интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Стабилизатор напряжения на мощном полевом транзисторе 13В (IRLR2905). Схема регулируемый стабилизатор напряжения на полевом транзисторе


Схема. Модуль мощного стабилизатора напряжения на полевом транзисторе

Схема Модуль мощного стабилизатора напряжения на полевом транзисторе 1      На основе мощных переключательных полевых транзисторов [1] можно построить линейные стабилизаторы напряжения. Подобное устройство было ранее описано в [2]. Немного изменив схему, как показано на рис. 1, можно улучшить параметры описанного стабилизатора, существенно (в 5…6 раз) уменьшив падение напряжения на регулирующем элементе, в качестве которого применен транзистор IRL2505L. Он имеет в открытом состоянии весьма малое сопротивление канала (0,008 Ом), обеспечивает ток до 74 А при температуре корпуса 100 °С, отличается высокой крутизной характеристики (59 А/В). Для управления им требуется небольшое напряжение на затворе (2,5…3 В). Предельное напряжение сток—исток — 55 В, затвор—исток — ±16 В, мощность, рассеиваемая транзистором, может достигать 200 Вт.

      Подобно современным микросхемным стабилизаторам, предлагаемый модуль имеет три вывода: 1 — вход, 2 — общий, 3 — выход. В качестве управляющего элемента применена микросхема DA1 — параллельный стабилизатор напряжения КР142ЕН19 (TL431). Транзистор VT1 выполняет функцию согласующего элемента, а стабилитрон VD1 обеспечивает стабильное напряжение для его базовой цепи. Значение выходного напряжения можно рассчитать по формулеUвых=2,5(1+R5/R6).Схема Модуль мощного стабилизатора напряжения на полевом транзисторе 2      Выходное напряжение регулируют, изменяя сопротивление резистора R6. Конденсаторы обеспечивают устойчивую работу стабилизатора. Устройство работает следующим образом. При увеличении выходного напряжения повышается напряжение на управляющем входе микросхемы DA1, в результате чего ток через нее увеличивается. Напряжение на резисторе R2 увеличивается, а ток через транзистор VT1 уменьшается. Соответственно напряжение затвор—исток транзистора VT2 уменьшается, вследствие чего сопротивление его канала возрастает. Поэтому выходное напряжение уменьшается, восстанавливаясь до прежнего значения.Схема Модуль мощного стабилизатора напряжения на полевом транзисторе 3      Регулирующий полевой транзистор VT2 включен в минусовый провод, а управляющее напряжение поступает на него с плюсового провода. Благодаря такому решению стабилизатор способен обеспечить ток нагрузки 20…30 А, при этом входное напряжение может быть всего на 0,5 В больше выходного. Если предполагается использовать модуль при входном напряжении более 16 В, то транзистор VT2 необходимо защитить от пробоя с помощью маломощного стабилитрона с напряжением стабилизации 10…12 В, катод которого подключают к затвору, анод — к истоку.

      В устройстве можно применить любой n-канальный полевой транзистор (VT2), подходящий по току и напряжению из списка, приведенного в [1], желательно выделенный желтым цветом. VT1 — КТ502, КТ3108, КТ361 с любыми буквенными индексами. Микросхему КР142ЕН19 (DA1) допустимо заменить на TL431. Конденсаторы — К10-17, резисторы — Р1-4, МЛТ, С2-33.      Схема подключения модуля стабилизатора приведена на рис. 2.

      При большом токе нагрузки на транзисторе VT2 рассеивается большая мощность, поэтому необходим эффективный теплоотвод. Транзисторы этой серии с буквенными индексами L и S устанавливают на теплоотвод с помощью пайки. В авторском варианте в качестве теплоотвода и одновременно несущей конструкции применен корпус от неисправного транзистора КТ912, КП904. Этот корпус разобран, удалена его верхняя часть так, что осталась позолоченная керамическая шайба с кристаллом транзистора и выводами-стойками. Кристалл аккуратно удален, покрытие облужено, после чего к нему припаян транзистор VT2. К покрытию шайбы и выводам транзистора VT2 припаяна печатная плата из двусторонне фольгированного стеклотекстолита (рис. 3). Фольга на обратной стороне платы целиком сохранена и соединена с металлизацией шайбы (стоком транзистора VT2) После налаживания и проверки модуля стабилизатора плата приклеена к корпусу. Выводы 1 и 2 — площадки на печатной плате, а вывод 3 (сток транзистора VT2) — металлический вывод-стойка на керамической шайбе.Схема Модуль мощного стабилизатора напряжения на полевом транзисторе 4      Если применить детали для поверхностного монтажа: микросхему TL431CD (рис. 4), транзистор VT1 КТ3129А-9, транзистор VT2 IRLR2905S, резисторы Р1-12, то часть их можно разместить на печатной плате, а другую часть — навесным монтажом непосредственно на керамической шайбе корпуса. Внешний вид собранного устройства показан на рис. 5. Модуль стабилизатора напряжения не имеет гальванической связи с основанием (винтом) корпуса, поэтому его можно непосредственно разместить на теплоотводе, даже если он соединен с общим проводом питаемого устройства.Схема Модуль мощного стабилизатора напряжения на полевом транзисторе 5      Также допустимо использовать корпус от неисправных транзисторов серий КТ825, КТ827. В таком корпусе кристаллы транзистора прикреплены не к керамической, а к металлической шайбе. Именно к ней, предварительно удалив кристалл, припаивают транзистор VT2. Остальные детали устанавливают аналогично. Сток транзистора VT2 в этом случае соединен с корпусом, поэтому модуль можно непосредственно установить на теплоотвод, соединенный с минусовым проводом питания нагрузки.      Налаживание устройства сводится к установке требуемого выходного напряжения подстроечным резистором R6 и к проверке отсутствия самовозбуждения во всем интервале выходного тока. Если оно возникнет, его нужно устранить увеличением емкости конденсаторов.

ЛИТЕРАТУРА1. Мощные полевые переключательные транзисторы фирмы International Rectifier. — Радио, 2001, № 5, с. 45.2. Нечеев И. Стабилизатор напряжения на мощном полевом транзисторе. — Радио, 2003, № 8. с. 53, 54.

И. НЕЧАЕВ, г. Курск«Радио» №2 2005г.

Похожие статьи: ПОВЫШАЮЩИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯИмпульсный источник питания на однопереходном транзистореРегулируемый стабилизатор напряжения с ограничением по токуМощный стабилизатор двухполярного напряжения для УМЗЧ

radioelectronika.ru

Стабилизатор напряжения на мощном полевом транзисторе 13В (IRLR2905)

 

   При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор,

 

 

   Схема одного из вариантов такого стабилизатора приведена на рис. 3.28.0. Со вторичной обмотки трансформатора переменное напряжение около 13 В (эффективное значение) поступает на выпрямитель и сглаживающий фильтр. На конденсаторах фильтра оно равно 16 В. Это напряжение поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор.

   Часть выходного напряжения через делитель R2, R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т.е. частично закрывая его, и, таким образом, устройство входит в режим стабилизации. Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту (рис. 3.28.6). В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе.

 

 

   При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроенным резистором.

   В стабилизаторе в качестве регулирующего элемента применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечивает ток до 30 А при температуре корпуса до 100°С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В. Мощность, рассеиваемая транзистором, может достигать 110 Вт.

   Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (импортный аналог TL431). Конденсаторы — малогабаритные танталовые, резисторы — MJ1T, С2-33, диод VD2 — выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока. Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод.

   Налаживание стабилизатора сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовоз

   буждение возникает, то параллельно конденсаторам CI, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.

   Печатная плата устройства приведена на рис. 3.29. Эта плата рассчитана на установку малогабаритных деталей в корпусах для поверхностного монтажа, в том чис

 

 

   ле и микросхема КР142ЕН19 требует замены на импортный аналог в корпусе SO-8.

   В случае, если полевой транзистор найти не удалось, стабилизатор можно выполнить по другой схеме (рис. 3.30), на мощных биполярных транзисторах, с использованием той же микросхемы. Правда, максимальный ток нагрузки у этого варианта стабилизатора не более 3…4 А. Для повышения коэффициента стабилизации применен стабилизатор тока на полевом транзисторе, в качестве регулирующего элемента применен мощный составной транзистор. Трансформатор должен обеспечивать на вторичной обмотке напряжение не менее 15 В при максимальном токе нагрузки.

nauchebe.net

Регулятор мощности на MOSFETах

электроника для дома

Регуляторы мощности переменного тока с фазоимпульсным управлением получили широкое распространение как в устройствах промышленной автоматики, так и в радиолюбительских конструкциях. Регулирующим элементом таких устройств является триодный тиристор, момент (угол) открывания которого регулируется подачей импульса или уровня напряжения на управляющий электрод,

а закрывание происходит в момент уменьшения тока, протекающего через тиристор, до нуля (при активной нагрузке — в момент перехода сетевого напряжения через ноль). Такое управление называется неполным, поскольку можно регулировать только угол открывания тиристора, а момент закрывания не регулируется. Разработанные в последние годы мощные полевые транзисторы с изолированным затвором (MOSFET) позволяют построить несложный ключ для коммутации переменного тока с полным управлением, т.е. открыванием и закрыванием ключа.

регулятор мощности на тразисторах MOSFET

Схема регулятора мощности представлена на рис.1. Силовой ключ выполнен на транзисторах VT1, VT2, включенных встречно-последовательно. Наличие в каждом транзисторе внутреннего защитного диода, включенного параллельно каналу в обратной полярности (анодом к истоку, катодом к стоку), позволяет обеспечивать протекание тока в нагрузке при положительных и отрицательных полупериодах сетевого напряжения.

На трех логических элементах микросхемы DD1 выполнен генератор импульсов с регулируемой скважностью. Частота импульсов — около 2 кГц (значительно выше частоты сетевого напряжения). При наличии высокого уровня на выходе инвертора DD1.3 транзисторный ключ открыт, и ток протекает через нагрузку. При этом в положительный полупериод ток протекает через открытый канал транзистора VT1 и защитный диод транзистора VT2, а в отрицательный полупериод — наоборот, через защитный диод транзистора VT1 и открытый канал транзистора VT2. Если же на выходе DD1.3 — низкий уровень, то оба транзистора закрыты, и нагрузка обесточена. Временные диаграммы работы регулятора показаны на рис.2. Очевидно, что изменение скважности импульсов позволяет изменять мощность нагрузки от нуля до максимального значения, соответствующего полному напряжению сети.

Питание микросхемы DD1 производится от однополупериодного выпрямителя с параметрическим стабилизатором, собранным на элементах R2 VD3, VD4, С2 Следует обратить внимание, что стабилизатора напряжения соединен с истоками полевых транзисторов и с общим проводом микросхемы, поэтому напряжение на затворы транзисторов подается относительно их истоков

Преимущество данного способа регулирования мощности перед фазоимпульсным состоит в том, что коммутация нагрузки происходит со значительно большей частотой, чем в регуляторах на тиристорах, это позволяет регулировать мощность для малоинерционных нагрузок.

Указанные на схеме полевые транзисторы IRF840 имеют следующие параметры: ток стока — 8 А, максимальное напряжение между стоком и истоком — 500 В, сопротивление канала в открытом состоянии — 0,85 Ом, рассеиваемая мощность — 125 Вт. Эти транзисторы можно заменить на IRF740, IRFP450, IRFP460, IRFPC50, IRFPC60, IRFP350, IRFP360 BUZ80. Перед установкой в устройство следует убедиться, что транзистор имеет защитный диод (это легко сделать с помощью омметра). Максимальная мощность нагрузки определяется предельным током открытого транзистора, при этом мощность, выделяющаяся на открытом канале, не должна превышать предельно допустимую Частота генератора в случае необходимости может быть изменена подбором емкости С1.

 

Литература

1. Колдунов А Транзисторы MOSFET. — Радиомир, 2004, N4 С 26

2 Семенов Б.Ю Силовая электроника для любителеи и профессионалов — М. СОЛОН-Р 2001

А.ЕВСЕЕВ,

г.Тула.

radiopolyus.ru

Стабилизатор напряжения на мощном полевом транзисторе.

В различной литературе неоднократно описывались различные схемы стабилизаторов к различным блокам питания. В этой статье автор приводит описание аналогового стабилизатора напряжения для блока питания повышенной мощности. В схеме стабилизатора напряжения, удалось значительно улучшить параметры, применив в качестве силового элемента мощный переключательный полевой транзистор.

В основном при построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, "усиленные" одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор. Схема одного из вариантов такого стабилизатора приведена на рис.1.

Рис.1.

В нем в качестве силового применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечивает ток до 30А при температуре корпуса до 100 °С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5...3 В [1]. Мощность, рассеиваемая транзистором, может достигать 110 Вт. Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431). Ее назначение, устройство и параметры подробно описаны в статье [2]. Работает стабилизатор (рис. 1) следующим образом. При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13В (эффективное значение). Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе большой емкости (обычно несколько десятков тысяч микрофарад) выделяется постоянное напряжение около 16 В.

Оно поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через делитель R2R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления ву микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т. е. частично закрывая его, и устройство входит в режим стабилизации. Конденсатор СЗ ускоряет выход стабилизатора на рабочий режим. Значение выходного напряжения можно установить в пределах от 2,5 до 30В подбором резистора R2, его значение может изменяться в широких пределах. Конденсаторы С1, С2 и С4 обеспечивают устойчивую работу стабилизатора.

Для описанного варианта стабилизатора минимальное падение напряжения на регулирующем мощном транзисторе VT1 составляет 2,5...3В, хотя потенциально этот транзистор может работать при напряжении сток-исток, близком к нулю. Обусловлен данный недостаток тем, что управляющее напряжение на затвор поступает из цепи стока, поэтому при меньшем значении падения напряжения на нем, транзистор открываться не будет, ведь на затворе открытого транзистора должно быть положительное напряжение относительно истока.

Рис.2.

Чтобы уменьшить падение напряжения на регулирующем транзисторе, цепь его затвора целесообразно питать от отдельного выпрямителя с напряжением на 5... 7В больше, чем выходное напряжение стабилизатора. Если нет возможности сделать дополнительный выпрямитель, то в устройство можно ввести дополнительный диод и конденсатор (рис. 2). Эффект от такой простой доработки может быть большим. Дело в том, что напряжение, поступающее на сток транзистора, является пульсирующим, имеет значительную переменную составляющую, которая увеличивается при увеличении потребляемого тока. Благодаря диоду VD2 и конденсатору С5 напряжение на затворе будет примерно равно пиковому значению пульсирующего, т.е. может быть на несколько вольт больше, чем среднее или минимальное. Поэтому стабилизатор оказывается работоспособным при меньшем среднем напряжении сток-исток.

Рис.3.

Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту (рис. 3). В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе. При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроечным резистором. Значение выходного напряжения можно определить по формуле: Uвых = 2,5(1+R2/R3).

Детали

В устройстве допустимо применить подходящий транзистор из списка в вышеприведенном справочном листке, желательно выделенный желтым цветом. Если использовать, к примеру, IRF840, то минимальное значение управляющего напряжения на затворе будет составлять 4,5... 5В. Конденсаторы - малогабаритные танталовые, резисторы - МЛТ, С2-33, Р1-4. Диод VD2 - выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока.

Рис.4.

Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод. Примененный транзистор предназначен для установки на радиатор с помощью пайки. В этом случае целесообразно использовать промежуточную медную пластину толщиной несколько миллиметров, к которой припаивают транзистор и на которой можно установить остальные детали (рис. 4). Затем, после окончания монтажа, пластину можно разместить на радиаторе. Пайки при этом уже не требуется, поскольку пластина будет иметь большую площадь теплового контакта с радиатором.

Рис.5.

Если применить для поверхностного монтажа микросхему DA1 типа TL431С, резисторы типа Р1 -12 и соответствующие чип-конденсаторы, то их можно разместить на печатной плате (рис. 5) из односторонне фольгированного стеклотекстолита. Плату припаивают к выводам транзистора и приклеивают к упомянутой медной пластине клеем. В качестве такой пластины можно использовать, например, корпус с фланцем от испорченного мощного биполярного транзистора, скажем, КТ827, применив при этом навесной монтаж.

Настройка

Налаживание стабилизатора сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам С1, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.

И. Нечаев

Литература:

1. Мощные полевые переключательные транзисторы фирмы International Rectifier. - Радио, 2001, №5, с. 45.

2.И. Нечаев. Необычное применение микросхемы КР142ЕН19А. - Радио, 2003, № 5, с. 53,54.

qrx.narod.ru

Стабилизатор напряжения на мощном полевом транзисторе - 24 Февраля 2015 - Радио схемы - Самоделки

Стабилизатор напряжения на мощном полевом транзисторе

И. НЕЧАЕВ, г. Курск

В статье описан аналоговый стабилизатор напряжения для блока питания повышенной мощности. Автору удалось значительно улучшить параметры стабилизатора, применив в качестве силового элемента мощный переключательный полевой транзистор.

При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, "усиленные" одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор.

Схема одного из вариантов такого стабилизатора приведена на рис.1. В нем в качестве силового применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечиваетток до 30 А при температуре корпуса до 100 °С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5...3 В [1]. Мощность, рассеиваемая транзистором, может достигать 110 Вт.

Stabilizator-napryajeniya-na-mownom-polevom-tranzistore-1

Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431). Ее назначение, устройство и параметры подробно описаны в статье [2]. Работает стабилизатор (рис. 1) следующим образом. При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13 В (эффективное значение). Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе большой емкости (обычно несколько десятков тысяч микрофарад) выделяется постоянное напряжение около 16 В.

 

Оно поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через делитель R2R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления ву микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т. е. частично закрывая его, и устройство входит в режим стабилизации. Конденсатор СЗ ускоряет выход стабилизатора на рабочий режим. Значение выходного напряжения можно установить в пределах от 2,5 до 30 В подбором резистора R2, его значение может изменяться в широких пределах. Конденсаторы С1, С2 и С4 обеспечивают устойчивую работу стабилизатора.

Для описанного варианта стабилизатора минимальное падение напряжения на регулирующем мощном транзисторе VT1 составляет 2,5...3 В, хотя потенциально этот транзистор может работать при напряжении сток-исток, близком к нулю. Обусловлен данный недостаток тем, что управляющее напряжение на затвор поступает из цепи стока, поэтому при меньшем значении падения напряжения на нем транзистор открываться не будет, ведь на затворе открытого транзистора должно быть положительное напряжение относительно истока.

Чтобы уменьшить падение напряжения на регулирующем транзисторе, цепь его затвора целесообразно питать от отдельного выпрямителя с напряжением на 5...7 В больше, чем выходное напряжение стабилизатора. Если нет возможности сделать дополнительный выпрямитель, то в устройство можно ввести дополнительный диод и конденсатор (рис. 2). Эффект от такой простой доработки может быть большим. Дело в том, что напряжение, поступающее на сток транзистора, является пульсирующим, имеет значительную переменную составляющую, которая увеличивается при увеличении потребляемого тока. Благодаря диоду VD2 и конденсатору С5 напряжение на затворе будет примерно равно пиковому значению пульсирующего, т.е. может быть на несколько вольт больше, чем среднее или минимальное. Поэтому стабилизатор оказывается работоспособным при меньшем среднем напряжении сток-исток.

Stabilizator-napryajeniya-na-mownom-polevom-tranzistore-2

Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту (рис. 3). В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе. При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроечным резистором. Значение выходного напряжения можно определить по формуле Uвых = 2,5(1+R2/R3). В устройстве допустимо применить подходящий транзистор из списка в вышеприведенном справочном листке, желательно выделенный желтым цветом. Если использовать, к примеру, IRF840, то минимальное значение управляющего напряжения на затворе будет составлять 4,5...5 В. Конденсаторы — малогабаритные танталовые, резисторы — МЛТ, С2-33, Р1-4. Диод VD2 — выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока.

Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод. Примененный транзистор предназначен для установки на радиатор с помощью пайки. В этом случае целесообразно использовать промежуточную медную пластину толщиной несколько миллиметров, к которой припаивают транзистор и на которой можно установить остальные детали (рис. 4). Затем, после окончания монтажа, пластину можно разместить на радиаторе. Пайки при этом уже не требуется, поскольку пластина будет иметь большую площадь теплового контакта с радиатором.

Stabilizator-napryajeniya-na-mownom-polevom-tranzistore-3

Если применить для поверхностного монтажа микросхему DA1 типа~П_431С, резисторы типа Р1 -12 и соответствующие чип-конденсаторы, то их можно разместить на печатной плате (рис. 5) из односторонне фольгированного стеклотекстолита. Плату припаивают к выводам транзистора и приклеивают к упомянутой медной пластине клеем. В качестве такой пластины можно использовать, например, корпус с фланцем от испорченного мощного биполярного транзистора, скажем, КТ827, применив при этом навесной монтаж.

Налаживание стабилизатора сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам С1, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.

ЛИТЕРАТУРА

  1. Мощные полевые переключательные транзисторы фирмы International Rectifier. — Радио, 2001, № 5, с. 45.
  2. И. Нечаев. Необычное применение микросхемы КР142ЕН19А. - Радио, 2003, № 5, с. 53,54.
  3.  

samodelka.ucoz.org

Блок питания на полевых транзисторах IRF3205 » Сервер радіоаматорів Прикарпаття

Для питания различных транзисторных конструкций решил собрать блок питания (далее – БП) со стабилизатором на полевых транзисторах, так как они имеют малое падение напряжения при больших токах в нагрузку.

Собрал и проверил схему стабилизатора RK9UC  [1], показанную на Рис. 1. Эта схема выбрана из-за того, что имеет узел стабилизации (ограничения) тока в нагрузку (за это отвечают элементы = R6 R7 и VT5, выделенные на схеме красным цветом). Узел ограничения тока в нагрузку позволяет уменьшить последствия после аварийных ситуаций, а надеяться только на один предохранитель не очень разумно. Правда, мне не понравилось место установки "датчика тока" R7 в схеме.  Перед сборкой стабилизатора, показалось, что из-за него возможна просадка выходного напряжения. Так как из-за падения напряжения на «датчике тока» R7 «регулируемый стабилитрон» DA1 будет неправильно корректировать выходное напряжение. Все-таки, мне не повезло. При испытании БП, уже при токе нагрузки всего 4 А напряжение на нагрузке проседало с 14,56 до 13,72 В. При закорачивании «датчика тока» R7 «просадка» значительно уменьшалась.

Чтобы спасти изготовленный БП от капитальных переделок, было принято решение, перенести детали R6 R7 VT5 в плюсовую цепь, и поставить их перед стабилизатором, между плюсом выпрямителя и стоками полевых транзисторов,  так как сделал RA3WDK [2].

Схема доработанного БП показана на Рис. 2. Он обеспечивает выходное напряжение в пределах 9…17 В, при токе в нагрузку до 14 А, это значение тока ограничено мощностью примененного трансформатора Тр1 типа ТС-180. Если применить трансформатор типа ТС-270, максимальный ток можно ограничить на уровне 20 А. При этом придется добавить еще один транзистор IRF3205, включенный параллельно транзисторам VT3 и VT4.

 

Блок питания на полевых транзисторах IRF3205

 

Для работы стабилизатора на полевых транзисторах VT3 и VT4 необходимо, чтобы напряжение на входе выпрямителя было на 2…3 В больше чем на выходе.Но для нормальной работы полевых транзисторов VT3 и VT4 типа IRF3205 напряжение на их затворах должно быть на 5…7 В больше чем на истоках. Для этого нужно либо поднять выпрямленное напряжение на входе всего стабилизатора или использовать дополнительный удвоитель напряжения на элементах C3 VD5 VD6 C6 для питания цепи затворов транзисторов VT3 и VT4.

При увеличении тока нагрузки свыше расчетного, падение напряжения на резисторе R2 превысит значение 0,7 В. Это напряжение, через резистор R3 будет приложено к переходу база–эмиттер транзистора VT1, открывая его. Ток через открытый переход коллектор–эмиттер транзистора VT1 и резисторы R4 и R5, создает падение напряжения на резисторе R5. Это напряжение, приложенное к переходу база–эмиттер транзистора VT2, открывает его. Открытый переход коллектор–эмиттер транзистора VT1 шунтирует «регулируемый стабилитрон» DA1, вследствие чего выходное напряжение уменьшается на столько, на сколько это необходимо для ограничения тока в нагрузку, согласно выбранного уровня.Резисторы R7 и R9 предназначены для равномерного распределения тока между полевыми транзисторами VT3 и VT4. Стабилитрон VD8 служить для защиты цепи стоков полевых транзисторов VT3 и VT4.

Конденсатор С7 служит для повышения помехоустойчивости узла стабилизации (ограничения) тока в нагрузку.

Микроамперметр РА1 на 150 – 200 мкА от кассетных магнитофонов, например М68501, М476/1. Родная шкала снята, вместо нее установлена самодельная шкала, изготовленная с помощью программы FrontDesigner_3.0, файлы шкал можно скачать с сайта журнала [3]. Правильно собранный, без ошибок, БП запускается сразу. Все малогабаритные детали собраны на односторонней печатной плате (Рис. 3).

 

Блок питания на полевых транзисторах IRF3205

Блок питания на полевых транзисторах IRF3205

Блок питания на полевых транзисторах IRF3205

 

Монтаж БП показан на Рис. 4.

 

Блок питания на полевых транзисторах IRF3205

Блок питания на полевых транзисторах IRF3205

Изменяя сопротивление резисторов R11 и R13, устанавливаем пределы регулировки выходного напряжения. При указанных сопротивлениях резисторов R11 – R13 выходное напряжение регулируется в пределах 9…17 В.

Нагружаем БП на эквивалент нагрузки, мощный резистор, сопротивлением 1…1,5 Ом. Последовательно с эквивалентом подключаем образцовый амперметр. Подбором сопротивления резистора R1 устанавливаем предел измерения для амперметра РА1. Движком резистора R12  увеличиваем напряжение на выходе, тем самым увеличиваем ток в нагрузку сверх расчетного уровня. Смотрим, есть ли ограничение тока, работает ли стабилизация тока?

Результаты посте переделки: напряжение Uхх = 14,64 В, при токе нагрузки = 12 А напряжение на нагрузке Uн =14,52 В.Теперь можно закрывать крышку. БП собран в корпусе размерами 150х120х260 мм, внешний вид показан на Рис. 5.

 

Блок питания на полевых транзисторах IRF3205 Блок питания на полевых транзисторах IRF3205 Блок питания на полевых транзисторах IRF3205 Блок питания на полевых транзисторах IRF3205 Блок питания на полевых транзисторах IRF3205 Блок питания на полевых транзисторах IRF3205

Изготовленный БП также часто используется для питания транзисторного КВ усилителя мощности и шуруповерта, у которого вышла из строя аккумуляторная батарея.

 

Блок питания на полевых транзисторах IRF3205

 

Скачать схему в формате splan: power_source_irf3205_scheme.spl [33.23 Kb] (скачувань: 1049)

Скачать разводку печатной платы: power_source_ft.lay [90.94 Kb] (скачувань: 887)

 

Мельничук Василий Васильевич (UR5YW), г. Черновцы, Украина.E-mail: [email protected]

 

Использованная литература:

  1. Стабилизатор RK9UC  http://vprl.ru/publ/tekhnologii/nachinajushhim/tl431_chto_ehto_za_quot_zver_quot_takoj/9-1-0-17 , http://vprl.ru/staty/nachinayushi/tl/bp13v22a.gif
  2. Блок питания Power supply "POWER ICE 30A v.3 http://ra3wdk.qrz.ru/tech.htm.
  3. Шкалы РА1 для амперметра БП.rar

qrz.if.ua


Каталог товаров
    .