Содержание
Реверсивный пускатель: схема правильного подключения
Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад. По сути, реверс обеспечивается наличием еще одной контактной группы на пускателе. Но ее нужно правильно подключить. Например, имеются три фазы А, В и С, которые подключены к контактной колодке электромотора. При этом вал вращается по часовой стрелке. Чтобы заставить вращаться его в обратную сторону, достаточно поменять любые две фазы местами. Например, подключить в таком порядке – В, А, С.
Особенности реверсивных пускателей
Используются такие схемы подключения в конструкциях лифтов, подъемных кранов, сверлильных станков. Если сильно не вдаваться в детали, то может показаться, что схема включения мотора с использованием реверса сложнее. Но на деле оказывается, что сложного нет ничего – в конструкцию добавилась еще одна силовая часть и управление.
Стоимость таких устройств немного выше за счет использования большего количества элементов. По сути, это два электромагнитных пускателя, объединенных в один корпус. Принцип работы у схемы специфический, потребуется внимательно рассмотреть все нюансы.
Исходное положение элементов
Схема реверсивного магнитного пускателя в изначальном состоянии разомкнута — напряжение поступает только на верхние контакты и «дежурит» до того момента, пока не начнет работать система управления. Фазы располагаются в таком виде:
- От фазы «А» производится питание цепи управления.
- Провод от фазы «А» поступает на кнопку остановки.
- Фаза также поступает на контакты кнопок SB2 и SB3.
- Обязательно осуществляется защита цепей – силовых и управления.
В таком виде схема готова к началу работы, остается только нажать на кнопку «Влево» или «Вправо», чтобы запустить электродвигатель. И нужно изучить более подробно процессы, протекающие в схеме реверсивного пускателя с кнопками управления при вращении ротора двигателя.
Ротор вращается против часовой стрелки
Как только происходит нажатие на кнопку SB2, через нормально-замкнутую группу контактов КМ2. 2 проходит фаза «А» на катушку пускателя. При этом происходит срабатывание обмотки, контакты, которые были разомкнутые, замыкаются. А замкнутые размыкаются.
Как только произойдет замыкание контактов КМ1.1, магнитный пускатель переводится в режим самоподхвата.
Следовательно, как только происходит замыкание группы силовых контактов, все три фазы подаются на обмотки электрического двигателя. И ротор начинает разгоняться, двигаясь в направлении против часовой стрелки. Нормально-замкнутая группа контактов КМ1.2, которая находится в цепи, питающей катушку пускателя КМ2, размыкается и противодействует подаче напряжения на катушку КМ2 (КМ1 при этом работает). В народе такую схему называют «защитой от дурака».
Двигатель вращается по часовой стрелке
Как было сказано ранее, для вращения мотора в противоположную сторону, достаточно просто поменять местами две фазы. Именно это и делает в схеме реверсивного пускателя двигателя элемент, обозначенный КМ2. Но, прежде чем изменить направление движения, необходимо остановить мотор. Для этого используется кнопка «Стоп». Обычно она имеет красный цвет. Как только оператор нажмет на кнопку, произойдет разрыв цепи питания катушки магнитного пускателя КМ1.
При этом пружина воздействует на контакты и возвращает их в исходное состояние. Электрический двигатель обесточивается, на обмотках пропадает напряжение и ротор останавливается. При нажатии на кнопку SB3 происходит передача фазы «А» по нормально-замкнутому контакту КМ1.2 на катушку электромагнита КМ2. Пускатель выходит в режим самоподхвата при помощи силового контакта КМ2.1.
В них переброшены две фазы – например, «А» и «В». Группа контактов КМ2.2, которая находится в цепи питания магнитного пускателя КМ1, размыкается и не позволяет включиться в работу КМ1. Магнитный пускатель КМ2 в это время работает.
Схема силовой цепи
В общем, схема подключения реверсивного пускателя в трехфазной сети может быть реализована несколькими способами. Самое главное – можно использовать два пускателя, если нет возможности поставить один.
Важно правильно произвести переброс фаз, чтобы осуществить реверс. Распределяются фазы в магнитном пускателе КМ1 таким образом:
- «А» подается к обмотке «1».
- «В» поступает на обмотку мотора «2»
- «С» подается на обмотку «3».
При этом вращение ротора происходит против часовой стрелки. На пускателе КМ2 фазы распределены таким образом:
- «А» на обмотку «1».
- «С» поступает к обмотке «2».
- «В» подается на обмотку мотора «3».
Следовательно, отличие только в том, что поменялись местами две фазы – «В» и «С». Фаза под литерой «А» остается все также на первом контакте. Но ротор будет вращаться в противоположную сторону – в обмотках происходит сдвиг фаз.
Практическая схема реверсивного пускателя
Схема подключения реверсивного пускателя трехфазного типа производится таким образом:
- Первой подсоединяется к контактам фаза «А». Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2.
- Выходы обоих пускателей соединяются параллельно при помощи перемычки.
- Фаза с обозначением «В» соединяется со средним контактом КМ1, а также при помощи перемычки с крайним правым КМ2.
- Фаза «С» соединяется с крайним правым контактом на КМ1 и средним на КМ2.
Именно таким образом происходит смена направления движения ротора.
Схема подключения реверсивного пускателя реализуется только лишь при помощи соединения силовых контактов и смены их порядка. Но обязательно в конструкции привода должна иметься защита от случайного включения двух магнитных пускателей одновременно.
Как осуществляется защита
Обязательно перед тем как произвести смену направления движения ротора, необходимо полностью застраховаться от различных ошибок. Допустим, конструкция не содержит в себе элементов, которые позволяют защитить схему. Тогда при вращении мотора против часовой стрелки магнитный пускатель КМ1 находится в рабочем состоянии. Все фазы поступают к соответствующим обмоткам мотора.
Если сразу же произвести включение магнитного пускателя КМ2, то фазы «В» и «С» окажутся замкнутыми. Следовательно, произойдет обычное межфазное замыкание, которое может привести к пожару или выходу из строя различных компонентов. Для предотвращения такого явления используются контакты нормально-замкнутого типа.
Они монтируются непосредственно в цепи питания катушек пускателей. Именно с их помощью появляется возможность включения только одного магнитного пускателя и полностью исключается вероятность включения в цепь питания одного пускателя до полного отключения второго. В противном случае постоянно будут выбивать автоматы защиты, оператору придется их включать.
Заключение
«Защита от дурака» имеется в любой электрической схеме. Если в схеме реверсивного пускателя не использовать такого типа защиту, то при эксплуатации возникнет множество проблем. Операторы, которые включают электропривод, обычно не имеют познаний в схемотехнике. Поэтому, чтобы исключить возможность ошибки, используется схема, которая не позволяет ввести в работу одновременно два магнитных пускателя.
Желательно применять в схемах лампы, которые будут показывать направление вращения двигателя. Чтобы произвести их подключение, нужно правильно соединить группы вспомогательных контактов. Можно использовать лампы на 220 Вольт или, если имеется отдельный источник питания, на 12 Вольт. Целесообразность использования таких типов конструкций сомнительна, так как намного проще применить в качестве источника напряжения одну из рабочих фаз. Обычно так и поступают, в редких случаях применяются дополнительные источники питания.
Желательно цепи управления питать от низковольтной цепи, но при этом возникает необходимость в источнике постоянного напряжения – придется применять специальные устройства. Для этого достаточно установить трансформатор и простейший выпрямитель, либо же использовать готовый блок питания. Обязательно нужно применить схему защиты цепи питания низковольтной части.
Реверсивная схема подключения электродвигателя — фазировка
Статьи
Автор Светозар Тюменский На чтение 2 мин. Просмотров 4.8k. Опубликовано
Обновлено
Эта схема довольно часто используется для подключения трехфазного электродвигателя там, где необходимо оперативное управление направлением вращения вала двигателя – например, в гаражных воротах, насосах, различных погрузчиках, кран-балках и т. д.
Реверсирование двигателя реализуется изменением фазировки его питающего напряжения. Например, если порядок подключения фаз к клеммам трехфазного электродвигателя условно взять как L1, L2 ,L3, то направление вращения вала будет определенным, противоположным, чем при подключении, скажем, с фазировкой L3, L2, L1.
Особенностью реверсивной схемы подключения является использование в ней двух магнитных пускателей. Причем, их главные силовые контакты соединены между собой таким образом, что при срабатывании катушки одного из пускателей, фазировка питающего напряжения двигателя будет отличаться от фазировки при срабатывании катушки другого.
В схеме используется два магнитных пускателя. При срабатывании первого пускателя KM1, его силовые контакты притягиваются (обведены зеленым пунктиром) и на обмотки электродвигателя поступает напряжение с фазировкой L1, L2, L3. При срабатывании второго пускателя – КМ2, напряжение на двигатель пойдет через его силовые контакты КМ2 (обведены красным пунктиром) уже будет иметь фазировку L3, L2, L1.
Как видите, здесь магнитные пускатели подключены по стандартной схеме. Разве, что, в цепь каждой катушки последовательно включен нормально закрытый блок-контакт другого пускателя. Эта мера предотвратит замыкание в случае ошибочного одновременного нажатия обеих кнопок «Пуск».
Содержание
- Реверсивные магнитные пускатели в однофазной сети. Реверсивная схема подключения электродвигателя.
- схема подключения двигателя по реверсивной схеме
- Схема реверсивного запуска электродвигателя
Реверсивные магнитные пускатели в однофазной сети. Реверсивная схема подключения электродвигателя.
схема подключения двигателя по реверсивной схеме
Схема реверсивного запуска электродвигателя
Оцените автора
Реверсивный однофазный двигатель (2 метода)
12.12.2021
Инженер
ИНСТРУМЕНТ
0
Узнайте о принципе действия реверсивного однофазного двигателя . Во-первых, мы поговорим о структуре и принципе работы однофазного двигателя.
Содержание
1. Структура и принцип работы
+ Структура: Статор однофазного двигателя имеет только одну обмотку, ротор обычно представляет собой короткозамкнутый ротор. Когда двигатель работает, обмотка статора будет подключена к однофазной сети переменного тока.
+ Принцип работы: Когда переменный ток течет в обмотку статора, он не создает вращающегося магнитного поля. Из-за изменения тока меняются направление и величина магнитного поля, но направление магнитного поля фиксировано в пространстве. Это магнитное поле называется импульсным магнитным полем.
=> Итак, нам нужен способ запуска однофазного двигателя.
+ Преимущества и недостатки однофазного двигателя
Преимущество однофазного электродвигателя в том, что он проще и дешевле трехфазного двигателя. Поэтому он используется в таких устройствах, как вентиляторы, стиральные машины, водяные насосы и много используется в автоматических системах.
Недостатками однофазных двигателей являются низкий cosφ, большие потери в роторе, малый крутящий момент и плохая перегрузочная способность.
2. Пуск однофазного двигателя
Когда мы подаем питание на однофазный асинхронный двигатель, двигатель не может вращаться сам по себе. Мы можем использовать силу, чтобы заставить двигатель вращаться в определенном направлении. После этого ротор будет продолжать вращаться в этом направлении.
Обычно используемый метод самозапуска однофазных двигателей заключается в использовании вспомогательной обмотки или короткого замыкания на магнитном полюсе.
+ Использование вспомогательной обмотки
Для двигателей, использующих вспомогательные обмотки, помимо основной обмотки имеются также вспомогательные обмотки, также известные как пусковые обмотки. Вспомогательные обмотки могут быть выполнены рассчитанными на длительную работу с однофазными двигателями или только при пуске. Катушка, работающая только при пуске, будет отсоединена от двигателя после завершения пуска двигателя.
Пуск однофазного двигателя с вспомогательной обмоткой
Вспомогательная обмотка будет помещена в паз статора для создания потока. Этот поток будет отклоняться на угол 90 градусов в пространстве от потока, создаваемого основной катушкой.
А между током в основной катушке и током во вспомогательной катушке должно быть несовпадение по фазе на 90 градусов. Для этого подключим вспомогательную катушку к конденсатору С.
Ток во вспомогательной обмотке и основной обмотке будет генерировать вращающееся магнитное поле, тем самым создавая крутящий момент для запуска двигателя переменного тока. Тип двигателя с добавлением конденсатора будет иметь хорошие пусковые характеристики.
+ У двигателя короткое замыкание на магнитном полюсе
В этом двигателе люди разделят магнитный полюс и добавят короткое замыкание. Петля короткого замыкания действует как вспомогательная обмотка.
Когда двигатель находится под напряжением, магнитные поля основной и вспомогательной обмоток создают вращающееся магнитное поле. Таким образом, двигатель создает крутящий момент для запуска двигателя.
Этот тип двигателя используется в автоматической трансмиссии, чаще всего это небольшой настольный вентилятор. Потому что двигатель подходит только для небольшой мощности 0,5 — 30 Вт.
3. Реверс однофазного двигателя
Для реверсирования вращения однофазного двигателя необходимо изменить направление вращающегося магнитного поля, создаваемого основной обмоткой и обмоткой стартера. Существует два типа однофазных двигателей: 4-проводные и 3-проводные. Для каждого типа двигателя у нас будет свой способ изменения направления:
+ Реверсивный 4-проводной двигатель
Этот тип двигателя будет иметь две отдельные обмотки, каждая с двумя выходными проводами. Мы можем определить основную и вспомогательную обмотки, измерив сопротивление каждой обмотки. Катушка с большим сопротивлением является вспомогательной (пусковой) катушкой, катушка с меньшим сопротивлением — основной (рабочей).
Чтобы реверсировать этот двигатель, мы реверсируем одну из двух обмоток, работающих или запускаемых. На рисунке ниже показано, как реверсировать 4-проводной двигатель путем реверсирования основной катушки.
Реверсирование 4-проводного однофазного двигателя
+ Обратный 3-проводной двигатель
3-проводные двигатели все еще имеют две обмотки, но внутри двигателя стартер и бегущие катушки соединены в общий провод . Таким образом, 3 выходных провода будут проводом стартера, общим проводом и рабочим проводом.
Мы меняем направление вращения двигателя, меняя подключение конденсатора. В частности, на приведенном ниже рисунке показано, что при движении вперед конденсатор включен последовательно с катушкой 2. Когда двигатель работает в обратном направлении, конденсатор включен последовательно с катушкой 1.
См. видео о реверсивных однофазных асинхронных двигателях – Matthias Wandel
>>> См. также:
Что такое контактор? Лучшая статья о контакторе
Принцип работы пускателя звезда-треугольник (4 цепи)
Схема трехфазного выпрямителя с использованием диодов и тринистора (8 схем)
Схема подключения контактора пуск стоп (3 цепи)
Мотор-редукторы переменного и постоянного тока Электродвигатели с редуктором
Мотор-редукторы, предназначенные для опасных зон
Эти мотор-редукторы соответствуют стандартам класса I/раздела 2 или класса I/раздела 1 и внесены в список UL для использования на газопроводах, нефтеперерабатывающих заводах, промышленных покрытиях и аналогичных устройствах…
Учить больше
Присоединяйтесь к нашей команде!
Многочисленные возможности трудоустройства на нашем заводе в Пеосте, штат Айова. Доступны варианты первой и второй смены. Большие преимущества. Возможности продвижения. Подать заявку сегодня.
Учить больше
Инженерные решения
Примеры нестандартных мотор-редукторов и приводов для широкого спектра отраслей и областей применения. Позвольте нам решить вашу следующую задачу приложения!
Учить больше
Новые высокомоментные мотор-редукторы HG/H и CG | До 1020 фунтов на дюйм | PMDC и инвертор переменного тока
Наши новые модели прикладов HG/H с полым валом доступны с одним и двумя валами. Номинальные напряжения: 90, 180, 130, 12, 24 В постоянного тока и 230/460 В переменного тока.
Учить больше
Нужна помощь с перекрестными ссылками на другую марку мотор-редуктора?
Эти серийные модели могут заменить мотор-редукторы на 90 В или 180 В постоянного тока, продаваемые Baldor, Bison Gear, Leeson или Grainger. Максимальная номинальная скорость якоря: 2500 об/мин.
Учить больше
НОВЫЕ ГИПОИДНЫЕ МОТОР-РЕДУКТОРЫ PMDC — 90В, 130В, 180В, 12В и 24В
Высокая эффективность, высокий крутящий момент и плавная работа. Компактная и универсальная конструкция с полым валом. До 1535 фунтов на дюйм (173 Нм).
Учить больше
Прямоугольные мотор-редукторы с полым валом
Решения переменного тока с переменной скоростью, PMDC и BLDC. Комплекты валов и монтажные кронштейны.
Учить больше
Планетарные мотор-редукторы PMDC 12, 24, 90/130 В постоянного тока. ИП-66
Половина размера. Двойной крутящий момент.
Учить больше
Упаковка и маркировка
Высокопроизводительные мотор-редукторы переменного тока, PMDC и BLDC, а также приводные решения для требовательных приложений упаковки и этикетирования.
Учить больше
Трехфазные инверторные мотор-редукторы переменного тока и органы управления
Переменная скорость, отсутствие обслуживания
Учить больше
Загрузите справочник Bodine по мотор-редукторам!
Получите подробную информацию о том, как правильно выбрать и применить мотор-редуктор с дробной мощностью (FHP).
PDF
Мотор-редукторы постоянного тока с постоянными магнитами и органы управления
Регулируемая скорость и характеристики крутящего момента линейной скорости.
Учить больше
Индивидуальные решения
Позвольте нам создать приводную систему, которая точно соответствует вашим требованиям.
Учить больше
Медицина и Лаборатория
Узнайте больше о наших медицинских и лабораторных продуктах от одного из наших опытных инженеров!
Учить больше
Бесщеточные мотор-редукторы постоянного тока с параллельными валами
Получите переменную скорость, высокий пусковой крутящий момент и не требующую обслуживания производительность.
Учить больше
Индустриальная автоматизация
Узнайте больше о наших продуктах для конвейеров и промышленной автоматизации у одного из наших опытных инженеров!
Учить больше
Низкое напряжение и солнечная энергия
Решения для мотор-редукторов 12 В и 24 В постоянного тока с постоянными и постоянными токами постоянного тока, оптимизированные для низковольтных, мобильных, солнечных и аккумуляторных приложений.
Учить больше
Посмотреть все
Для обслуживания существующего продукта укажите серийный номер, указанный на паспортной табличке двигателя, мотор-редуктора или системы управления перемещением. Чтобы правильно идентифицировать продукт, нажмите кнопку «Подробнее» и посетите нашу страницу поддержки. На странице «Поддержка» вы можете найти стандартные и нестандартные продукты, получить информацию о запасных частях, а также спецификации и электрические схемы.
Подробнее
Посмотреть все
Просмотреть все
Bodine запускает инструмент перекрестных ссылок конкурентов для замены мотор-редукторов Baldor, Bison или Leeson
Если вы хотите скрестить мотор-редуктор Baldor, Bison или Leeson, теперь вы можете сделать это в нашей службе поддержки…
5 октября 2022 г.
Читать далее
Как подключить рабочий конденсатор к 4-проводному реверсивному редуктору или двигателю PSC переменного тока
В этом видео с практическими рекомендациями мы покажем вам, как подключить и подключить один из наших однофазных, 4-проводных реверсивных,…
24 августа 2022 г.
Читать далее
Типовые условия эксплуатации мотор-редукторов и двигателей переменного тока
Ознакомьтесь с нашей последней технической заметкой о типичных условиях эксплуатации мотор-редукторов и двигателей переменного тока!
С этим новым…
14 июня 2022 г.
Читать далее
Когда вы звоните региональному менеджеру по продажам Bodine Electric, чтобы ответить на ваши вопросы или помочь в вашем проекте, вы обращаетесь к настоящему ДвижениеPRO.
Что такое MotionPRO? >
Выберите свою страну
Пожалуйста, выберитеАвстрияБельгияКанадаЧехияДанияЭстонияФинляндияФранцияГерманияГрецияИсландияИрландияИзраильИталияЛатвияЛитваЛюксембургНидерландыНорвегияПольшаПортугалияПуэрто-РикоЮжная АфрикаИспанияШвецияВеликобританияСоединенные Штаты
Выберите провинцию
Пожалуйста, выберитеАльбертаБританская КолумбияОкруги Дандас и Гленгарри (Александрия)Округ Восточный Нортумберленд и округ Принс-Эдвард МанитобаНью-БрансуикНовая ШотландияОнтариоКвебекСаскачеванОкруг Садбери и Большой Садбери (Челмсфорд)
Выберите страну-участницу из Великобритании
Пожалуйста, выберитеАнглияСеверная ИрландияШотландияУэльс
ВВЕДИТЕ ВАШ ПОЧТОВЫЙ КОД (ТОЛЬКО ДЛЯ США)
Наша команда инженеров понимает высокие требования для широкого спектра отраслей промышленности и приложений.