано на рисунке ниже.
Положительный полупериод:
Во время положительного цикла SCR (тиристор) T1 и T2 будут проводить при подаче управляющего импульса. T3 и T4 будут иметь обратное смещение, поэтому они будут блокировать ток. Выходное напряжение будет установлено на нагрузочном резисторе RL , как показано ниже.
Отрицательный полупериод:
Во время отрицательного полупериода тиристор T3 и T4 станет прямым смещением, учитывая входной импульс затвора, а T1 и T2 станет обратным смещением. Выходное напряжение появится на нагрузочном резисторе RL .
В конце выходного сигнала конденсатор используется для устранения пульсаций и обеспечения стабильного и плавного выхода.
Управляемый Выпрямитель с центральным отводом:
Как и неуправляемый выпрямитель с центральным отводом, в этой конструкции используются два SCR замена двух диодов.
Оба этих переключения SCR будут синхронизированы по-разному в зависимости от входной частоты AC .
Работает так же, как и неуправляемый выпрямитель, его принципиальная схема приведена ниже.
- Запись по теме: Типы защелок — защелки SR и D
Однофазные и трехфазные выпрямители
Эта классификация основана на типе входа, на который работает выпрямитель. Название довольно простое. Когда вход однофазный, выпрямитель называется однофазным выпрямителем, а когда вход трехфазным, он называется трехфазным выпрямителем.
Однофазный мостовой выпрямитель состоит из четырех диодов, в то время как трехфазный выпрямитель использует шесть диодов, расположенных определенным образом для получения желаемой выходной мощности. Это могут быть управляемые или неуправляемые выпрямители в зависимости от переключающих компонентов, используемых в каждом выпрямителе, таких как диоды, тиристоры и т. д.
Сравнение
Выпрямителей
В следующей таблице показано соотношение между различными типами выпрямителей, такими как однополупериодный выпрямитель, двухполупериодный выпрямитель и выпрямитель с отводом от середины.
- Связанный пост: Автотрансформатор — его типы, работа, преимущества и применение
Применение выпрямителей
Практически все электронные схемы работают от постоянного напряжения. Основной целью использования выпрямителя является выпрямление, что означает преобразование переменного напряжения в постоянное напряжение.