Схема устройство плавного пуска: Схема тиристорного устройства плавного пуска асинхронного электродвигателя

Схема тиристорного устройства плавного пуска асинхронного электродвигателя

Александр Ситников (Кировская обл.)


Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.


Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети. При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора. Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах. Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается. На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном < Iдоп/4 = 17,5 А. Просматривая стандартный ряд мощностей электродвигателей, находим, что к УПП допустимо подключать двигатель мощностью 7,5 кВт с номинальным током фазы Iн= 15 А. В случае, если пусковой ток превысит Iдоп (по причине подключения двигателя большей мощности или слишком малого времени пуска), процесс пуска будет остановлен, поскольку сработает автоматический выключатель QF1 со специально подобранной характеристикой.

Параллельно тиристорам подключены демпфирующие RC-цепочки R48, C20, C21, R50, C22, C23, R52, C24, C25, предотвращающие ложное включение тиристоров, а также варисторы R49, R51 и R53, поглощающие импульсы перенапряжения свыше 700 В. Обходные реле К1, К2, К3 типа TR91-12VDC-SC-C с номинальным током 40 А шунтируют силовые тиристоры после завершения пуска.

Питание системы управления осуществляется от трансформаторного блока питания, запитанного от межфазного напряжения Uав. В блок питания входят понижающие трансформаторы TV1, TV2, диодный мост VD1, токоограничивающий резистор R1, сглаживающие конденсаторы С1, С3, С5, помехоподавляющие конденсаторы С2, С4, С6 и линейные стабилизаторы DA1 и DA2, обеспечивающие напряжение 12 и 5 В соответственно.

Система управления построена с применением микроконтроллера DD1 типа PIC16F873. Микроконтроллер выдаёт импульсы управления тиристорами VS1 – VS6 путём «зажигания» оптосимисторов ОРТ5-ОРТ10 (MOC3052). Для ограничения тока в цепях управления тиристоров VS1 – VS6 служат резисторы R36 – R47. Импульсы управления подаются одновременно на два тиристора с задержкой относительно начала полуволны межфазного напряжения. Цепи синхронизации с сетевым напряжением состоят из трёх однотипных узлов, состоящих из зарядных резисторов R13, R14, R18, R19, R23, R24, диодов VD3 – VD8, транзисторов VT1 – VT3, накопительных конденсаторов С17 – С19 и оптопар OPT2 – OPT4. C выхода 4 оптопар OPT2, OPT3, OPT4 на входы микроконтроллера RC2, RC1, RC0 поступают импульсы длительностью примерно 100 мкс, соответствующие началу отрицательной полуволны фазных напряжений Uab, Ubc, Uca.

Диаграммы работы узла синхронизации приведены на рисунке 5. Если принять верхний график за сетевое напряжение Uав, то среднийграфик будет соответствовать напряжению на конденсаторе С17, а нижний – току через фотодиод оптопары ОРТ2. Микроконтроллер регистрирует поступающие на его входы синхроимпульсы, определяет наличие, порядок чередования, отсутствие «слипания» фаз, а также производит расчёт времени задержки импульсов управления тиристорами. Входы цепей синхронизации защищены от перенапряжения варисторами R17, R22 и R27.

С помощью потенциометров R2, R3, R4 задаются параметры, соответствующие диаграмме работы УПП, приведённой на рисунке 2; соответственно R2 – Tпуск, R3 – Тторм, R4 – Uначи Uотс. Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП. Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.

Команда «ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог. 1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“. Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

  • HL1 (зелёный) «Готовность» – отсутствие аварийных состояний, готовность к запуску;
  • HL2 (зелёный) «Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
  • HL3 (красный) «Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.

Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

На рисунке 6 приведён упрощённый алгоритм работы УПП. После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех. Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0», после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“. После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок
на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном
порядке.

Как подключить устройство плавного пуска

Как правильно подобрать пускатель с плавным пуском

Подготовка к подключению

Схемы подключения

Устройство плавного пуска обеспечивает плавный старт электродвигателя. Пускатель с плавным пуском используется только для асинхронных двигателей.

 

Основные проблемы, которые решает регулятор плавного пуска:

 

  • значительное снижение пусковых токов,

  • плавный старт электродвигателя и остановку механизма, когда этого требует технический процесс. Например, лифт с устройством плавного пуска будет плавно начинать движение и плавно останавливаться, без привычных нам по панельным домам толчков. Второй пример — бытовой миксер с плавным пуском при запуске не будет разбрызгивать жидкость через край, а за счет плавного нарастания скорости качественно произведет перемешивание вашего любимого смузи.

Как правильно подобрать пускатель с плавным пуском

Перед тем, как подключить регулятор плавного пуска, настоятельно рекомендуем еще раз проверить правильность подбора.

На что стоит обратить внимание, выбирая пускатель плавного пуска:

  • Схема питания — еще раз проверьте, что и подключаемый электродвигатель и устройство плавного пуска имеют идентичное питание (одно или трехфазное, 220 или 380 Вольт), возможны сюрпризы в виде нестандартного питания.

  • Режим работы, и прежде всего количество пусков в час. Если по техническому процессу предполагается несколько пусков в час, подойдет любое устройство плавного пуска, у которого мощность больше или равна мощности запускаемого электродвигателя. Если пусков около десятка — возможно, потребуется пускатель плавного пуска на 1 номинал выше, чем двигатель. При частых пусках (каждые пару минут) — желательно рассмотреть вариант замены на частотный преобразователь.

  • Существует несколько схем подключения устройств плавного пуска, кроме прямого. Наиболее распространенная альтернатива это подключение «звезда-треугольник», ее особенность, то, что в случае больших мощностей, можно использовать УПП с меньшей мощностью, чем электродвигатель. Большой минус этой схемы — большие скачки тока при переключении, соизмеримые с пусковыми токами прямого пуска. Но применение таких схем — это больше исключение из правил.

Подготовка к подключению

Далее необходимо подготовить место для подключения. По возможности устройство плавного пуска необходимо защитить от негативных действий окружающей среды, поэтому их принято устанавливать в электротехнические ящики с высокой степенью защиты и хорошей вентиляцией.

 

После этого необходимо сделать качественный подвод питания к плавному пуску и от него к электродвигателю.

Стоит заметить, что по сути, плавный пуск работает только при разгоне и торможении электродвигателя, а во время работы двигателя на номинальных оборотах он выполняет функцию проводника, и печки (т. к. силовые элементы УПП сильно греются и от перегрева ломаются). Для решения проблемы нагрева можно применить байпасный контактор.

Байпасный контактор — это контактор, который устанавливается параллельно устройству плавного пуска, но в пуске и останове он не участвует, его контакты разомкнуты, а управляющий контакт соединен с устройством плавного пуска

Когда устройство плавного пуска вывело электродвигатель на номинальные обороты, оно дает сигнал на включение контактору, а само отключается. В этом режиме УПП уже в питании электродвигателя участия не принимает.

Когда необходимо отключить электродвигатель, устройство плавного пуска снова забирает инициативу на себя.

Справедливости ради надо сказать, что существуют устройства плавного пуска с уже встроенным байпасным контактором, например, устройство плавного пуска Schneider Electric Altistart 22

Перед подключением это надо проверить.

Следующий пункт — подбор защитного автоматического выключателя. Устройство плавного пуска может косвенно анализировать состояние электродвигателя по потребляемому току и падению напряжения питания, но это не сильно надежно плюс всё равно не защищает само устройство плавного пуска от перегрузки и тока короткого замыкания.

Для защиты устройств плавного пуска применяются специальные автоматы защиты электродвигателя.

Их отличия от обычных — возможность тонкой подстройки тепловой защиты под конкретный двигатель (с помощью поворотный регулировки).

Далее, нам необходимо как то запускать и останавливать нашу установку. Обычно для этого используются или кнопки старт/стоп, или производится удаленное управление.

В случае кнопок, их рекомендуется выносить из шкафа управления на дверцу — чтобы меньше открывать шкаф и минимизировать воздействие окружающей среды и обслуживающего персонала.

Если управление удаленное — необходимо проложить в шкаф провод управления. Этот провод желательно экранировать и согласовать его длину с инструкцией к оборудованию, чтобы не произошла потеря сигнала вследствие его затухания или помех.

Схемы подключения

Ниже приведем 3 наиболее распространенные схемы подключения устройств плавного пуска:

Схема подключения трехфазного устройства плавного пуска:

В случае подключения устройства плавного пуска без использования байпасного контактора или с уже встроенным ничем не отличается от подключения с помощью обычного контактора — на входе 3 фазы и управляющий контакт, на выходе — просто 3 фазы питания на двигатель:

 

В случае внешнего байпасного контактора, как например при подключении Altistart 01

В схему просто добавляется контактор, а так всё остается таким же.

И третья схема — подключение однофазного УПП для питания однофазного электродвигателя.

Если Вы еще не определились с моделью устройства плавного пуска, или возникли вопросы — зайдите в наш раздел или свяжитесь с нами.

Что такое устройство плавного пуска? Его работа, схема и применение

В нашей промышленности используются различные виды машин. Асинхронная машина является одной из наиболее часто используемых трехфазных машин переменного тока, которая составляет почти 70% двигателей, используемых в промышленности. их прочная конструкция и высокая эффективность делают их лучшим выбором для любого промышленного сектора. Но им требуются защитные устройства и оборудование, используемые для их безопасной работы, чтобы они могли безопасно работать и предотвращать любое потенциальное повреждение двигателя, а также увеличивать срок их службы. Наиболее важным оборудованием, используемым для трехфазного асинхронного двигателя, является пускатель двигателя.

Содержание

Пускатель двигателя

Пускатель двигателя — это электрическое устройство, которое используется для безопасного пуска и остановки электродвигателя. Он также предлагает защиту от перегрузки по току и защиту от низкого напряжения.

Поскольку асинхронный двигатель широко используется в различных отраслях промышленности, для его безопасного запуска и остановки требуется пускатель двигателя. Асинхронные двигатели потребляют огромное количество тока при запуске. Это связано с низким полным сопротивлением обмоток двигателя в состоянии покоя.

Это очень важно для безопасной работы асинхронного двигателя. Это связано с низким импедансом ротора двигателя в состоянии покоя. Импеданс ротора зависит от скольжения (относительной скорости между ротором и статором) асинхронного двигателя. Скольжение асинхронного двигателя непостоянно и меняется на протяжении всей его работы, поэтому сопротивление ротора также меняется. Оно обратно пропорционально скольжению двигателя.

В состоянии покоя (положение покоя) скольжение асинхронного двигателя максимально, т. е. 1, поэтому полное сопротивление ротора минимально. При подключении двигателя к источнику питания в обмотке статора возникает огромный ток из-за низкого импеданса, называемого пусковым током. Переменный ток в статоре создает вращающееся магнитное поле (RMF), которое индуцирует ток в обмотках ротора.

Ток ротора создает собственное магнитное поле, которое пытается устранить его причину и начинает вращаться в направлении RMF. Таким образом, ротор испытывает крутящий момент, и по мере того, как его скорость начинает увеличиваться, скольжение двигателя уменьшается (т. Е. Скорость RMF ротора приближается к скорости RMF статора). Поскольку скольжение уменьшается, импеданс ротора увеличивается, и двигатель начинает потреблять нормальный номинальный ток.

Высокий пусковой ток в 5-8 раз превышает номинальный ток двигателя при полной нагрузке. Асинхронный двигатель не может выдержать такое количество тока, так как он может быстро повредить или сжечь обмотки, снижая производительность и срок службы двигателя. Такие большие токи также могут вызвать резкое падение напряжения в сети, что опасно для других устройств, подключенных к той же линии.

Чтобы предотвратить такой высокий пусковой ток, мы используем пускатели двигателей, которые на короткое время снижают начальный ток. Как только двигатель набирает определенную скорость, нормальная подача питания возобновляется. Он также предлагает защиту от низкого напряжения и перегрузки по току.

Эти пускатели двигателей обычно используются для двигателей большой мощности. Небольшие двигатели мощностью менее 1 л.с. не требуют пускового устройства из-за их высокого импеданса. Однако им требуется защита от перегрузки по току, которая имеется в пускателе DOL.

В пускателе двигателя используются различные методы запуска двигателя, такие как

  • Полное напряжение или способ пуска от сети ; он подключает двигатель к полному напряжению питания. используется для небольшого мотора
  • Пускатель пониженного напряжения ; он снижает напряжение питания во время запуска двигателя, чтобы уменьшить пусковой ток. Устройство плавного пуска использует этот метод для запуска асинхронного двигателя.
  • Многоскоростной стартер ; двигатель рассчитан на несколько предварительно выбранных скоростей, что достигается за счет конфигурации полюсов (обмоток). Постепенное увеличение скорости снижает пусковой ток.

Что такое устройство плавного пуска?

Устройство плавного пуска — это тип пускателя двигателя, в котором используется метод понижения напряжения для снижения напряжения во время пуска двигателя.

Устройство плавного пуска обеспечивает постепенное увеличение напряжения во время запуска двигателя. Это позволит двигателю медленно разгоняться и плавно набирать скорость. Он предотвращает любые механические разрывы и рывки из-за внезапной подачи полного напряжения.

Крутящий момент асинхронного двигателя прямо пропорционален квадрату силы тока. и ток зависит от напряжения питания. Таким образом, напряжение питания можно использовать для управления пусковым моментом. В обычном пускателе двигателя приложение полного напряжения к двигателю создает максимальный пусковой момент, который представляет механическую опасность для двигателя.

Таким образом, мы можем сказать, что устройство плавного пуска — это устройство, которое снижает пусковой крутящий момент и постепенно увеличивает его безопасным образом, пока он не достигнет номинальной скорости. Как только двигатель достигает номинальной скорости, устройство плавного пуска возобновляет через него подачу полного напряжения.

Во время останова двигателя напряжение питания постепенно снижается для плавного торможения двигателя. Как только скорость достигает нуля, подача входного напряжения на двигатель прерывается.

Основным компонентом, используемым для регулирования напряжения в устройстве плавного пуска, является полупроводниковый переключатель, такой как тиристор (SCR). Регулировка угла открытия тиристора регулирует подаваемое через него напряжение. Также используются другие компоненты, такие как OLR (реле перегрузки), используемые для защиты от перегрузки по току.

Схема устройства плавного пуска

В трехфазном асинхронном двигателе два тиристора подключены встречно-параллельно вдоль каждой фазы двигателя, что в сумме дает 6 тиристоров. Эти тиристоры управляются с помощью отдельной логической схемы, которая может быть ПИД-регулятором или микроконтроллером. Логическая схема питается от сети с помощью схемы выпрямителя, как показано на рисунке.

Помимо силовых выключателей и логической схемы используются другие компоненты защиты, такие как автоматический выключатель или предохранитель, магнитный контактор для изоляции и OLR (реле перегрузки) для предотвращения перегрузки по току.

Переключатель байпаса также используется для восстановления полного напряжения на двигателе, когда он достигает полной номинальной скорости.

Принцип работы устройства плавного пуска

Основным компонентом, используемым для управления напряжением в устройстве плавного пуска, является тиристор. Это управляемый выпрямитель, который начинает проводить ток только в одном направлении, когда подается импульс затвора, называемый импульсом запуска.

Угол запускающего импульса определяет, какая часть цикла входного напряжения должна проходить через него. Поскольку переменный ток колеблется между максимальным и минимальным пиками, образуя полный цикл на 360°, мы можем использовать угол импульса возбуждения для включения тиристора на определенное время и управления подаваемым напряжением.

Импульсы зажигания могут варьироваться от 0° до 180°. Уменьшение угла возбуждения импульса увеличивает период проводимости тиристора, тем самым пропуская через него высокое напряжение.

Два таких тиристора соединены встречно для каждой фазы. Таким образом, он может контролировать ток в обоих направлениях. Каждый полупериод, угол открытия

Три пары тиристоров, каждая пара для отдельной фазы, используются для управления напряжением для запуска и остановки двигателя. Период проводимости тиристора зависит от угла открытия, контролируемого логической схемой.

Логическая схема содержит ПИД-регулятор или простой микроконтроллер, запрограммированный на генерацию импульсов. Контроллер изолирован от сети с помощью оптоизолятора, а для питания источника постоянного тока используется выпрямитель. Импульсы, генерируемые микроконтроллером, подаются на схему запуска тиристора, которая усиливает его перед срабатыванием тиристора.

Когда двигатель запускается, контроллер генерирует импульсы для каждого отдельного SCR. Импульс генерируется на основе пересечения нуля, которое обнаруживается с помощью детектора пересечения нуля. Угол первого пускового импульса составляет приблизительно около 180° (очень низкий период проводимости), чтобы обеспечить минимальное напряжение.

Постепенно после каждого перехода через нуль угол возбуждения импульсов начинает уменьшаться, увеличивая время проводимости тиристора. Напряжение через тиристор начинает увеличиваться. Поэтому скорость двигателя постепенно увеличивается.

Как только двигатель достигает полной номинальной скорости (при угле открытия 0°), тиристоры полностью шунтируются с помощью шунтирующего контактора при нормальной работе. Это повышает эффективность устройства плавного пуска, поскольку SCR прекращает работу. Во время останова двигателя тиристоры берут на себя управление и запускают последовательное срабатывание для снижения напряжения питания.

Байпасные контакторы могут быть внутренними или внешними. Внутренние обходные контакторы встроены в силовые выключатели. Каждый SCR имеет параллельный переключатель байпаса, который подает ток в нормальных условиях. Такая конфигурация контакторов занимает мало места, а пускатели имеют компактную конструкцию. В то время как внешние шунтирующие контакторы подключаются внешне параллельно устройству плавного пуска. Такие устройства плавного пуска громоздки.

Шунтирующие контакторы не предназначены для отключения или подачи тока в цепь, поэтому это могут быть контакторы с низким номиналом.

Преимущества устройства плавного пуска

Плавный пуск: В отличие от обычного пускателя, оно обеспечивает очень плавный рост напряжения и скорости, что приводит к очень плавному пуску. Отсутствуют какие-либо механические воздействия или рывки, которые могут повредить мотор.

Управление ускорением и замедлением: Обеспечивает полностью регулируемое ускорение и замедление двигателя. Медленное или быстрое изменение угла зажигания может контролировать ускорение при запуске и замедление при остановке двигателя. Это используется в приложениях, где необходимо настроить ускорение запуска.

Отсутствие скачков напряжения: Поскольку обычный пускатель двигателя обеспечивает полное напряжение на двигателе, в двигатель начинает поступать огромный пусковой ток, вызывающий скачок напряжения в цепи. устройство плавного пуска ограничивает такой ток, предотвращая скачки напряжения.

Многократные пуски: В некоторых приложениях двигатель должен запускаться и останавливаться несколько раз за небольшой промежуток времени. такой двигатель при использовании с обычным стартером будет перегреваться из-за высокого пускового тока. Однако устройства плавного пуска резко увеличивают количество пусков двигателя в течение определенного времени.  

Снижение перегрева: Перегрев двигателя является очень серьезной проблемой. Это происходит из-за большого тока обмотки при ее запуске. Устройство плавного пуска обеспечивает очень малую величину пускового тока, что предотвращает перегрев двигателя.

Увеличенный срок службы: Устройство плавного пуска по сравнению с обычным пускателем увеличивает срок службы двигателя. это связано с плавной работой и отсутствием электрических и механических нагрузок на двигатель.

Меньше техобслуживания: Благодаря плавной работе асинхронный двигатель с меньшей вероятностью будет иметь какие-либо механические неисправности, поэтому он требует меньше обслуживания, чем обычный пускатель двигателя.

Эффективность: Обычный пускатель двигателя подает полное напряжение (очень высокий пусковой ток) на двигатель, который потребляет слишком много энергии. Устройство плавного пуска значительно снижает его и позволяет постепенно увеличивать потребление энергии. Также силовые выключатели управляются с использованием очень низкого уровня напряжения. Это повышает общую эффективность двигателя.  

Компактный размер: Устройство плавного пуска имеет очень компактную конструкцию и занимает очень мало места. В отличие от других пускателей двигателей, он имеет очень малые габариты.

Низкая стоимость: по сравнению с другими пусковыми устройствами, такими как VFD, это действительно дешевле.

Недостатки устройства плавного пуска двигателя

Нет Регулировка скорости: Устройство плавного пуска позволяет контролировать только подачу входного напряжения, т. е. от 0 В до сетевого напряжения с фиксированной частотой сети. Поскольку частота постоянна, скорость двигателя постоянна и регулируется только подключенной к нему нагрузкой. Скорость асинхронного двигателя регулируется путем изменения частоты питания ниже или выше частоты сети в зависимости от потребности. Такая функция доступна только в VFD (преобразователь частоты).

Тепловыделение : Полупроводниковые переключатели внутри устройства плавного пуска рассеивают часть энергии в виде тепла. Следовательно, для охлаждения силовых ключей также требуются радиаторы.

Уменьшенный пусковой крутящий момент: Поскольку он снижает входное напряжение, соответствующее входному току, который прямо пропорционален пусковому крутящему моменту асинхронного двигателя, он значительно снижает пусковой крутящий момент. Вот почему Устройства плавного пуска используются для приложений с низким или средним пусковым моментом.

Применение устройства плавного пуска

Устройство плавного пуска используется в промышленности и больше подходит для двигателей, работающих на постоянной скорости.

Вентиляторы: Огромные вентиляторы, используемые в промышленности, работают с постоянной скоростью. Однако они требуют защиты при запуске. Для таких вентиляторов лучшим вариантом является устройство плавного пуска.

Конвейерные ленты: Конвейерные ленты в промышленности используются для перемещения объектов и требуют особого ухода. Внезапные рывки при пуске или остановке с помощью обычного стартера могут привести к смещению ремней, повреждению ремня из-за механического воздействия и повреждению размещенных на нем предметов. Требуется плавный пуск и останов, обеспечиваемый устройством плавного пуска

Двигатели с ремнем и шкивами: Двигатель, приводящий в движение груз с помощью ремней и шкивов, не выдерживает внезапных рывков. Он носит ремень, который соединяет его с грузом. Устройство плавного пуска обеспечивает плавный пуск для таких двигателей.

Водяной или жидкостный насос: Любой тип насоса, соединенного с двигателем, требует плавного пуска и остановки из-за внезапного повышения давления внутри труб. Обычный стартер может создать достаточное давление при запуске, чтобы разорвать линию. Устройства плавного пуска предлагают постепенное увеличение давления в таких жидкостных насосах. Однако во время нормальной работы управление скоростью насоса не осуществляется. ЧРП — лучший выбор для переменной скорости насоса.

Похожие сообщения:

  • Основное различие между контактором и пускателем
  • Метод запуска стартера со звездой-треугольником без таймера
  • Схемы управления и питания трехфазного пускателя ротора с контактным кольцом
  • Машина постоянного тока – конструкция, работа, типы и применение
  • Управление скоростью двигателя постоянного тока – методы управления напряжением, реостатом и магнитным потоком
  • Что такое привод постоянного тока? Работа и типы приводов постоянного тока

Что такое устройство плавного пуска, принцип работы, схема, преимущества

Из-за многочисленных применений асинхронный двигатель нуждается в некоторых пусковых устройствах для плавного и безопасного пуска. Различные методы пуска используются для пуска асинхронных двигателей , таких как пускатель звезда-треугольник , пускатель DOL , пускатель с автотрансформатором , устройство плавного пуска и ЧРП. (полный частотно-регулируемый привод).

В этой статье мы собираемся обсудить устройство плавного пуска для трехфазного асинхронного двигателя, схема устройства плавного пуска, работа устройства плавного пуска, применение, преимущества, блок, мощность, схема управления, принцип работы, использование.

Устройство плавного пуска — это еще одна форма пускателя пониженного напряжения, используемая для запуска трехфазного асинхронного двигателя. Устройство плавного пуска также называют твердотельным контроллером.

Устройство плавного пуска не изменяет частоту, как ЧРП. Вместо этого он увеличивает уровень напряжения, подаваемого на двигатель, от начального значения до полного напряжения.

В этом основное различие между устройством плавного пуска и ЧРП (частотно-регулируемым приводом).
Первоначально приложенное напряжение низкое, что необходимо только для преодоления зубчатых колес или растяжения приводных ремней и т. д., чтобы избежать внезапных рывков во время запуска. Постепенно напряжение увеличивается, крутящий момент также увеличивается, и двигатель начинает разгоняться.

Преимущества методов пуска устройства плавного пуска заключаются в возможности регулировки крутящего момента в соответствии с конкретной потребностью.

Благодаря использованию устройства плавного пуска пусковой ток уменьшен, это помогает защитить двигатель от высокого пускового тока, а также предотвращает сильное падение напряжения в сети. Устройство плавного пуска также обеспечивает плавный останов в качестве пуска. Следовательно, он может быть подходящим там, где требуется плавная остановка, например, конвейерная лента , водяные насосы .

Основными преимуществами использования устройства плавного пуска являются: Уменьшение пускового тока, что позволяет избежать падения напряжения в сети.

Уменьшается крутящий момент, что снижает механические нагрузки на оборудование и приводит к уменьшению потребности в обслуживании и техническом обслуживании, а также к увеличению срока службы оборудования.

Блок-схема устройства плавного пуска:

Однолинейная схема устройства плавного пуска

Устройство плавного пуска содержит только несколько основных компонентов: тиристор для регулирования напряжения на двигателе. В дополнение к этому радиатору и вентилятору для отвода тепла в окружающую среду.

В зависимости от модели устройства плавного пуска он может быть оснащен встроенным электронным реле перегрузки (EOL), что устраняет необходимость во внешнем реле.

Принцип работы устройства плавного пуска:

принцип работы устройства плавного пуска основан на тиристоре или угле зажигания тиристора.

Soft starter thyristor bank
Thyristor firing angle at starting

Where,

White portion= thyristor OFF

Blue portion= thyristor ON

Устройство плавного пуска содержит количество подключенных антипараллелей тиристора . Каждая фаза имеет пару тиристоров.

Тиристор — это полупроводниковый прибор, который обычно изолирован, но при подаче сигнала на затвор начинает проводить и позволяет пропускать через себя ток и напряжение.

В момент запуска для выполнения плавного пуска на тиристоры подается сигнал запуска таким образом, чтобы через них проходила только последняя часть каждого полупериода синусоидальной волны напряжения.

И после запуска, сигнал запуска посылает все раньше и раньше, чтобы все большая и большая часть волны напряжения проходила через тиристор.

В конечном итоге сигнал запуска отправляется после каждого пересечения нуля, чтобы разрешить 100%-ное напряжение через тиристор.

Во время остановки выполняется противоположное действие.

Сначала через тиристоры проходит полное напряжение, а по мере инициации останова сигнал запуска отправляется все позже и позже, пропуская все меньше и меньше напряжения, пока не будет достигнуто конечное напряжение. Затем на двигатель больше не подается напряжение, и двигатель останавливается.

Пуск: Тиристор сначала пропускает через себя часть напряжения, а затем увеличивает соответственно время разгона, установленное для пуска.

Останов: Тиристор находится в режиме полной проводимости, когда начинается плавный останов, напряжение снижается в соответствии с временем рампы, установленным для останова.

Напряжение снижается при пуске, следовательно, ток и крутящий момент также уменьшаются.

Если напряжение уменьшится до 50 % от полного напряжения, ток уменьшится примерно до 50 % от максимального тока на этой скорости, а крутящий момент уменьшится примерно до 25 % от максимального крутящего момента.

Способы подключения устройства плавного пуска к двигателю

Схема подключения устройства плавного пуска

Соединение в линию:

Этот способ подключения устройства плавного пуска является наиболее распространенным. Все три фазы соединены последовательно с главным контактором, реле перегрузки и устройством плавного пуска, следующим за двигателем.

Встроенный для двигателя на 100 А требуется устройство плавного пуска, реле перегрузки и главный контактор того же номинала (100 А).

Внутри треугольника:

Соединение внутри треугольника позволяет разместить устройство плавного пуска в схеме треугольника и таким образом легко заменить существующее устройство пуска Y/D. для достижения более рентабельного.

При использовании устройства плавного пуска Inside Delta существует два варианта подключения главного контактора; внутри схемы треугольника или вне схемы треугольника .