Содержание
Симистор. Принцип работы, параметры и обозначение на схеме.
Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).
Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.
У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?
Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.
В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).
Вот таким образом симистор изображается на принципиальных схемах.
У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).
А это эквивалентная схема симистора выполненного на двух тиристорах.
Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.
Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.
Как работает симистор?
Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.
Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.
Симисторный регулятор мощности
После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.
Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.
Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.
Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:
Невысокая стоимость.
По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.
Отсутствие контактов и, как следствие, нет искрения и дребезга.
К недостаткам можно отнести:
Симистор весьма чувствителен к перегреву и монтируется на радиаторе.
Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.
Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.
Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.
Основные параметры симистора.
Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.
Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.
В импульсном режиме напряжение точно такое же.
Максимальный ток в открытом состоянии – 5А.
Максимальный ток в импульсном режиме – 10А.
Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.
Наименьший импульсный ток – 160 мА.
Открывающее напряжение при токе 300 мА – 2,5 V.
Открывающее напряжение при токе 160 мА – 5 V.
Время включения – 10 мкс.
Время выключения – 150 мкс.
Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).
Оптосимистор.
Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.
Оптосимистор MOC3023
Устройство оптосимистора
Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».
Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Как проверить диод мультиметром?
Как определить мощность трансформатора?
устройство, принцип работы, область применения
Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов.
- Конструкция и принцип действия
- Управляющие сигналы
- Достоинства и недостатки
- Область применения
- Основные характеристики
Конструкция и принцип действия
Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.
Условное обозначение на схеме по ГОСТ:
Внешний вид следующий:
В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.
Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.
При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).
Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.
Управляющие сигналы
Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.
Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных.
Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток.
При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.
Достоинства и недостатки
Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания.
Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.
Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).
Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.
Область применения
Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:
- В стиральной машине.
- В печи.
- В духовках.
- В электродвигателе.
- В перфораторах и дрелях.
- В посудомоечной машине.
- В регуляторах освещения.
- В пылесосе.
На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.
Основные характеристики
Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:
- Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
- Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
- Рабочий диапазон температур.
- Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
- Время включения.
- Минимальный постоянный ток управления, нужный для включения прибора.
- Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
- Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
- Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
- Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.
Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!
Что такое симистор — симисторный переключатель » Electronics Notes
Симисторы — это полупроводниковые устройства, которые широко используются для коммутации переменного тока средней мощности — их преимущество в том, что они могут коммутировать обе половины переменного цикла.
Симистор, диак, тиристор Учебное пособие Включает:
Основы работы с тиристорами
Структура тиристорного устройства
Тиристорный режим
Затвор выключения тиристора, ГТО
Технические характеристики тиристора
Что такое симистор
Технические характеристики симистора
Обзор Диака
Триаки — это электронные компоненты, которые широко используются в устройствах управления питанием переменного тока. Они могут переключать высокое напряжение и высокий уровень тока, а также обе части сигнала переменного тока. Это делает симисторные схемы идеальными для использования в различных приложениях, где требуется переключение питания.
Одним из конкретных применений симисторных цепей являются диммеры для бытового освещения, а также они используются во многих других ситуациях управления мощностью, включая управление двигателем и электронные переключатели.
Симистор среднего тока
Из-за своих характеристик симисторы, как правило, используются для электронных коммутационных устройств малой и средней мощности, в то время как тиристоры используются для коммутации переменного тока с очень высокими тепловыми нагрузками.
Основы симистора
Симистор является развитием тиристора. В то время как тиристор может контролировать ток только в течение одной половины цикла, симистор контролирует его в течение двух половин формы волны переменного тока.
Форма сигнала переключения симистора
Таким образом, симистор можно рассматривать как пару параллельных, но противоположных тиристоров с двумя затворами, соединенными вместе, и анодом одного устройства, подключенным к катоду другого, и т. д.
Тот факт, что действие переключения симистора происходит на обеих половинах сигнала переменного тока, означает, что для приложений электронного переключения переменного тока можно использовать полный цикл.
Для базовых тиристорных цепей используется только половина формы волны, и это означает, что базовые схемы, использующие тиристоры, не будут использовать обе половины цикла. Для использования обеих половин требуется два устройства.
Однако симистору требуется только одно устройство для управления обеими половинами сигнала переменного тока, и во многих отношениях это идеальное решение для электронного переключателя переменного тока.
Символ симистора
Как и другие электронные компоненты, симистор имеет собственный символ цепи для использования на принципиальных схемах, что указывает на его двунаправленные свойства. Символ симистора можно рассматривать как пару символов тиристора в противоположных смыслах, слитых вместе.
Символ цепи симистора
Как и тиристор, симистор имеет три вывода. Однако их названия немного сложнее присвоить, потому что основные токоведущие клеммы подключены к тому, что фактически является катодом одного тиристора и анодом другого в общем устройстве.
Есть ворота, которые действуют как триггер для включения устройства. В дополнение к этому другие терминалы называются анодами или основными терминалами. Они обычно обозначаются как Анод 1 и Анод 2 или Основной Терминал 1 и Основной Терминал 2 (MT1 и MT2). При использовании симисторов и МТ1, и МТ2 имеют очень похожие свойства.
Как работает симистор?
Прежде чем рассматривать, как работает симистор, полезно иметь представление о том, как работает тиристор. Таким образом, основные понятия можно понять для более простого полупроводникового устройства, а затем применить к более сложному симистору.
Подробнее о . . . . Основы тиристора/тиристора.
Для работы симистора из символа схемы можно представить, что симистор состоит из двух тиристоров, включенных параллельно, но по-разному. Таким образом можно рассматривать работу симистора, хотя реальная работа на полупроводниковом уровне несколько сложнее.
Эквивалентная схема симистора
Структура симистора показана ниже, и можно увидеть, что есть несколько областей материала N-типа и P-типа, которые образуют то, что фактически представляет собой пару встречных тиристоров.
Базовая структура симистора
Симистор может проводить больше проводов, чем тиристор. Он может проводить ток независимо от полярности напряжения на клеммах MT1 и MT2. Он также может запускаться положительным или отрицательным током затвора, независимо от полярности тока MT2. Это означает, что существует четыре режима запуска или квадранта:
- Режим I+ Ток MT2 +ve, ток затвора +ve
- I-Mode Ток MT2 равен +ve, ток затвора равен -ve
- Режим III+: Ток MT2 равен -ve, ток затвора равен +ve
- III- Режим: Ток MT2 -ve, ток затвора -ve
Установлено, что чувствительность триггерного тока триггера наибольшая, когда токи MT2 и затвора имеют одинаковую полярность, т. е. оба положительные или оба отрицательные. Если токи затвора и MT2 имеют противоположную полярность, то чувствительность обычно составляет примерно половину значения, когда они одинаковы.
Типичная ВАХ симистора показана на диаграмме ниже, где отмечены четыре различных квадранта.
Характеристики симистора IV
Применение симистора
Триаки
используются во многих приложениях. Эти электронные компоненты часто используются для коммутации переменного тока малой и средней мощности. Там, где необходимо переключать большие уровни мощности, как правило, используются два тиристора / тринистора, поскольку ими легче управлять.
Тем не менее симисторы широко используются во многих приложениях:
- Управление освещением, особенно бытовыми диммерами.
- Управление вентиляторами и малыми двигателями.
- Электронные выключатели для общего включения и управления переменным током
Естественно, существует множество других применений симистора, но эти являются одними из самых распространенных.
В одном конкретном приложении симисторы могут быть включены в модули, называемые твердотельными реле. Здесь оптическая версия этого полупроводникового устройства активируется светодиодным источником света, который включает твердотельное реле в соответствии с входным сигналом.
Обычно в твердотельных реле светодиодный или инфракрасный источник и оптический симистор находятся в одном корпусе, при этом обеспечивается достаточная изоляция, чтобы выдерживать высокие напряжения, которые могут достигать сотен вольт или, возможно, даже больше.
Твердотельные реле бывают разных форм, но те, которые используются для переключения переменного тока, могут использовать симистор.
Использование симисторов
При использовании симисторов необходимо учитывать ряд моментов. Хотя эти полупроводниковые устройства работают очень хорошо, чтобы получить от них максимальную производительность, необходимо понять несколько советов по использованию симисторов.
Обнаружено, что из-за их внутренней конструкции и небольших различий между двумя половинками эти электронные компоненты не срабатывают симметрично. Это приводит к генерированию гармоник: чем менее симметрично срабатывает симистор, тем выше уровень генерируемых гармоник.
Обычно нежелательно иметь высокие уровни гармоник в энергосистеме, поэтому симисторы не рекомендуются для систем большой мощности. Вместо этого для этих систем можно использовать два тиристора, так как легче контролировать их открытие.
Чтобы решить проблему несимметричного срабатывания симистора и возникающих в результате гармоник, другое полупроводниковое устройство, известное как диод (диодный переключатель переменного тока), часто помещают последовательно с затвором симистора.
Включение этого полупроводникового устройства помогает сделать переключение более равномерным для обеих половин цикла и тем самым создать более эффективный электронный переключатель.
Это связано с тем, что характеристика переключения диака намного более равномерна, чем у симистора. Поскольку симистор предотвращает протекание любого тока затвора до тех пор, пока напряжение триггера не достигнет определенного напряжения в любом направлении, это делает точку срабатывания симистора более равномерной в обоих направлениях.
Внутренняя схема симисторного диммера
Примеры симисторной схемы
Существует множество способов использования симисторов. Два приведенных ниже примера дают представление о том, что можно сделать с этими полупроводниковыми устройствами.
- Простая схема электронного переключателя симистора: Симистор может функционировать как электронный переключатель — он может позволить пусковому импульсу маломощного переключателя включить симистор для управления гораздо более высокими уровнями мощности, которые могут быть возможны с простой переключатель.
Схема простого симисторного переключателя - Симистор с регулируемой мощностью или диммер: Одна из самых популярных симисторных схем изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузку.
Базовая симисторная схема, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке
Существует множество других схем симисторов, которые можно использовать. Устройство очень универсально и может использоваться в различных схемах, как правило, для обеспечения различных форм переключения переменного тока.
Примечание по симисторным схемам и конструкции:
Симисторные схемы могут переключать обе половины на переменный сигнал с помощью одного устройства, что делает их очень привлекательными для использования во многих схемах переключения переменного тока малой и средней мощности.
Подробнее о Симисторные схемы и дизайн
Технические характеристики симистора
Триаки имеют многие характеристики, которые очень похожи на характеристики тиристоров, хотя очевидно, что они предназначены для работы симистора в обеих половинах цикла и должны интерпретироваться как таковые.
Однако, поскольку их действие очень похоже, то же самое можно сказать и о базовых типах спецификаций. Такие параметры, как ток срабатывания затвора, повторяющееся пиковое напряжение в закрытом состоянии и т. п., необходимы при разработке симисторной схемы, обеспечивая достаточный запас для надежной работы схемы.
Подробнее о . . . . характеристики симистора.
Симисторы
идеально подходят для использования во многих маломощных устройствах переменного тока. Симисторные схемы для использования в качестве диммеров и небольших электронных переключателей широко распространены, они просты и легки в реализации. При использовании симисторов в схему часто включают диаки, как упоминалось выше, чтобы помочь снизить уровень производимых гармоник.
Другие электронные компоненты:
Батарейки
конденсаторы
Соединители
Диоды
полевой транзистор
Индукторы
Типы памяти
Фототранзистор
Кристаллы кварца
Реле
Резисторы
ВЧ-разъемы
Переключатели
Технология поверхностного монтажа
Тиристор
Трансформеры
Транзистор
Клапаны/трубки
Вернуться в меню «Компоненты». . .
Принципы и схемы симистора — Часть 1
» Перейти к разделу «Дополнительно»
Симистор — это управляемый твердотельный переключатель переменного тока с полуфиксацией средней и большой мощности. В этой статье, состоящей из двух частей, объясняется его основная работа и показаны различные способы его использования. Большинство практических схем показывают два набора значений компонентов для использования с обычными бытовыми/коммерческими источниками переменного напряжения 50 Гц или 60 Гц с номинальным значением либо 240 В (как используется в большинстве стран Европы), либо (в скобках) 120 В (как используется в большинстве стран Европы). США). В каждой конструкции пользователь должен использовать симистор с номиналами, соответствующими его или ее конкретному приложению.
Основы симистора
РИСУНОК 1. Символы симистора. |
РИСУНОК 2. Простой выключатель питания переменного тока с резистивной (ламповой) нагрузкой. |
Симистор представляет собой твердотельный тиристор с тремя выводами (MT1, затвор и MT2), который использует альтернативные символы на рис. Терминал. Он может проводить ток в любом направлении между своими клеммами MT1 и MT2 и, таким образом, может использоваться для прямого управления питанием переменного тока. Он может запускаться как положительным, так и отрицательным током затвора, независимо от полярности тока MT2, и, таким образом, он имеет четыре возможных режима запуска или «квадранта», обозначенных следующим образом:
I+ Mode = ток MT2 +ve, ток затвора +ve
I- Mode = ток MT2 +ve, ток затвора -ve
III+ Mode = ток MT2 -ve, ток затвора +ve
III+ Mode = ток MT2 -ve, gate current -ve
Чувствительность триггерного тока наибольшая, когда MT2 и вентильный токи имеют одинаковую полярность (либо оба положительные, либо оба отрицательные), и обычно вдвое меньше, когда они имеют противоположную полярность.
На рис. 2 показан симистор, используемый в качестве простого переключателя питания переменного тока, управляющий резистивной ламповой нагрузкой; Предположим, что SW2 закрыт. Когда SW1 разомкнут, симистор действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, симистор запирается через R1 и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на ламповую нагрузку. Симистор автоматически разблокируется в конце каждого полупериода переменного тока, когда мгновенное напряжение питания (и, следовательно, ток нагрузки) кратковременно падает до нуля.
В рис. 2 задача резистора R1 заключается в ограничении пикового мгновенного тока затвора симистора при включении до безопасного значения; его сопротивление (вместе с сопротивлением нагрузки) должно быть больше, чем пиковое напряжение питания (примерно 350 В в цепи 240 В переменного тока, 175 В в цепи 120 В), деленное на номинальный пиковый ток затвора симистора (который обычно указывается в документации производителя симистора). расширенные технические данные).
Обратите внимание на рис. 2 (и в большинстве других симисторных цепей, показанных в этой мини-серии), что — по соображениям безопасности — нагрузка подключается последовательно с нейтральной линией (N) источника переменного тока, а главное вкл. /выкл. переключатель SW2 может изолировать всю цепь от действующей (L) линии.
Эффект скорости симистора
РИСУНОК 3. Простой выключатель питания переменного тока с индуктивной нагрузкой и демпфирующей цепью C1-R2 для подавления эффекта скорости. |
Большинство симисторов, как и SCR, подвержены проблемам «скорости-эффекта». Между основными выводами и затвором симистора неизбежно существуют внутренние емкости, и если на одном из основных выводов появляется резко возрастающее напряжение, оно может — если его скорость нарастания превышает номинальную dV/dt симистора — вызвать достаточный прорыв к гейт, чтобы включить симистор. Это нежелательное включение «эффекта скорости» может быть вызвано переходными процессами в линии питания; однако проблема особенно серьезна при управлении индуктивными нагрузками, такими как электродвигатели, в которых токи и напряжения нагрузки не совпадают по фазе, что приводит к внезапному появлению большого напряжения на основных клеммах каждый раз, когда симистор размыкается, когда ток на его основной клемме падает. почти до нуля в каждом рабочем полупериоде.
Проблемы, связанные с эффектом скорости, обычно можно решить, подключив R-C «снабберную» сеть между MT1 и MT2, чтобы ограничить скорость нарастания напряжения до безопасного значения, как показано (например) в схеме переключателя питания симистора в Рисунок 3 , где R2-C1 образуют снабберную сеть. Некоторые современные симисторы имеют повышенные характеристики dV/dt (обычно 750 В/мс) и практически не подвержены влиянию скорости; эти симисторы известны как «бесшумные» типы.
Подавление радиопомех
РИСУНОК 4. Базовый диммер лампы переменного тока с подавлением радиопомех через C1-L1. |
Симистор можно использовать для управления переменной мощностью переменного тока с помощью метода «переключения с фазовой задержкой», при котором симистор срабатывает частично в течение каждого полупериода. При каждом включении симистора ток его нагрузки резко (за несколько микросекунд) переключается от нуля до значения, заданного его сопротивлением нагрузки и мгновенными значениями напряжения питания. В схемах с резистивной нагрузкой, таких как диммеры ламп, это действие переключения неизбежно генерирует импульс ВЧ-помех, который наименьший, когда симистор срабатывает вблизи точек пересечения нуля 0° и 180° осциллограммы линии питания (при которой переключатель токи включения минимальны), а максимальны при срабатывании устройства 90° после начала каждого полупериода (когда токи включения максимальны).
Импульсы РЧ-помех возникают с частотой, вдвое превышающей частоту сети, и могут быть очень раздражающими. В диммерах ламп РЧ-помехи обычно можно устранить, установив на диммер простую сеть LC-фильтров, как показано на рис. 4 . Фильтр устанавливается рядом с симистором и значительно снижает скорость нарастания токов в сети переменного тока.
РИСУНОК 5. Символ диака. |
Диаки и квадраки
Диак — двухполюсное двунаправленное триггерное устройство; он может использоваться с напряжениями любой полярности и обычно используется в сочетании с симистором; На рис. 5 показан символ цепи. Основное действие диака таково, что при подключении к источнику напряжения через токоограничивающий нагрузочный резистор он действует как высокоимпедансный, пока приложенное напряжение не поднимется примерно до 35 В, после чего он срабатывает и действует как низкоимпедансный 30 В. стабилитрон, и 30 В вырабатывается на диаке, а остальные 5 В появляются на нагрузочном резисторе. Диак остается в этом состоянии до тех пор, пока его прямой ток не упадет ниже минимального удерживающего значения (это происходит, когда напряжение питания падает ниже значения «стабилитрона» 30 В), после чего диак снова отключается.
РИСУНОК 6. Базовая схема диммера лампы с регулируемой фазовой задержкой. | Рисунок 7 . Символ квадрака. |
Диак чаще всего используется в качестве пускового устройства в приложениях управления мощностью с фазным триаком, как в базовой схеме регулятора яркости лампы Рисунок 6 . Здесь в каждом полупериоде линии электропередачи сеть R1-RV1-C1 применяет вариант полупериода с переменной задержкой по фазе к затвору симистора через диак, и когда напряжение C1 возрастает до 35 В, диак срабатывает и подает триггерный импульс 5В (от С1) на затвор симистора, тем самым включая симистор и одновременно подавая питание на ламповую нагрузку и отключая привод от RC-цепи. Таким образом, средняя мощность нагрузки (интегрированная за полный период полупериода) полностью изменяется от почти нуля до максимума через RV1.
На заре разработки симистора некоторые специализированные устройства производились со встроенным диодом последовательно с затвором симистора; такие устройства были известны как квадраки и использовали символ схемы Рисунок 7 . Quadrac не имели коммерческого успеха и сейчас устарели.
Варианты выключателя питания переменного тока
Простейший тип симисторного выключателя питания — это Рисунок 2 , в котором симистор включается через R1, когда SW1 замкнут; Только 1 В или около того генерируется на симисторе, когда он включен, поэтому R1 и SW1 потребляют очень небольшую среднюю мощность; На рис. 3 показана та же цепь, оснащенная «снабберной» сетью. Есть много полезных вариантов этих основных схем. На рис. 8 , например, показана версия, которая может запускаться от источника постоянного тока переменного тока. C1 заряжается (через R1-D1) до +10 В в каждом положительном полупериоде линии питания переменного тока, и этот заряд запускает симистор, когда SW1 замкнут. Обратите внимание, что R1 постоянно подвергается почти полному напряжению сети переменного тока и, следовательно, требует довольно высокой номинальной мощности, и что все части этой схемы находятся под напряжением, что затрудняет взаимодействие с внешней схемой управления.
РИСУНОК 8. Переключатель питания переменного тока с запуском по постоянному току переменного тока. | РИСУНОК 9. Переключатель питания переменного тока с изолированным входом (с оптической развязкой), срабатывающий от постоянного тока. |
На рис. 9 показана вышеприведенная схема, модифицированная для обеспечения «изолированного» взаимодействия с внешней схемой управления. SW1 просто заменяется транзистором Q2, который управляется со стороны фототранзистора оптрона. Светодиод соединителя питается от внешнего источника постоянного тока через R1, а симистор включается только при замыкании SW1; При желании SW1 можно заменить электронной коммутационной схемой.
РИСУНОК 10. Выключатель питания переменного тока с изолированным входом, срабатывающий от переменного тока. | РИСУНОК 11. Переключатель питания переменного тока с запуском постоянного тока с помощью транзистора. |
На рис. 10 показан вариант, в котором симистор запускается по переменному току в каждом полупериоде через импеданс переменного тока C1-R1 и через встречно-параллельные стабилитроны ZD1-ZD2, а C1 рассеивает около нуля сила. Мостовой выпрямитель D1-D4 подключен к сети ZD1-ZD2-R2 и нагружен Q2. Когда Q2 выключен, мост фактически разомкнут и симистор открыт в каждом полупериоде, но когда Q2 включен, между ZD1-ZD2-R2 возникает почти короткое замыкание, и симистор выключен. Q2 управляется через оптопару от изолированной внешней цепи, а симистор включен, когда SW1 разомкнут, и выключен, когда SW1 замкнут.
РИСУНОК 12. Выключатель питания переменного тока с изолированным входом и срабатыванием по постоянному току. |
На рисунках 11 и 12 показаны варианты, в которых симистор запускается с помощью трансформаторного источника питания постоянного тока и транзисторного ключа. В Рисунок 11 Q2 и симистор оба включены, когда SW1 замкнут, и выключены, когда SW1 разомкнут. На практике SW1 можно заменить электронной схемой, позволяющей активировать симистор с помощью тепла, света, звука, времени и т. д. Обратите внимание, однако, что вся эта схема находится под напряжением. На рис. 12 показана схема, модифицированная для работы с оптопарой, позволяющая активировать ее через полностью изолированную внешнюю схему.
Запуск UJT
Еще один способ получить полностью изолированное симисторное переключение — использовать схемы UJT в , рис. В этих схемах срабатывание триггера осуществляется через UJT-генератор Q2, который работает на частоте несколько кГц и подает выходные импульсы на затвор симистора через импульсный трансформатор T1, что обеспечивает желаемую «развязку». Из-за довольно высокой частоты колебаний UJT запускает симистор в течение нескольких градусов после начала каждого полупериода сети переменного тока, когда генератор активен.
РИСУНОК 13. Выключатель питания переменного тока с изолированным входом (с трансформаторной связью). | РИСУНОК 14. Выключатель питания переменного тока с изолированным входом. |
В Рис. 13 Q3 включен последовательно с основным времязадающим резистором UJT, поэтому UJT и симистор включаются только при замыкании SW1. В Рис. 14 Q3 подключен параллельно основному времязадающему конденсатору UJT, поэтому UJT и симистор включаются только тогда, когда SW1 разомкнут.
РИСУНОК 15. Типичная схема симистора с оптронной развязкой и рабочие характеристики. |
Рис. 16. Управление маломощными лампами через симистор с оптронной развязкой. |
Симисторы с оптической развязкой
Затворы «голого» симистора по своей природе светочувствительны, поэтому симистор с оптической развязкой может быть изготовлен путем монтажа «голого» симистора и светодиода близко друг к другу в одном корпусе. На рис. 15 показана схема и перечислены характеристики типичной шестиконтактной версии DIL такого устройства, в которой светодиод имеет максимальный номинальный ток 50 мА, симистор имеет максимальные номинальные значения 400 В и 100 мА среднеквадратичного значения (и номинальный ток 1,2 А для 10 мс), а весь пакет имеет номинальное напряжение изоляции 1,5 кВ и типичную чувствительность срабатывания по входному току 5 мА.
Триаки с оптопарой просты в использовании и обеспечивают превосходную электрическую изоляцию между входом и выходом. Вход используется как обычный светодиод, а выход как маломощный симистор. На рис. 16 показано устройство, используемое для включения лампы накаливания с питанием от сети переменного тока, которая должна иметь среднеквадратичное значение ниже 100 мА и номинальный пиковый пусковой ток ниже 1,2 А.
РИСУНОК 17. Управление большой мощностью через ведомый симистор. | РИСУНОК 18. Приведение в действие индуктивной нагрузки. |
На рис. 17 показан симистор с оптронной развязкой, используемый для активации подчиненного симистора, тем самым приводя в действие нагрузку любой требуемой номинальной мощности. Эта схема подходит для использования только с неиндуктивными нагрузками, такими как лампы и нагревательные элементы. Его можно модифицировать для использования с индуктивными нагрузками, такими как электродвигатели, используя соединения, указанные в 9. 0193 Рисунок 18 . Здесь цепь R2-C1-R3 обеспечивает определенный фазовый сдвиг в цепи затвора-привода симистора, чтобы обеспечить правильное срабатывание симистора, а R4-C2 образуют демпферную сеть для подавления эффектов скорости.
Синхронный силовой выключатель с «нулевым напряжением»
Синхронный силовой выключатель с «нулевым напряжением» (или «интегральный цикл») — это переключатель, в котором симистор неизменно включается сразу после начала каждого полупериода питания (т. е. около точки нулевого напряжения сигнала), а затем снова автоматически выключается в конце, таким образом генерируя минимальные радиопомехи. В большинстве схем переключения мощности, показанных до сих пор в этой статье, симистор включается в произвольной точке своего начального полупериода включения, тем самым создавая потенциально высокий начальный всплеск радиопомех, но затем дает синхронное действие переключения при нулевом напряжении. на все последующие полупериоды.
Истинно синхронная схема с нулевым напряжением использует систему переключения Рисунок 19 , в которой симистор может включаться только вблизи начальной точки или точки «нулевого напряжения» каждого полупериода, и, таким образом, создает минимальные радиопомехи. Эта система широко используется для включения/выключения сильноточных нагрузок, таких как электрические нагреватели и т. д.
РИСУНОК 19. Система синхронного переключения питания переменного тока с нулевым напряжением. | РИСУНОК 20. Синхронный выключатель питания переменного тока. |
На рис. 20 показан практичный синхронный выключатель питания переменного тока с нулевым напряжением; 10 В постоянного тока получают от переменного тока через R7-D1-ZD1 и C2 и переключают на затвор симистора через Q2, который управляется через SW1 и детектор «нулевого напряжения» Q3-Q4-Q5 и может подавать ток затвора только тогда, когда SW1 закрыт, а Q3 выключен.
РИСУНОК. 21 Альтернативный вариант синхронного выключателя переменного тока. |
В детекторе нулевого напряжения транзисторы Q4 или Q5 включаются всякий раз, когда напряжение в сети переменного тока превышает или ниже нуля более чем на несколько вольт (задается параметром RV1), тем самым активируя транзистор Q3 через резистор R5 и блокируя транзистор Q2. Таким образом, ток затвора может подаваться на симистор только тогда, когда SW1 замкнут, а мгновенное линейное напряжение переменного тока находится в пределах нескольких вольт от нуля; Таким образом, эта схема генерирует минимальные коммутационные радиочастотные помехи.
На рис. 21 показана схема, модифицированная таким образом, что симистор может включаться только при разомкнутом переключателе SW1. Обратите внимание, что в обоих случаях на симистор подается только узкий импульс тока затвора, и, таким образом, средний ток затвора составляет всего 1 мА или около того. При желании SW1 можно заменить электронным переключателем или оптопарой, что позволяет активировать нагрузку по уровню освещенности или температуры, по времени и т.