Схема подключения конденсаторной установки: Схема подключения конденсаторной установки

Содержание

Схемы соединения конденсаторных установок | Конденсаторные установки промышленных предприятий | Оборудование

Страница 3 из 38

СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ КОНДЕНСАТОРНЫХ УСТАНОВОК

2.2. Схемы соединения конденсаторных установок

В зависимости от назначения, напряжения и мощности схемы соединений конденсаторных установок выполняют однофазными и трехфазными с параллельным или параллельно-последовательным соединением конденсаторов. На рис. 2.3 приведены схемы соединений конденсаторных установок 380 В.

Рис. 2.3. Схемы присоединения конденсаторных установок 380 В:
а, б — с общим выключателем; в — с рубильником и предохранителем; г— с предохранителем и контактором; д — с автоматическим выключателем

В осветительных и силовых сетях с линейным напряжением 380 В применяют главным образом трехфазные конденсаторные установки с параллельным соединением конденсаторов, соединенных по схеме треугольника. Однофазные конденсаторные установки 220, 380 В применяются для индивидуальных однофазных ЭП (электрические печи и др. )- В осветительных сетях трехфазные конденсаторные установки обычно подключают непосредственно к линиям этих сетей, однако после сетевого выключателя (рис. 2.3, а).
В силовых сетях трехфазные конденсаторные установки могут подключаться как непосредственно под общий выключатель с ЭП, так и через отдельный выключатель к шинам распределительных щитов напряжением 380 В (рис. 2.3, б—д).

При необходимости применяют секционированные схемы, состоящие из нескольких отдельных секций конденсаторных установок, каждая из которых подключается к шинам распределительного щита через свой выключатель.
Конденсаторные установки 3, 6 и 10 кВ, комплектуемые из трехфазных конденсаторов, соединены по схеме треугольника (рис. 2.4, а).

Рис. 2.4. Схемы соединения конденсаторных установок 3—10 кВ:
а — с выключателем и конденсаторами со встроенными разрядными резисторами; б— с выключателем и трансформаторами напряжения для разряда; в —в виде двойной звезды с выкатным выключателем

Схемы соединений при комплектовании конденсаторных установок 3, 6, 10 кВ из однофазных конденсаторов 660 и 1050 В с параллельно-последовательным соединением их в фазы обычно выполняются в виде звезды или двойной звезды (рис. 2.4, бив). Поскольку один из изоляторов каждого конденсатора при соединении в звезду может соединяться с землей, для этой цели могут применяться однофазные конденсаторы с одним изолирующим выводом.
Для более мощных КУ 3, 6, 10 кВ или при необходимости регулирования их мощности применяются секционированные схемы.

Рис. 2.5. Схемы конденсаторных установок 6—10 кВ с тремя конденсаторными установками на двух секциях:
В — главный выключатель; вв — выключатель секций; тн — трансформатор напряжения для разряда

Схемы соединений отдельных секций конденсаторных установок могут иметь индивидуальный выключатель на каждой секции или один главный выключатель для нескольких секций, каждая из вторых оборудована своим выключателем облегченного типа (рис. 2.5). Выключатель облегченного типа предназначен только для включения и отключения секций при автоматическом регулировании, а главный выключатель — для отключения КЗ- внутри любой секции.
В первом случае схема несколько дороже, но проста в эксплуатации. Упрощается и действие релейной защиты. Во втором случае эксплуатация схемы усложняется из-за переключений главного выключателя, который должен отключаться при аварии в любой из секций установки, подавать импульс в бестоковую паузу на отключение выключателя аварийной секции и затем снова включаться. В качестве выключателя секции целесообразно применять вакуумный или элегазовый выключатель.

Соединения конденсаторных установок выше 10 кВ могут выполняться по схемам треугольника и звезды. Каждая фаза установки в этом случае составляется из параллельно-последовательных групп однофазных конденсаторов.
Номинальное напряжение конденсаторов следует выбирать таким, чтобы иметь минимальное количество последовательных групп и максимальное количество параллельных конденсаторов в группе. Такая схема обеспечивает минимальное повышение напряжения на конденсаторах после выхода из работы одного или нескольких из них в какой-нибудь из последовательных групп. В то же время чем больше последовательных групп, тем труднее получить равномерное распределение напряжения на отдельных группах и избежать перегрузки их по напряжению, а также обеспечить надежную защиту установки от повреждения отдельных конденсаторов или их групп.

  • Назад
  • Вперед

Схемы соединения конденсаторов в батареях

Страница 34 из 53

Важным признаком, характеризующим схему соединений конденсаторной установки, является схема соединения конденсаторов в батарее. От нее зависит работа защиты батареи и некоторые другие процессы как в конденсаторной установке, так и в сети, к которой последняя присоединена.

Рис. 6-3. Схема параллельного соединения трехфазных конденсаторов в батарее.

Трехфазные конденсаторы всегда соединяются в батареях параллельно независимо от схемы их внутренних соединений (треугольник или звезда). Номинальное напряжение батареи Uб при этом равно номинальному напряжению конденсатора Uк. Примером этой схемы соединений может служить изображенная на рис. 6-3 схема конденсаторной батареи, выполненной из трехфазных конденсаторов, соединенных треугольником.

Теоретически возможна и изображенная на рис. 6-4 схема соединения трех трехфазных конденсаторов в группу, номинальное напряжение которой равно 2Uк, т. е. удвоенному номинальному напряжению конденсатора. Такая группа эквивалентна одному трехфазному конденсатору, емкость фазы которого равна 0,6 емкости фазы каждого из трех конденсаторов, входящих в группу (если схемы соединения фаз одинаковы в обоих случаях). Вывод этого соотношения произведен путем последовательных преобразований треугольника емкостей в эквивалентную звезду емкостей и обратно. Мощность такой группы, присоединенной к сети с напряжением 2Uк, равна 0,8 суммы номинальных мощностей тех же трех конденсаторов.

Рис. 6-4. Схема группы из трех трехфазных конденсаторов, в которой номинальное напряжение группы равно удвоенному номинальному напряжению конденсатора.

Однофазные конденсаторы соединяются в каждой фазе трехфазной батареи или параллельно, или параллельно — последовательно. Возможно и последовательное соединение, когда все конденсаторы, составляющие фазу батареи, соединены последовательно («цепочкой») один с другим. Его можно считать частным случаем параллельно — последовательного соединения при числе параллельно соединенных конденсаторов в группе, равном единице. Еще одним вариантом является последовательно-параллельное соединение, когда несколько «цепочек» конденсаторов соединены параллельно в фазе батареи. Оба последних варианта встречаются очень редко и здесь не рассматриваются.

При параллельном соединении однофазных конденсаторов номинальное напряжение Uб батареи равно их номинальному напряжению Uк, если фазы батареи соединены треугольником, или превышает его в 1,73 раза при соединении звездой. Если соотношение между Uб и Uкпревышает 1,73, то батарея должна быть выполнена путем параллельно-последовательного соединения конденсаторов в каждой фазе. В § 2-2 приведены выражения для определения Uб в зависимости от Uк и от схемы соединения конденсаторов в батарее.

В трехфазных батареях, состоящих из однофазных конденсаторов, фазы могут быть соединены или треугольником, или звездой. При соединении звездой нейтральная точка последней может быть или изолирована от земли, или заземлена (рис. 6-5).
Различные комбинации трех схем соединения фаз в батарее (треугольник, звезда с изолированной нейтралью и звезда с заземленной нейтралью) с двумя схемами соединения конденсаторов в фазе (параллельное или параллельно-последовательное) дают шесть возможных схем соединения однофазных конденсаторов в трехфазной батарее.

Рис. 6-5. Варианты схем соединения фаз В, трехфазной батарее.

Ниже указаны условные обозначения, применяемые для этих схем в дальнейшем изложении:

Преимущества и недостатки различных схем соединения фаз батареи рассмотрены отдельно в § 6-3.

Номинальные напряжения однофазных конденсаторов отечественного производства равны увеличенным на 5% номинальным линейным напряжениям электрических сетей. Это значит, что отечественные однофазные конденсаторы рассчитаны на соединение фаз батареи треугольником с параллельным соединением конденсаторов в каждой фазе (схема Δ-l). В Советском Союзе по этой схеме соединено подавляющее большинство конденсаторных установок с однофазными конденсаторами, т. е. номинальным напряжением 3—10 кВ (рис. 6-6).
Соединение фаз батареи звездой при параллельном соединении однофазных конденсаторов в каждой фазе (схемы Υ-1 и Yз-l) встречается в Советском Союзе очень редко, а именно тогда, когда номинальное напряжение конденсаторов почему-либо равно не линейному, а фазному напряжению сети или близко к последнему.

Например, соединение конденсаторов 6,3 кВ по схеме Υ-1 или Y3-l позволяет получить батарею номинальным напряжением 1,73 · 6,3=10,9 кВ, т. е. пригодную к установке в сети 10 кВ.
В зарубежных конденсаторных установках с параллельным соединением однофазных конденсаторов фазы батареи соединяются иногда треугольником и иногда звездой (см. § 6-3).

Рис. 6-6. Схема параллельного соединения однофазных конденсаторов в каждой фазе трехфазной батареи, соединенной треугольником.

Рис. 6-7. Схема параллельно-последовательного соединения однофазных конденсаторов в одной фазе трехфазной батареи.

При параллельно-последовательном соединении однофазных конденсаторов фазы батареи соединяются, как правило, звездой (схемы Y-2 и Y3-2). Такие батареи напряжением до 110 кВ получили значительное распространение за рубежом, в особенности в США, а наивысшее напряжение батареи для параллельного присоединения, находящейся там в эксплуатации, составляет 230 кВ (Л.3-21).

На рис. 6-7 приведена схема одной фазы батареи с параллельно-последовательным соединением однофазных конденсаторов. В пределах каждой группы конденсаторы соединены параллельно, и все группы соединены последовательно. Число таких групп в одной фазе батареи доходит до 15 при напряжении батареи 110 кВ.

Параллельно-последовательное соединение встречается и при напряжении батареи 6—10 кВ, если она собрана из конденсаторов напряжением около 1 кВ. Несколько таких батарей было выполнено в Советском Союзе из конденсаторов типа КМ напряжением 1 000 В [Л. 6-1] и 1 050 в. Существует также несколько батарей для параллельного присоединения, выполненных из конденсаторов для продольной компенсации типа КПМ. В этих батареях конденсаторы номинальным напряжением 600 В соединены, параллельно-последовательно.
В последние годы некоторые западноевропейские фирмы сократили шкалу напряжений изготовляемых ими конденсаторов, комплектуя из конденсаторов 1— 2 кВ батареи более высоких напряжений, например 10 кВ [Л. 1-16].

Переход от параллельного к параллельно-последовательному соединению конденсаторов в батареях 3—10 кВ позволил бы выполнять эти батареи из одних и тех же конденсаторов напряжением около 1 кВ (например, 910 в), что является одним из преимуществ этой схемы соединений [Л. 5]. Недостаток ее заключается в том, что изменение проектной мощности батареи происходит при параллельно-последовательном соединении большими ступенями, чем при параллельном соединении. В первом случае мощность одной ступени равна 3nQK и во втором — 3Qк (здесь QK — мощность одного конденсатора и п—число последовательно соединенных групп в фазе батареи).
Соединение фаз батареи треугольником при параллельно-последовательном соединении однофазных конденсаторов (схема Δ-2) в Советском Союзе не применяется, а за рубежом встречается, по-видимому, значительно реже соединения звездой.

Однофазные конденсаторные батареи распространены очень мало. Одной из областей их применения является компенсация однофазных индуктивных приемников значительной мощности, например, некоторых видов электрических печей. Однофазные батареи малой мощности встречаются за рубежом и в сельских электрических сетях. В зарубежной практике известен также случай применения однофазной конденсаторной установки 10,8 кВ в тяговой сети 25 Гц. Мощность этой установки при той же частоте составляла 10 000 кВАр.

Для однофазных батарей возможны те же схемы соединений конденсаторов, что и для каждой фазы трехфазной батареи, т. е. или параллельное, или параллельно-последовательное.

Например, одна отечественная однофазная батарея мощностью около 4 000 кВАр была выполнена из четырех последовательно соединенных групп номинальным напряжением по 10,5 кВ. Номинальное напряжение батареи составило, таким образом, 4 · 10,5=42 кВ, что позволило присоединить ее на линейное напряжение сети 35 кВ.

  • Назад
  • Вперёд

Конденсаторы — SparkFun Learn

Авторы:
Джимблом

Избранное

Любимый

82

Введение

Конденсатор представляет собой электрический компонент с двумя выводами. Наряду с резисторами и катушками индуктивности они являются одними из самых основных пассивных компонентов , которые мы используем. Вам пришлось бы очень постараться, чтобы найти схему, в которой не было бы с конденсатором.

Что делает конденсаторы особенными, так это их способность накапливать энергию ; они как полностью заряженная электрическая батарея. Колпачки , как мы их обычно называем, имеют все виды важных применений в цепях. Общие области применения включают локальное накопление энергии, подавление скачков напряжения и сложную фильтрацию сигналов.

Описано в этом учебном пособии

В этом учебном пособии мы рассмотрим всевозможные темы, связанные с конденсаторами, в том числе:

  • Как изготавливается конденсатор
  • Как работает конденсатор
  • Единицы измерения емкости
  • Типы конденсаторов
  • Как распознать конденсаторы
  • Как емкость объединяется последовательно и параллельно
  • Общие области применения конденсаторов

Рекомендуемая литература

Некоторые понятия в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем приступить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотреть) следующие:

  • Что такое электричество?
  • Напряжение, ток, сопротивление и закон Ома
  • Что такое цепь
  • Серия

  • против параллельных цепей
  • Как пользоваться мультиметром
  • Метрические префиксы

Обозначения и единицы измерения

Обозначения цепей

Существует два распространенных способа изображения конденсатора на схеме. У них всегда есть две клеммы, которые соединяются с остальной частью схемы. Символ конденсаторов состоит из двух параллельных линий, плоских или изогнутых; обе линии должны быть параллельны друг другу, близко, но не соприкасаться (это на самом деле показывает, как сделан конденсатор. Трудно описать, проще просто показать:

(1) и (2) являются стандартными символами цепи конденсатора. (3) является примером символов конденсаторов в действии в цепи регулятора напряжения.

Символ с изогнутой линией (№ 2 на фотографии выше) указывает на то, что конденсатор поляризован, что означает, что это, вероятно, электролитический конденсатор. Подробнее об этом в разделе типов конденсаторов этого руководства.

Каждый конденсатор должен сопровождаться именем — C1, C2 и т. д. — и номиналом. Значение должно указывать емкость конденсатора; сколько в нем фарад. Говоря о фарадах…

Единицы измерения емкости

Не все конденсаторы одинаковы. Каждый конденсатор рассчитан на определенную емкость. Емкость конденсатора говорит вам , сколько заряда он может хранить , чем больше емкость, тем больше емкость для хранения заряда. Стандартная единица измерения емкости называется фарад , что сокращенно обозначается как Ф .

Получается, что фарад — это лот емкости, даже 0,001Ф (1 мФ — 1мФ) — большой конденсатор. Обычно вы увидите конденсаторы с номиналом в пико- (10 -12 ) до микрофарад (10 -6 ).

Prefix Name Abbreviation Weight Equivalent Farads
Picofarad pF 10 -12 0.000000000001 F
Nanofarad nF 10 -9 0,000000001 Ф
Микрофарад мкФ 10 -6 0.000001 F
Milifarad mF 10 -3 0.001 F
Kilofarad kF 10 3 1000 F

When you get into the от фарада до килофарадного диапазона емкости, вы начинаете говорить о специальных конденсаторах под названием super или ultra -конденсаторы.


Теория конденсаторов

Примечание : Информация на этой странице не очень важна для понимания новичками в области электроники. .. и к концу она становится немного сложной. Рекомендуем прочитать Как изготавливается конденсатор , остальные можно пропустить, если они вызывают у вас головную боль.

Как изготавливается конденсатор

Схематичное обозначение конденсатора на самом деле очень похоже на способ его изготовления. Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины расположены очень близко друг к другу, параллельно, но между ними находится диэлектрик, чтобы они не соприкасались.

Стандартный сэндвич-конденсатор: две металлические пластины, разделенные изолирующим диэлектриком.

Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или любого другого материала, препятствующего прохождению тока.

Пластины изготовлены из токопроводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к терминальному проводу, который в конечном итоге соединяется с остальной частью схемы.

Емкость конденсатора — сколько у него фарад — зависит от его конструкции. Для большей емкости требуется больший конденсатор. Пластины с большей площадью перекрытия обеспечивают большую емкость, а большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок. Полную емкость конденсатора можно рассчитать по уравнению:

Где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянная величина, определяемая материалом диэлектрика), A — площадь, на которой пластины перекрывают друг друга, а d — расстояние между пластинами.

Как работает конденсатор

Электрический ток — это поток электрического заряда, который используется электрическими компонентами для освещения, вращения или других действий. Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что они не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — всасываются в одну из пластин, и в целом она становится отрицательно заряженной. Большая масса отрицательных зарядов на одной пластине отталкивает заряды другой пластины, делая ее положительно заряженной.

Положительные и отрицательные заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды. Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда застрянут на пластине (пока им некуда будет деваться). Постоянные заряды на этих пластинах создают электрическое поле, влияющее на электрическую потенциальную энергию и напряжение. Когда заряды группируются на таком конденсаторе, колпачок накапливает электрическую энергию так же, как батарея может накапливать химическую энергию.

Зарядка и разрядка

Когда положительные и отрицательные заряды сливаются на пластинах конденсатора, конденсатор становится заряженным . Конденсатор может сохранять свое электрическое поле — удерживать свой заряд — потому что положительные и отрицательные заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.

В какой-то момент пластины конденсатора будут настолько заряжены, что просто не смогут больше принимать. На одной пластине достаточно отрицательных зарядов, чтобы они могли оттолкнуть любые другие, пытающиеся присоединиться. Вот где емкость (фарад) конденсатора вступает в игру, что говорит вам о максимальном количестве заряда, который может хранить крышка.

Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они покинут конденсатор, и он разрядится .

Например, в приведенной ниже схеме батарея может использоваться для создания электрического потенциала на конденсаторе. Это приведет к тому, что на каждой из пластин будут накапливаться одинаковые, но противоположные заряды, пока они не будут настолько заполнены, что будут отражать дальнейшее протекание тока. Светодиод, включенный последовательно с крышкой, может обеспечить путь для тока, а энергия, накопленная в конденсаторе, может использоваться для кратковременного освещения светодиода.

Расчет заряда, напряжения и тока

Емкость конденсатора — сколько у него фарад — говорит вам, сколько заряда он может хранить. Сколько заряда конденсатора в настоящее время хранит , зависит от разности потенциалов (напряжения) между его пластинами. Эту взаимосвязь между зарядом, емкостью и напряжением можно смоделировать с помощью следующего уравнения:

Заряд (Q), хранящийся в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).

Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение, чтобы увеличить или уменьшить заряд крышки. Большее напряжение означает больше заряда, меньше напряжения… меньше заряда.

Это уравнение также дает нам хороший способ определить стоимость одного фарада. Один фарад (Ф) — это способность хранить одну единицу энергии (кулон) на каждый вольт.

Вычисление тока

Мы можем развить уравнение заряда/напряжения/емкости еще на один шаг, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток – это ставка потока заряда. Суть отношения конденсатора к напряжению и току такова: количество тока через конденсатор зависит как от емкости, так и от того, как быстро напряжение возрастает или падает . Если напряжение на конденсаторе быстро возрастает, через конденсатор индуцируется большой положительный ток. Более медленный рост напряжения на конденсаторе соответствует меньшему току через него. Если напряжение на конденсаторе постоянно и неизменно, то через него не будет проходить ток.

(Это уродливо и усложняет исчисление. Это не так уж необходимо, пока вы не изучите анализ во временной области, проектирование фильтров и другие неприятные вещи, поэтому переходите к следующей странице, если вам это не нравится. уравнение.) Уравнение для расчета тока через конденсатор:

dV/dt часть этого уравнения является производной (причудливый способ сказать мгновенная скорость ) напряжения во времени, это эквивалентно высказыванию «как быстро повышается или понижается напряжение в данный момент». Главный вывод из этого уравнения заключается в том, что если напряжение стабильно , производная равна нулю, что означает ток также равен нулю . Вот почему ток не может течь через конденсатор, поддерживающий постоянное постоянное напряжение.


Типы конденсаторов

Существуют всевозможные типы конденсаторов, каждый из которых имеет определенные особенности и недостатки, которые делают его лучше для одних приложений, чем для других.

При выборе типа конденсатора необходимо учитывать несколько факторов:

  • Размер — Размер как по физическому объему, так и по емкости. Конденсатор нередко является самым большим компонентом в цепи. Они также могут быть очень маленькими. Для большей емкости обычно требуется конденсатор большей емкости.
  • Максимальное напряжение — Каждый конденсатор рассчитан на максимальное падение напряжения на нем. Некоторые конденсаторы могут быть рассчитаны на 1,5 В, другие — на 100 В. Превышение максимального напряжения обычно приводит к разрушению конденсатора.
  • Ток утечки — Конденсаторы не идеальны. Каждая крышка склонна к утечке небольшого количества тока через диэлектрик от одной клеммы к другой. Эта крошечная потеря тока (обычно наноампер или меньше) называется утечкой. Утечка заставляет энергию, хранящуюся в конденсаторе, медленно, но верно утекать.
  • Эквивалентное последовательное сопротивление (ESR) — Выводы конденсатора не являются проводящими на 100%, они всегда будут иметь небольшое сопротивление (обычно менее 0,01 Ом). Это сопротивление становится проблемой, когда через крышку проходит большой ток, вызывая потери тепла и мощности.
  • Допуск — Конденсаторы также не могут иметь точную, точную емкость. Каждая крышка рассчитана на номинальную емкость, но, в зависимости от типа, точное значение может варьироваться от ±1% до ±20% от желаемого значения.

Керамические конденсаторы

Наиболее часто используемыми и производимыми конденсаторами являются керамические конденсаторы. Название происходит от материала, из которого изготовлен их диэлектрик.

Керамические конденсаторы обычно имеют как физические, так и емкостные характеристики маленький . Трудно найти керамический конденсатор емкостью более 10 мкФ. Керамический колпачок для поверхностного монтажа обычно находится в крошечном корпусе 0402 (0,4 мм x 0,2 мм), 0603 (0,6 мм x 0,3 мм) или 0805. Керамические колпачки со сквозными отверстиями обычно выглядят как маленькие (обычно желтые или красные) лампочки с двумя выступающими выводами.

Две крышки в радиальной упаковке со сквозным отверстием; крышка 22 пФ слева и 0,1 мкФ справа. Посередине крошечная крышка 0,1 мкФ 0603 для поверхностного монтажа.

По сравнению с столь же популярными электролитическими конденсаторами керамические конденсаторы являются более близкими к идеальным конденсаторами (намного ниже ESR и токи утечки), но их небольшая емкость может быть ограничивающей. Как правило, они также являются наименее дорогим вариантом. Эти конденсаторы хорошо подходят для высокочастотной связи и развязки.

Алюминий и тантал Электролитические

Электролиты хороши тем, что они могут упаковать большую емкость в относительно небольшой объем. Если вам нужен конденсатор емкостью от 1 мкФ до 1 мФ, скорее всего, вы найдете его в электролитической форме. Они особенно хорошо подходят для высоковольтных приложений из-за их относительно высоких значений максимального напряжения.

Алюминиевые электролитические конденсаторы, самые популярные из электролитических конденсаторов, обычно выглядят как маленькие жестяные банки с обоими выводами, отходящими от дна.

Ассортимент электролитических конденсаторов для сквозного и поверхностного монтажа. Обратите внимание, что у каждого есть способ маркировки катода (отрицательного вывода).

К сожалению, электролитические крышки обычно поляризованы . У них есть положительный контакт — анод — и отрицательный контакт, называемый катодом. Когда напряжение подается на электролитическую крышку, анод должен находиться под более высоким напряжением, чем катод. Катод электролитического конденсатора обычно обозначается маркировкой «-» и цветной полосой на корпусе. В качестве еще одного признака ножка анода может быть немного длиннее. Если к электролитической крышке приложить обратное напряжение, они эффектно выйдут из строя (сделав всплывает и разрывается), и навсегда. После выскакивания электролита будет вести себя как короткое замыкание.

Эти колпачки также печально известны своей утечкой — позволяют небольшому току (порядка нА) проходить через диэлектрик от одной клеммы к другой. Это делает электролитические конденсаторы далеко не идеальными для хранения энергии, что досадно, учитывая их высокую емкость и номинальное напряжение.

Суперконденсаторы

Если вы ищете конденсатор для хранения энергии, обратите внимание на суперконденсаторы. Эти бейсболки уникально разработаны, чтобы иметь очень большая емкость, в диапазоне фарад.

Суперконденсатор 1F (!) Высокая емкость, но рассчитана только на 2,5 В. Обратите внимание, что они также поляризованы.

Несмотря на то, что они могут накапливать огромное количество заряда, суперконденсаторы не могут работать с очень высокими напряжениями. Этот суперконденсатор 10F рассчитан только на максимальное напряжение 2,5 В. Что-то большее, чем это, уничтожит его. Суперконденсаторы обычно размещают последовательно для достижения более высокого номинального напряжения (при уменьшении общей емкости).

Основное применение суперконденсаторов находится в хранит и высвобождает энергию , подобно батареям, которые являются их основным конкурентом. Хотя суперконденсаторы не могут удерживать столько же энергии, сколько батарея такого же размера, они могут высвобождать ее намного быстрее и обычно имеют гораздо более длительный срок службы.

Другие

Электролитические и керамические конденсаторы покрывают около 80% всех типов конденсаторов (а суперконденсаторы только около 2%, но они супер!). Другим распространенным типом конденсатора является пленочный конденсатор , который характеризуется очень низкими паразитными потерями (ESR), что делает его идеальным для работы с очень большими токами.

Есть много других менее распространенных конденсаторов. Переменные конденсаторы могут создавать различные емкости, что делает их хорошей альтернативой переменным резисторам в схемах настройки. Скрученные провода или печатные платы могут создавать емкость (иногда нежелательную), поскольку каждый из них состоит из двух проводников, разделенных изолятором. Лейденские банки — стеклянная банка, наполненная и окруженная проводниками — это О.Г. из семейства конденсаторов. Наконец, конечно, конденсаторы потока (странная комбинация катушки индуктивности и конденсатора) имеют решающее значение, если вы когда-нибудь планируете вернуться в дни славы.


Конденсаторы, соединенные последовательно/параллельно

Подобно резисторам, несколько конденсаторов можно соединять последовательно или параллельно для создания общей эквивалентной емкости. Конденсаторы, однако, складываются таким образом, что полностью противоположны резисторов.

Параллельные конденсаторы

Когда конденсаторы расположены параллельно друг другу, общая емкость равна сумме всех емкостей . Это аналогично суммированию резисторов при последовательном соединении.

Так, например, если у вас есть три конденсатора номиналами 10 мкФ, 1 мкФ и 0,1 мкФ, соединенные параллельно, общая емкость будет 11,1 мкФ (10+1+0,1).

Конденсаторы в серии

Подобно тому, как резисторы сложно добавлять параллельно, конденсаторы становятся неприятными, когда их помещают в серию . Суммарная емкость последовательно соединенных конденсаторов N обратно пропорциональна сумме всех обратных емкостей.

Если у вас есть только два последовательно соединенных конденсатора , вы можете использовать метод «произведение на сумму» для расчета общей емкости:

Еще больше расширив это уравнение, если у вас есть два конденсатора одинаковой емкости, соединенные последовательно , общая емкость составляет половину их емкости. Например, два суперконденсатора 10F, соединенные последовательно, будут давать общую емкость 5F (это также позволит удвоить номинальное напряжение общего конденсатора с 2,5 В до 5 В).


Примеры применения

Для этого изящного маленького (на самом деле, обычно довольно большого) пассивного компонента существует масса применений. Чтобы дать вам представление об их широком спектре применения, вот несколько примеров:

Развязывающие (шунтирующие) конденсаторы

Многие конденсаторы, которые вы видите в схемах, особенно с интегральной схемой, являются развязывающими. Работа развязывающего конденсатора заключается в подавлении высокочастотного шума в сигналах источника питания. Они устраняют крошечные пульсации напряжения, которые в противном случае могли бы быть вредными для чувствительных ИС, из источника питания.

В некотором смысле, развязывающие конденсаторы действуют как очень маленький локальный источник питания для ИС (почти как источник бесперебойного питания для компьютеров). Если источник питания очень временно падает напряжение (что на самом деле довольно часто, особенно когда цепь, которую он питает, постоянно переключает требования к нагрузке), развязывающий конденсатор может кратковременно подавать питание с правильным напряжением. Вот почему эти конденсаторы также называются байпас колпачки; они могут временно действовать как источник питания, минуя источник питания.

Развязывающие конденсаторы подключаются между источником питания (5 В, 3,3 В и т. д.) и землей. Нередко используются два или более конденсатора с разными номиналами, даже разных типов, для обхода источника питания, потому что конденсаторы одних номиналов будут лучше других при фильтрации определенных частот шума.

В этой схеме используются три развязывающих конденсатора, которые помогают уменьшить шум в источнике питания акселерометра. Два керамических 0,1 мкФ и один танталовый электролитический 10 мкФ с раздельной развязкой.

Хотя кажется, что это может привести к короткому замыканию между питанием и землей, через конденсатор на землю могут проходить только высокочастотные сигналы. Сигнал постоянного тока будет поступать на ИС, как и требуется. Еще одна причина, по которой они называются байпасными конденсаторами, заключается в том, что высокие частоты (в диапазоне кГц-МГц) обходят микросхему, вместо этого проходя через конденсатор, чтобы попасть на землю.

При физическом размещении развязывающих конденсаторов их всегда следует располагать как можно ближе к ИС. Чем дальше они находятся, тем менее эффективны.

Вот схема физической схемы из приведенной выше схемы. Крошечная черная микросхема окружена двумя конденсаторами емкостью 0,1 мкФ (коричневыми крышками) и одним электролитическим танталовым конденсатором емкостью 10 мкФ (высокая черно-серая прямоугольная крышка).

В соответствии с надлежащей инженерной практикой всегда добавляйте хотя бы один развязывающий конденсатор к каждой микросхеме. Обычно хорошим выбором является 0,1 мкФ, или даже добавьте несколько конденсаторов 1 мкФ или 10 мкФ. Это дешевое дополнение, и они помогают убедиться, что микросхема не подвергается большим провалам или скачкам напряжения.

Фильтрация источника питания

Диодные выпрямители можно использовать для преобразования переменного напряжения, выходящего из вашей стены, в постоянное напряжение, необходимое для большинства электронных устройств. Но диоды сами по себе не могут превратить сигнал переменного тока в чистый сигнал постоянного тока, им нужна помощь конденсаторов! При добавлении параллельного конденсатора к мостовому выпрямителю выпрямленный сигнал, подобный этому:

, можно превратить в сигнал постоянного тока ближнего уровня, подобный этому:

Напряжение. Конденсатор фильтра будет заряжаться по мере увеличения выпрямленного напряжения. Когда выпрямленное напряжение, поступающее на конденсатор, начинает быстро падать, конденсатор получает доступ к своему банку накопленной энергии и очень медленно разряжается, подавая энергию на нагрузку. Конденсатор не должен полностью разряжаться до того, как входной выпрямленный сигнал снова начнет увеличиваться, перезаряжая конденсатор. Этот танец повторяется много раз в секунду, снова и снова, пока используется источник питания.

Цепь питания переменного тока в постоянный. Крышка фильтра (C1) имеет решающее значение для сглаживания сигнала постоянного тока, посылаемого в цепь нагрузки.

Если вы разберете любой блок питания переменного тока в постоянный, вы обязательно найдете по крайней мере один довольно большой конденсатор. Ниже показаны внутренности настенного адаптера постоянного тока на 9 В. Заметили там какие-нибудь конденсаторы?

Конденсаторов может быть больше, чем вы думаете! Есть четыре электролитических, похожих на консервные банки, конденсатора емкостью от 47 мкФ до 1000 мкФ. Большой желтый прямоугольник на переднем плане — колпачок из высоковольтной полипропиленовой пленки 0,1 мкФ. Синяя крышка в форме диска и маленькая зеленая посередине — керамические.

Хранение и подача энергии

Кажется очевидным, что если конденсатор хранит энергию, то одним из многих его применений будет подача этой энергии в цепь, как у батареи. Проблема в том, что конденсаторы имеют гораздо более низкую плотность энергии , чем батареи; они просто не могут упаковать столько же энергии, сколько химические батареи того же размера (но этот разрыв сокращается!).

Преимущество конденсаторов в том, что они обычно служат дольше, чем батареи, что делает их более экологичным выбором. Они также способны отдавать энергию намного быстрее, чем батарея, что делает их подходящими для приложений, требующих короткого, но мощного всплеска мощности. Вспышка камеры могла получать питание от конденсатора (который, в свою очередь, вероятно, заряжался от батареи).


Аккумулятор или конденсатор?

Battery Capacitor
Capacity
Energy Density
Charge/Discharge Rate
Life Span

Фильтрация сигналов

Конденсаторы обладают уникальной реакцией на сигналы различной частоты. Они могут блокировать низкочастотные или постоянные компоненты сигнала, пропуская при этом более высокие частоты. Они как вышибала в очень эксклюзивном клубе только для высоких частот.

Фильтрация сигналов может быть полезна во всех приложениях обработки сигналов. Радиоприемники могут использовать конденсатор (среди других компонентов) для подавления нежелательных частот.

Другим примером конденсаторной фильтрации сигналов являются пассивные перекрестные схемы внутри динамиков, которые разделяют один аудиосигнал на несколько. Последовательный конденсатор блокирует низкие частоты, поэтому оставшиеся высокочастотные части сигнала могут попасть на твитер динамика. В низкочастотной цепи сабвуфера высокие частоты в основном могут быть шунтированы на землю через параллельный конденсатор.

Очень простой пример схемы аудиокроссовера. Конденсатор блокирует низкие частоты, а катушка индуктивности блокирует высокие частоты. Каждый из них можно использовать для подачи надлежащего сигнала на настроенные аудиодрайверы.

Снижение номинального напряжения

При работе с конденсаторами важно проектировать свои схемы с конденсаторами, которые имеют гораздо более высокий допуск, чем потенциально самый высокий скачок напряжения в вашей системе.

Вот отличное видео от инженера SparkFun Шона о том, что происходит с различными типами конденсаторов, когда вы не снижаете номинал своих конденсаторов и превышаете их максимальное напряжение. Подробнее о его экспериментах можно прочитать здесь.


Покупка конденсаторов

Сохраните на этих небольших компонентах для хранения энергии или заставьте их работать в качестве начального блока питания.

Наши рекомендации:

Комплект конденсаторов SparkFun

В наличии

КОМПЛЕКТ-13698

11

Избранное

Любимый

84

Список желаний

Суперконденсатор — 10F/2.

5V

В наличии

COM-00746

3

Избранное

Любимый

33

Список желаний

Конденсатор керамический 0,1 мкФ

В наличии

COM-08375

1

Избранное

Любимый

16

Список желаний

Встраиваемая электроника для начинающих — комплект блока питания

Пенсионер

КОМПЛЕКТ-08373

Пенсионер

Избранное

Любимый

7

Список желаний

Хотите узнать больше об основных темах?

См. нашу страницу Engineering Essentials , где представлен полный список краеугольных тем, связанных с электротехникой.

Отведи меня туда!

Ресурсы и дальнейшие действия

Ого. Почувствуйте себя экспертом по конденсаторам?! Хотите узнать больше об основах электроники? Если вы еще этого не сделали, почитайте о некоторых других распространенных компонентах электроники:

  • Резисторы
  • Диоды
  • Переключатели
  • Интегральные схемы
  • Транзисторы

Или, может быть, некоторые из этих руководств привлекут ваше внимание?

  • Аккумуляторные технологии
  • Как включить проект
  • Электроэнергия

схемы — Стандартная принятая единица измерения емкости

спросил

Изменено
5 лет, 11 месяцев назад

Просмотрено
1к раз

\$\начало группы\$

Я пытаюсь построить схему на основе схемы, где единицы измерения емкости не определены. На схеме показан неполярный конденсатор с 0,01, а другой с 0,001. Что я должен принять для единиц? мкФ пФ нФ Ф или что-то другое? Если мне нужно угадать, я угадаю мкФ, так как большинство моих конденсаторов имеют маркировку мкФ. Я чувствую, что это действительно глупый вопрос, извините за это. Однако я попытался найти ответ самостоятельно.

Схема следующая:

  • схема

\$\конечная группа\$

1

\$\начало группы\$

Для 0,01 и 0,001 я бы предположил мкФ. Для 18, 120, 560 я бы, вероятно, предположил пФ, если только не помечен как поляризованный — тогда это будет мкФ. Контекст поможет установить диапазон — в частотно-зависимых радиочастотных цепях целые числовые значения почти наверняка будут пФ, в то время как в источнике питания они будут мкФ (и поляризованными).

\$\конечная группа\$

1

\$\начало группы\$

Почти наверняка мкФ для значения 0,01.

Анализ схемы подсказывает разумное значение загадочного конденсатора.

Транзистор BC548 указан как имеющий B = 100 мин. и 800 макс. Предполагая, что B = 450 (справа посередине), входное сопротивление базы составляет 455 * 47 Ом = 21,4 кОм.

Объединение входного импеданса 21,4 кОм параллельно с другими смещающими конденсаторами на базе дает общий импеданс около 2,05 кОм.

Комбинация 2,05К с конденсатором 10нФ дает фильтр нижних частот с частотой среза около 7,7кГц.

Учитывая, что ваш ввод исходит от микрофона, 7,7 кГц является разумной полосой пропускания, поскольку этого достаточно для большинства голосовых коммуникаций.

Если бы единицы измерения конденсатора были мФ или Ф, частота среза фильтра была бы слишком низкой, чтобы его можно было использовать. Если бы единицы измерения были нФ, то отсечка была бы слишком высокой (7,7 МГц — это далеко за пределами полезного диапазона типичного микрофона). Если бы единицы измерения были пФ, купить конденсатор было бы невозможно, так как я никогда не видел в продаже конденсаторов с фемтофарадным диапазоном.