интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Определение начала и конца обмоток электродвигателя. Схема обмотки электродвигателя


Схема соединения обмоток электродвигателя - Всё о электрике в доме

СХЕМА ПОДКЛЮЧЕНИЯ ЭЛЕКТРОДВИГАТЕЛЯ

Схема подключения электродвигателя во многом определяется условиями его эксплуатации. Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником». Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

Схема соединения обмоток электродвигателя

  1. Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

  • Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.
  • Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.
  • Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

    Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

    Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

    В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

    Схема соединения обмоток электродвигателя

    1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
    2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
    3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

    ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

    Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.

    Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100. Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

    Схема соединения обмоток электродвигателя

    Наиболее простая схема приведена на рисунке 3.

    В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

    Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

    Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.

    По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».

    Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

    При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

    После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.

    Катушки пускателей должны быть рассчитана на напряжение 220В.

    © 2012-2017 г. Все права защищены.

    Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

    Схема подключения электродвигателя звездой и треугольником: в чем разница?

    Асинхронные двигатели обладают многими преимуществами в работе. Это надёжность, большая мощность, хорошая производительность. Подключение электродвигателя звездой и треугольником обеспечивают его стабильную эксплуатацию.

    В основе электромотора выделяют две основные части: крутящийся ротор и статичный статор. Оба имеют в структуре набор токопроводящих обмоток. Электрообмотки неподвижного элемента, расположены в пазах магнитного провода на расстоянии 120 градусов. Все окончания обмоток выводятся в электрораспределительный блок, там фиксируются. Контакты пронумерованы.

    Подключения двигателей могут быть звездой, треугольником, а также всевозможные их переключения. Каждое соединение обладает своими преимуществами и недостатками. Двигатели, соединённые по схеме звезда, имеют плавную, мягкую работу, действие электродвигателя ограничено мощностью по сравнению с треугольником, так как её значение больше в полтора раза.

    • Объединение в одной общей точке: подключение звезда
    • Смешанный способ
    • Принцип работы

    Объединениеводнойобщейточке: подключение звезда

    Схема соединения обмоток электродвигателя Концы обмоток статора соединены вместе в одном пункте. Трехфазное напряжение поступает на начало обмоток. Значение пусковых токов при соединении треугольник более мощное. Соединение звезда означает сводку концов обмотки статора. Напряжение поступает на начала каждой обмотки.

    Обмотки соединяются последовательно замкнутой ячейкой, образуют треугольное соединение. Ряды контактов с клеммами расположены параллельно по отношению друг к другу. Например, начало вывода 1 находится напротив конца 1. Питание сети подаётся на статорные обмотки, создавая вращения магнитного поля, приводящее к движению ротора. Крутящийся момент, возникающий после подключения трехфазного электродвигателя, является недостаточным для пуска. Увеличение вращающего элемента достигается при помощи использования дополнительного элемента. Например, трехфазного частотника, подключенного к асинхронному двигателю на рисунке ниже.

    Схема соединения обмоток электродвигателя

    Чертеж подсоединения классического частотного преобразователя звездой

    По данной схеме подсоединяются отечественные моторы 380 вольт.

    Смешанныйспособ

    Комбинированный тип подключения применим для электромоторов мощностью от 5 кВт. Схема звезда — треугольник используется при необходимости снизить пусковые токи агрегата. Принцип действия начинается со звезды, а после набора двигателем нужных оборотов, происходит автоматическое переключение на треугольник.

    Наши читатели рекомендуют!

    Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Схема соединения обмоток электродвигателя

    Схема пуска трёхфазного электродвигателя с помощью реле

    Данная схема не подходит устройствам с перегрузками, так как возникает слабый крутящийся момент, что может привести к поломке.

    Принципработы

    Схема соединения обмоток электродвигателя Пуск питания происходит с помощью второго и релейного контакта. Затем на статоре срабатывает третий пускатель, тем самым размыкая цепь, образованную катушкой третьего элемента, в нем происходит замыкание. Далее первая обмотка статора начинает работать. Затем происходит замыкание в магнитном пускателе. срабатывает временное термореле, которое в третьей точке замыкает. Далее наблюдается замыкание контакта временного термореле в электроцепи второй обмотки статора. После отсоединения обмоток третьего элемента, происходит замыкание контактов в цепочке третьего элемента.

    К началу обмоток проходит ток на три фазы. Он поступает через силовые контакты магнита первого элемента. Контакты третьего пускателя включают его, замыкают концы обмоток, которые соединяются звездой.

    Затем включается реле времени первого пускателя, третий выключается, а второй включается. Контакты К2 замыкают, напряжение поступает на концы обмоток. Это и есть включение треугольником.

    Различные производители изготавливают реле пуска, необходимое для запуска электродвигателя. Они отличаются внешне, по названию, но выполняют одинаковую функцию.

    Схема соединения обмоток электродвигателя Обычно подключение к сети 220 происходит фазосдвигающим конденсатором. Питание поступает от любой электросети, вращает ротор с одинаковой частотой. Конечно, мощность от трёхфазной сети будет больше, чем от однофазной. Если трёхфазный двигатель работает от однофазной сети, теряется мощность.

    Некоторые виды моторов не предназначены для работы от бытовой сети. Поэтому выбирая прибор для дома, предпочтение следует отдать двигателям с короткозамкнутыми роторами.

    По номинальному питанию отечественные электродвигатели делятся на два типа: мощностью 220 — 127 вольт и 380 — 220 вольт. Первый тип электромоторов небольшой мощности применяется нечасто. Вторые устройства имеют широкое распространение.

    При монтаже электродвигателя любой мощности действует определенный принцип: устройства с низкой мощностью подключается по схеме треугольник, а с высокой соединяются звездой. Электропитание 220 поступает на сводку треугольником, напряжение 380 идёт на соединение звездой. Это обеспечит долгую и качественную работу механизма.

    Рекомендованная схема для подключения двигателя значится в техническом документе. Значок △ означает соединение в этой же форме. Буква Y указывает на рекомендуемую схему подключения звездой. Характеристики многочисленных элементов обозначены цветами, в связи с их маленькими габаритами. По цвету читается, например, номинал, сопротивление. Если стоят оба знака, то соединение возможно переключением △ и Y. Когда стоит одна определенная маркировка, например, Y, то доступное подключение будет только по схеме звезда.

    Схема соединения обмоток электродвигателя

    Схема △ даёт мощность на выходе до 70 процентов, значение пусковых токов доходит до максимальной величины. А это может испортить двигатель. Данная схема является единственным вариантом для работы от российских электросетей зарубежных асинхронных двигателей с мощностью 400 — 690 вольт.

    Поэтому выбирать правильное соединение или переключение, необходимо учитывая особенности электрической сети, силовой мощности электродвигателя. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

    Чем отличаются соединения звездой и треугольником

    Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

    Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения «треугольника» и метод «звезды». При соединении концов применяют специально предназначенные для этого перемычки.

    Схема соединения обмоток электродвигателя

    Различия между «звездой» и «треугольником»

    Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

    Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

    Соединение «звездой» и его преимущества

    Схема соединения обмоток электродвигателя

    Реверсивная схема двигателя 380 на 220 Вольт

    Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

    При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

    Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

    Основные преимущества применения схемы «звезда»:

    • Устойчивый и длительный режим безостановочной работы двигателя;
    • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
    • Максимальная плавность пуска электрического привода;
    • Возможность воздействия кратковременной перегрузки;
    • В процессе эксплуатации корпус оборудования не перегревается.

    Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

    Схема соединения обмоток электродвигателя

    Подключение трехфазного двигателя к однофазной сети по схеме звезда

    Соединение «треугольником» и его преимущества

    Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии — конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

    При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

    Основные преимущества применения схемы «треугольник»:

    • Увеличение до максимального значения мощности электрооборудования;
    • Использование пускового реостата;
    • Повышенный вращающийся момент;
    • Большие тяговые усилия.
    • Повышенный ток пуска;
    • При длительной работе двигатель сильно греется.

    Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

    Схема соединения обмоток электродвигателя

    Подключение трехфазного двигателя к однофазной сети по схеме треугольник

    Тип соединения «звезда-треугольник»

    В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

    Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».

    Схема соединения обмоток электродвигателя

    Схемы подключения звездой и треугольником

    В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

    В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

    Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

    Основные преимущества комбинации:

    • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
    • Возможность создания двух уровней мощности.

    Блиц-советы

    1. В момент пуска электродвигателя. его ток пуска в 7 раз больше рабочего тока.
    2. Мощность в 1,5 раза больше при соединении обмоток методом «треугольника».
    3. Для создания плавного пуска и защиты от перегрузок двигателя. часто используются частотные провода.
    4. При использовании метода соединения «звездой». особое внимание уделяют отсутствию «перекоса фаза», иначе оборудование может выйти из строя.
    5. Линейные и фазные напряжения при соединении «треугольник» — равны между собой, как и линейные и фазные токи в соединении «звездой».
    6. Для подключения двигателя к бытовой сети зачастую применяют фазосдвигающий конденсатор.

    Источники: http://eltechbook.ru/shema_jelektrodvigatelja.html, http://electricvdele.ru/elektrooborudovanie/elektrodvigateli/podklyucheniya-elektrodvigatelya-zvezdoj-i-treugolnikom.html, http://housetronic.ru/electro/soedinenie.html

    electricremont.ru

    Перемотка статора асинхронного электродвигателя. Фото и видео

    Асинхронные электродвигатели небольшой мощности (до нескольких киловатт) часто применяются в различных бытовых электроприборах и используются мастерами в качестве привода самодельного оборудования.

    Хоть асинхронные электромоторы самые надежные и неприхотливые, но и они иногда выходят из строя, а мастера в поиске комплектующих для своих самоделок, часто находят сгоревшие электродвигатели почти за бесплатно.

    Не желая тратиться на дорогостоящую починку двигателя в мастерской, многие энтузиасты решаются делать механический ремонт и электрическую перемотку электродвигателей своими руками.

    После исключения механических неисправностей асинхронного электродвигателя, поиск и ремонт которых описаны в одной из статьей данного ресурса, причину чрезмерного нагрева и недостаточных оборотов электромотора следует искать в его электрической части. У асинхронных электродвигателей с короткозамкнутым ротором, которые наиболее популярные в быту, в отличие от коллекторных электромоторов отсутствуют щетки и якорные обмотки, поэтому в подавляющем большинстве случаев причина неисправности кроется в обмоточных проводах статора.

    Сгоревшие обмотки электродвигателя

    Прозвонка обмоток статора

    Устройство асинхронных электродвигателей, а также их подключение и проверка были описаны в предыдущих статьях данного сайта в разделе об электрических двигателях. Очень коротко нужно напомнить:

    • Между выводами обмоток и корпусом сопротивление должно быть как можно большим;
    • у трехфазных асинхронных электродвигателей сопротивление всех обмоток должно быть одинаковым;
    • у однофазных асинхронных двигателей сопротивление рабочей обмотки должно быть меньше, чем у пусковой.

    Примерное соотношение сопротивления пусковой и рабочей обмотки

    Точные параметры сопротивлений обмоток необходимо узнать из бумажного паспорта электродвигателя, из сети Интернет или из справочников. Поскольку у обмоток асинхронных электродвигателей с мощностью от нескольких киловатт сопротивление весьма низкое (в пределах десятка Ом и меньше), то выявить различия при проверке обмоток будет крайне трудно при использовании обычных цифровых или стрелочных мультиметров. Поэтому используют метод с добавочным источником напряжения и реостатом.

    Измерение сопротивления обмотки при помощи источника напряжения, реостата и вольтметра

    Место межвиткового замыкания в обмотках асинхронного электродвигателя можно узнать, подключив горизонтально размещенный статор без ротора к пониженному трехфазному напряжению и поместив вовнутрь стальной шарик. Вращающееся электромагнитное поле исправных обмоток будет гонять шарик по внутренней окружности статора. Если же где-то в обмотках имеется межвитковое замыкание, то в этом месте шарик примагнитится.

    Установка шарика вовнутрь статора для поиска междувиткового замыкания

    Иногда случается заводской брак при пайке или сварке, приводящий к разрыву соединения выводов обмоток статора в легкодоступном месте, что делает ремонт электродвигателя достаточно простым. Но чаще всего межвитковое замыкание или обрыв обмотки случается в пазах статора, что требует полной перемотки электромотора. Перемотка обмоток асинхронного двигателя является сложным делом, и требует наличия идентичного обмоточного провода, навыков и инструментов.

    Перемотка обмоток статора мощного электродвигателя в мастерской

    Поэтому, если имеется асинхронный электродвигатель с явными признаками обрыва обмотки или межвиткового замыкания, без наличия оборудования, провода и навыков для перемотки, разбирать корпус имеет смысл, если это упростит работу специализированному мастеру, и уменьшит общую стоимость ремонта. Сам статор без ротора и торцевых крышек примерно вдвое легче, чем весь электромотор, что также может оказаться немаловажным при транспортировке к месту ремонта.

    Разобранный асинхронный электродвигатель

    Демонтаж  электродвигателя

    Отключив электродвигатель можно приступать к его демонтажу вручную или при помощи подъемного устройства. Для этого нужно открутить болты крепления и отсоединить вал двигателя от ведомого механизма. В зависимости от предназначения на валу двигателя может быть плотно посажен шкив, шестерня, или червячная передача, для их съема предназначен специальный инструмент – съемник. На торце в центре вала двигателя предусмотрено углубление, предназначенное для резьбового штыря съемника.

    При демонтаже электродвигателя может понадобиться подъемное приспособление

    Как правило, съемник имеет три зацепа, которыми нужно обхватить снимаемый шкив или шестеренку, прокручивая рукой резьбовой штырь, упирающийся в вал, добиваясь плотного захвата. Затем нужно зафиксировать вал двигателя трубным ключом, поворачивая винт при помощи рычага. Плотно посаженный шкив должен сходить с вала мелкими рывками, сопровождающимися характерным поскрипыванием.

    Не рекомендуется удерживать съемник руками, хватаясь за его зацепы – от приложенного усилия противодействия силе, закручивающей упорный винт, захваты могут слететь, причинив травму.

    Съемник для снятия шкивов с вала двигателя

    После освобождения вала асинхронного двигателя нужно снять его заднюю защитную крышку и демонтировать вентилятор, ослабив винт крепления. Если крыльчатка вентилятора туго сидит на валу, ее также можно снять при помощи съемника. Затем можно снимать торцевые крышки электродвигателя, которые центруют ротор, поэтому запрессованы в проточку в кожухе статора.

    Разборка корпуса электродвигателя и осмотр статора

    Рекомендуется торцевые (лобные) крышки также снимать при помощи съемника, так как они плотно посажены на подшипники. Но, если съемника нет, или он не подходит, то применяют «народный» метод, вставляя мощную отвертку в паз с разных сторон, поддевая крышку. Подставив отвертку под углом, ударяют по ней молотком. Нужно равномерно ударять с разных сторон крышки, чтобы не было перекосов. Работать надо осторожно, чтобы не разбить крышку, не повредить обмотки внутри, и не покалечиться.

    После снятия крышки сразу же обнаружился пробой обмотки статора

    Снимать торцевую крышку нужно только с лобной стороны, так как ротор с тыльной крышкой легко выйдет из статора. Поломки в короткозамкнутом роторе крайне редки, поэтому его можно отложить в сторону, занявшись обмотками статора. Уже с одного взгляда на обмотки можно понять суть проблемы – если все, или часть проводов почернела, то потребуется перемотка статора электродвигателя. При отсутствии почернения на проводах, в случае обнаружения омметром обрыва, следует внимательно осмотреть места соединений обмоток.

    Часть обмоток почернела от перегрева — данному статору требуется перемотка

    Соединения обмоток асинхронного двигателя могут быть незаметны на первый взгляд, так как они заизолированы и закреплены при помощи бандажа. Понадобится изучить схему соединения обмоток, так как у асинхронных двигателей они соединяются по-разному, в зависимости от количества полюсов, о которого зависит скорость электродвигателя. Изучив строение конкретной модели асинхронного двигателя, и найдя все соединения обмоток, нужно убедиться, что у них надежный контакт.

    Этапы перемотки асинхронного двигателя

    Как правило, на данном этапе ремонта асинхронных двигателей большинство домашних мастеров останавливаются и обращаются к специалистам. Но, многие энтузиасты продолжают ремонт, и пробуют самостоятельно перемотать обмотки электродвигателя. Понятие «перемотка» не совсем точно отображает суть процесса – вначале удаляют старые обмоточные провода, затем мотают на намоточном устройстве мотки из новых проводников, после чего намотанные витки обновленной обмотки укладывают в пазы статора.

    После разборки электродвигателя обнаружено междувитковое замыкание в обмотках — требуется перемотка

    Удаление старых обмоток статора

    Для удаления старых обмоток вначале нужно разрезать ножом все бандажные веревки и клеевые крепления, очистить провода от копоти и грязи, не разрывая электрических соединений, с которых также нужно снять изоляцию. Затем нужно сфотографировать соединение выводов электромотора и обмоток статора с двух сторон, чтобы потом в точности повторить подключения. Также потребуется составить схему подключения обмоток, или узнать из справочника.

    Сфотографировать соединения обмоток

    При помощи подходящего пробойника выбивают деревянные (или текстолитовые) колышки с пазов магнитопровода статора. Демонтировав все колышки, удаляют изоляционные прокладки, обнажая провода обмоток, которые склеены лаком. Находят крайний провод от места соединения и оттягивают к центру статора, отклеивая от остальной обмотки. Затем берут следующий виток, и также высвобождают, один за другим, пока весь паз не освободится до изоляционной прокладки.

    Освобожденный от обмоток статор асинхронного электродвигателя

    Затем освобождают следующий паз, двигаясь по кругу. Таким образом, можно понять принцип намотки обмоток, и что более важно – сфотографировать их расположение и подключение, чтобы потом разместить новые обмотки в нужном порядке, а сгоревший провод использовать как крепежную проволоку в хозяйстве. Ручное разматывание обмоток будет полезно начинающему, хотя опытные мастера перемотки срезают зубилом провода у торцов статора намного быстрее.

    Срезание обмоток при помощи молотка и зубила

    Намотка и укладка обмоток статора

    При разматывании обмоток необходимо запомнить количество витков в каждой обмотке, а также измерить длину и ширину образовавшегося мотка. Затем нужно приобрести обмоточный медный провод с идентичным поперечным сечением и необходимыми электротехническими характеристиками изоляции.

    Катушки намоточного провода для перемотки электродвигателей

    В сети Интернет имеется много обучающих видео по самостоятельной перемотке статорных обмоток асинхронного электродвигателя, но для первого раза также не лишними будут консультация и подсказки опытного мастера перемотки эл двигателей.

    Перед ремонтом электродвигателя проводится его дефектация — термин, означающий поиск дефектов, трещин, изъянов в различных узлах двигателя. В отношении перемотки обмоток статора дефектация означает поиск царапин и вмятин в шихтованном магнитопроводе, замкнутые пластины которого ухудшают общие характеристики электромотора. Мастера перемотки также дефектацией называют подбор параметров обмотки соответственно габаритам статора.

    Внимательно осмотреть статор для поиска дефектов и повреждений

    Подготовка пазов и провода

    В пазы статора вставляют новые изолирующие прокладки – данный процесс называется гильзованием. Прокладки вырезаются из специального электротехнического изоляционного материала. Необходимую толщину, термостойкость и диэлектрическую прочность изоляционного материала определяют по справочнику, зная параметры ремонтируемого асинхронного электродвигателя.

    В пазах статора установлены изоляционные прокладки

    Следующий этап мастера называют дефектацией параметров обмотки асинхронного электродвигателя – по габаритам статора, исходя из таблиц специальных справочников, определяют параметры обмоточного провода и количество витков. Если количество витков каждой обмоточной группы (мотка) было подсчитано ранее, и нужного справочника нет под рукой, данный шаг можно пропустить, надеясь на свою скрупулезность.

    Пример справочника для мастера перемотки асинхронных электродвигателей

    Далее производят намотку катушечных групп специальным изолированным медным проводом, который поставляется в катушках. При приобретении намоточного провода нужно удостовериться в качестве изоляционного покрытия и соответствия диаметра указанному в документах значению. Проверяют толщину провода при помощи микрометра или наматывают некоторое число витков на карандаш вплотную и измеряют в миллиметрах длину образовавшейся катушки. Разделив длину катушки на количество витков, получают диаметр провода.

    Намотка и укладка обмоток в пазы статора электродвигателя

    В мастерских намотку катушечных групп (всыпных обмоток) производят специальным намоточным станком, в котором имеется счетчик для подсчета витков и раздвигаемые продолговатые колодки различных размеров для придания моткам нужной формы. В домашних условиях из подходящего материала мастерят колодку для намоточного устройства с ранее измеренными размерами или в соответствии с параметрами катушки из справочника.

    Установив барабан на ось с рычагом, наматывают необходимое количество витков каждой катушечной группы – здесь очень важно не ошибиться в счете. Намотав необходимое количество витков, провода временно связывают, чтобы они не растрепались

    Укладку катушечных групп производят на столе с мягким покрытием, чтобы случайно не поцарапать изоляционный лак сформированных витков. Продев моток внутрь статора, разрезают временный бандаж и укладывают обмотки в пазы, поддевая провода поочередно через узкий зазор. Направляют обмоточные провода деревянным приспособлением в виде тупого ножа. Уложив катушечную группу в паз статора, ее обвязывают, вставляют прокладку и фиксируют, вбивая с торца статора специальный колок по всей длине паза. Затем переходят к следующей катушечной группе, согласно схеме намотки.

    Бандаж и подключение обмоток

    После укладки обмоток во все пазы, между мотками вставляют специальные междукатушечные изоляторы в виде полос из изоляционного материала, затем приступают к обвязке катушечных групп. Обвязку (бандаж) производят вначале с тыльной части статора специальной веревкой, продевая ее крючком через петли обмоток, стягивая провода и междукатушечные изоляторы, стараясь, чтобы изоляционный материал не соскользнул из установленного места.

    Установка изоляционного материала между обмотками

    После укладки обмоток с лобной стороны статора будет торчать много выводов катушечных групп, которые соединяются согласно схеме подключения или идентично сделанной ранее фотографии. На данном этапе очень важно не перепутать выводы уже уложенных мотков обмотки, поэтому провода отгибают радиально и соединяют скруткой для последующей сварки. При пайке соединений есть риск расплавления припоя и потери контакта от вибрации.

    Пример схемы соединения обмоток асинхронного трехфазного электродвигателя

    После подключения всех катушечных групп обмотки, можно проверить правильность подключения, измеряя сопротивление на выводах и пробой на корпус. После проверки статор электродвигателя разогревают до нужной температуры (около 50ºC) и пропитывают специальным лаком способом полного погружения. При таком способе пропитки лак проникает во все пазы и пустоты, обеспечивая механическую прочность обмоток и дополнительную диэлектрическую изоляцию.

    Перемотанный статор окунают в горячий лак

    Проверка обмоток и сборка двигателя

    После пропитки статоры устанавливают в сушильные камеры для просушки на несколько часов при температуре до 130ºC. В процессе высыхания лака, обмотки, изоляционный материал и бандаж становятся единой прочной упругой конструкцией, стойкой к влияниям влаги, пыли и механических нагрузок.

    Статор электродвигателя после перемотки

    После остывания двигателя проводят финальную проверку обмоток мегомметром и омметром, проверяя диэлектрическую прочность изоляции (пробой) и целостность обмоток. Сопротивления обмоток трехфазного асинхронного электродвигателя должны совпадать с допуском 0,3 Ом для небольшого электромотора мощностью 1-3 кВт.

    Выводы электродвигателя выводят в клеммник и подключают к клеммам. Вставляют ротор и запрессовывают крышки, фиксируя их винтами. Конечной проверкой является испытание асинхронного электродвигателя сетевым напряжением в течение нескольких минут. Ровное и монотонное гудение работающего электромотора, а также одинаковый ток во всех трех фазах укажет на правильность произведенной перемотки асинхронного двигателя.

    Похожие статьи

    infoelectrik.ru

    ВИДЫ ОБМОТОК ЭЛЕКТРОДВИГАТЕЛЕЙ И СПОСОБЫ ИХ ИЗОБРАЖЕНИЯ. - СХЕМЫ ОБМОТОК -

    ВИДЫ ОБМОТОК ЭЛЕКТРОДВИГАТЕЛЕЙ И СПОСОБЫ ИХ ИЗОБРАЖЕНИЯ.

    Важная составная часть электродвигателей - ее обмотки, в которых происходят основные рабочие процессы по преобразованию энергии. В наиболее распространенных типах электрических машин можно выделить:

    трехфазные обмотки машин переменного тока, используемые обычно в статорах трехфазных асинхронных и синхронных машин, а также в роторах асинхронных двигателей с контактными кольцами.

     однофазные обмотки статоров асинхронных однофазных двигателей с короткозамкнутым ротором.

     обмотки якорей коллекторных машин постоянного и однофазного переменного тока.

     короткозамкнутые обмотки роторов асинхронных электродвигателей.

     обмотки возбуждения синхронных и коллекторных машин.

    Обмотки возбуждения синхронных и коллекторных машин состоят, как правило, из сравнительно простых полюсных катушек. Несложным является и устройство короткозамкнутых обмоток роторов асинхронных двигателей. Остальные же виды перечисленных выше обмоток представляют собой достаточно сложные системы размещенных в пазах изолированных проводников, соединенных по особым схемам, требующим специального изучения.Виток обмоток:Простейшим элементом обмотки является виток, который состоит из двух последовательно соединенных проводников, размещенных в пазах, находящихся, как правило, под соседними разноименными полюсами.Лежащие в пазах проводники витка являются его активными сторонами, поскольку именно здесь наводится ЭДС от главного магнитного поля машины. Находящиеся вне паза части витка, соединяющие между собой активные проводники и располагающиеся по торцам магнитопровода, называются лобовыми частями.Проводники, образующие виток, могут состоять из нескольких параллельных проводов. Обычно к этому прибегают, чтобы сделать обмотку мягкой и облегчить ее укладку в пазы.Один или несколько последовательно соединенных витков образуют катушку или секцию обмотки. Если секция состоит из одного витка, то такую обмотку называют стержневой, так как в этом случае находящиеся в пазах проводники обычно представляют собой жесткие стержни. Обмотка, состоящая из многовитковых секций, называется катушечной.Катушка обмотки:Катушка, или секция обмотки, характеризуется числом витков wc и шагом y, т. е. количеством охватываемых ею зубцов магнитопровода. Так, например, если одна сторона катушки (секции) лежит в первом пазу, а вторая - в шестом, то катушка охватывает пять зубцов и шаг ее равен пяти (у = 5). Шаг, таким образом, может быть определен как разность между номерами пазов, в которые уложены обе стороны катушки (у = 6 - 1 = 5). Зачастую в обмоточных данных и технической литературе шаг обозначают номерами пазов (начиная с первого), в которые уложены стороны катушки, т. е. в данном случае это обозначение выглядит так: у = 1 - 6. Шаг обмотки называют диаметральным, если он равен полюсному делению τ, т. е. расстоянию между осями соседних разноименных полюсов, или, что то же самое, числу пазов (зубцов), приходящихся на один полюс. В этом случае у = τ = z/2p, где z - число пазов (зубцов) сердечника, в котором размещена обмотка; 2р - число полюсов обмотки.Если шаг катушки меньше диаметрального, то его называют укороченным. Укорочение шага, характеризуемое коэффициентом укорочения ky = у / τ, широко применяется в обмотках статоров трехфазных асинхронных электродвигателей, так как при этом экономится обмоточный провод (за счет более коротких лобовых частей), облегчается укладка обмотки и улучшаются характеристики двигателей. Применяемое укорочение шага обычно лежит в пределах 0,85 - 0,66.В духполюсной электрической машине центральный угол, соответствующий полюсному делению, равен 180°. Хотя в четырехполюсных машинах этот геометрический угол равен 90°, в шестиполюсных - 60° и т. д., принято считать, что между осями соседних разноименных полюсов во всех случаях угол равен 180 электрическим градусам (180 эл. град.). Иначе говоря, полюсное деление τ = 180 эл. град. Различают однослойные обмотки, где каждый паз занят стороной одной катушки (секции), и двухслойные, где в пазах размещены стороны разных катушек (секций) в два слоя.Способы изображения обмоток:Способы изображения обмоток электрических машин достаточно условны и своеобразны. Обмотки содержат большое число проводников, и изобразить все соединения и проводники на чертеже практически невозможно. Поэтому приходится прибегать к изображению обмоток в виде схем.Преимущественно пользуются двумя основными способами изображения обмоток на схемах. При первом способе цилиндрическую поверхность сердечника вместе с обмоткой (а у коллекторных машин - вместе с коллектором) как бы мысленно разрезают по образующей и разворачивают на плоскость чертежа. Такого типа схемы называются развернутыми, или схемами-развертками (рис. 2.1).

    Рис. 2.1. Развернутая схема трехфазной однослойной концентрической обмотки с z = 24, 2р = 4.

    При втором способе обмотку как бы проектируют на плоскость, перпендикулярную оси сердечника, показывая вид обмотки с торца (для коллекторных машин обычно со стороны коллектора). Проводники (или активные стороны секций и катушек), расположенные в пазах па поверхности сердечника, изображают кружочками и показывают торцевые (лобовые) соединения обмотки. При необходимости изображают не только видимые с данной стороны торцевые соединения обмотки, но и размещенные с обратной стороны сердечника невидимые лобовые части, причем их изображение в этом случае выносится за окружность сердечника. Схемы такого типа называют торцевыми, или круговыми (рис. 2.2).

    Рис. 2.2. Торцевая схема обмотки m = 3, z = 24, 2р = 4.

    Торцевая и развернутая схемы обмоток:Наиболее распространены схемы, выполненные по первому способу. Они легче читаются и более наглядны. Для облегчения чтения и выполнения торцевых схем их выполняют упрощенным способом (рис. 2.3). Но даже после этого для обмотчика, не имеющего достаточного опыта работы с торцевыми схемами, они кажутся непонятными и неудобочитаемыми. В развернутых схемах расположение катушек и катушечных групп, соединение катушек и катушечных групп выглядит более реально и понятно.

    Рис. 2.3. Торцевая схема при 2р = 4, а = 1.

    Схемы дают достаточно четкое представление об устройстве и размещении на сердечнике всех элементов обмотки и соединений между ними. На схемах в основном изображают лишь проводники обмотки, стараясь по возможности опустить все остальные детали, загромождающие схему и затрудняющие ее чтение. Необходимые дополнительные технические данные приводятся на схемах в виде надписей. Катушка, или секция на схеме изображается одной линией независимо от того, намотана она в один провод или в несколько параллельных проводов, состоит из одного витка или является многовитковой. На развернутой схеме секция или катушка изображаются в виде замкнутой, напоминающей действительную конфигурацию секции (катушки) фигуры, от которой ответвляются выводы.В развернутых схемах двухслойных обмоток стороны катушек или секций, лежащие ближе к воздушному зазору, т. е. в верхнем слое паза, изображают сплошными линиями, а стороны, лежащие в нижнем слое, - штриховыми (пунктирными). Иногда (в книгах старых изданий) активные стороны катушек в обоих слоях паза изображают сплошными линиями, но те стороны, что лежат в верхнем слое, располагают слева, а те, что лежат в нижнем слое, - справа.На схемах трехфазных обмоток провода разных фаз могут изображаться различающимися между собой линиями, например сплошными, штриховыми и штрихпунктирными, линиями разной расцветки или разной толщины, двойными линиями с разной штриховкой между ними.На схемах обычно указывают номера пазов, номера коллекторных пластин, могут быть также обозначены номера секций и их сторон, номера и маркировка выводных концов катушечных групп, фаз обмотки, указаны направления токов, фазные зоны, полюса магнитного поля и т. д. (рис. 2.4 - 2.6).

    Рис. 2.4. Развернутая схема двухслойной обмотки при z = 24, 2р = 4, q = 2.Рис. 2.5. Изображение катушечных групп на схемах: а - развернутой, б – условной.Рис. 2.6. Условные схемы двухслойной обмотки статора: а - для трех фаз при 2р = 2; б - для одной фазы при 2р = 2, в - для одной обмотки статора при 1р = 4.

    Схемы необходимы не только при изучении принципа работы обмоток, их устройства, свойств и особенностей, но также и для выполнения обмоточных работ. Не имея схемы и не сверяясь с ней в процессе работы, трудно выполнить обмотку, поэтому перед началом ремонта обмотки надлежит составить ее схему или найти в справочнике аналогичную.

    Упрощенные торцевые схемы:Следует отметить, что полные развернутые и торцевые схемы сложных многополюсных обмоток с большим числом пазов получаются очень громоздкими и трудными для чтения. В этих случаях в процессе выполнения обмоток, элементы которых повторяются, часто используют практические развернутые схемы, где изображена, например, лишь одна фаза (иногда часть фазы) трехфазной обмотки или несколько секций обмотки коллекторной машины. Широко используются также упрощенные торцевые схемы, где целые катушечные группы изображаются в виде части дуги с обозначениями выводов, а более мелкие элементы обмотки не изображают или изображают на схеме отдельно. Упрощенные торцевые схемы удобны при выполнении соединений между катушечными группами в сложных обмотках.

    Источник:

    energo.ucoz.ua

    Как определить рабочую и пусковую обмотки

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки

    Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

    Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

    Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

    В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

    • КД — конденсаторный двигатель
    • 25 — мощность 25 (Вт)
    • У4 — климатическое исполнение

    Вот его внешний вид.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_1

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_3

    Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

    • рабочая (С1-С2) - провода красного цвета
    • пусковая (В1-В2) — провода синего цвета

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_2

    В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя.

    Итак, приступим.

    1. Сечение проводов

    Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

    Зная основы электротехники, можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

    В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_4

    2. Измерение омического сопротивления обмоток

    Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

    Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

    Снимаем изоляцию с проводов.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_5

    Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_10

    Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_11

    Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_12

    Делаем вывод: первая обмотка — пусковая, вторая — рабочая.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_24

    Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_7

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_8

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_6

    По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

    • (U1-U2) — рабочая
    • (Z1-Z2) — пусковая

    У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

    • (С1-С2) — рабочая
    • (В1-В2) — пусковая

    Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_9

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_13

    Одеваю бирки на провода. Вот что получилось.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_14

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_15

    Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно!!! Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так!!!

    Более подробно об этом читайте в моей статье про реверс однофазного электродвигателя.

    Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_16

    В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

    Как быть в таком случае?

    Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_17

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_18

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_19

    Вот, что у меня получилось:

    • (1-2) — 301 (Ом)
    • (1-3) — 431 (Ом)
    • (2-3) — 129 (Ом)

    kak_opredelit_rabochuyu_i_puskovuyu_obmotki_как_определить_рабочую_и_пусковую_обмотки_23

    Отсюда делаем следующий вывод:

    • (1-2) — пусковая обмотка
    • (2-3) — рабочая обмотка
    • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

    Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения.

    P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание. 

    Если статья была Вам полезна, то поделитесь ей со своими друзьями:

    zametkielectrika.ru

    инструкция для перемотки двигателя своими руками

    Электродвигатели необходимая вещь в любом хозяйстве и в промышленности. Они исполняют множество функций посредством приведения транспортируемого вещества в движение с помощью механических приспособлений.

    Эти машины бывают синхронные и асинхронные, а также постоянного тока. Асинхронные двигатели нашли широкое применение в быту. У таких моторов скорость вращения не изменится при увеличении нагрузки. Именно поэтому чаще всего используют такие модели.

    Типы электродвигателей и особенности ремонта

    Данные устройства производятся в разных конструктивных исполнениях. Выход из строя обмотки в промышленности ремонтируется отправкой двигателя в ремонтный цех, где двигатели разбирают, чистят, ревизируют.

    Потом неисправные обмотки перематывать стараются на специальных намоточных установках. После этого собирают и проверяют двигатели на рабочих оборотах с измерением тока холостого хода и под предполагаемой нагрузкой.

    Электродвигатели подразделяются на два типа:

    • с короткозамкнутым ротором моторы представляют собой простоту изготовления, дешевизну и имеют высокий коэффициент полезного;
    • с фазным ротором, используют такое конструктивное решение при недостаточном напряжении питающей сети, если этого питания не хватает для запуска устройства.

    Неисправность таких устройств в быту устраняется совместно с сервисной службой или сдачей этого мотора в мастерскую. Но, что же делать если поблизости нет сервиса и нет возможности отдать в ремонт профессионалам?

    Единственный вариант попробовать разобрать в домашних условиях и обеспечить перемотку самостоятельными силами. Перематывать обмотки может человек, обладающий минимальными знаниями о способе проведения перемотки.

    Разборка электродвигателя

    Перед разборкой необходимо обработать мотор влажной чисткой, затем очистить ветошью. Откручиваем крышку вентилятора, снимаем последовательно все болты. После этого спрессовываем вентилятор, предварительно открутив его фиксирующий болт.

    Откручиваем крепления подставки и крепление фланцев. Отсоединяем борно электродвигателя с клеммником. Все крепления и болты надо складывать отдельно, чтобы не было проблем в дальнейшем со сборкой. Откручиваем передний фланец вместе с ротором и вытаскиваем.

    Разное устройство электродвигателей заставляет предварительно задумываться: «Какая из обмоток вышла из строя роторная или статорная». С помощью приборов омметра и мегоомметра проводим проверку обмоток.

    Прозваниваем двигатель омметром между тремя фазными выводами на одинаковость сопротивления. Проверяем омметром каждую фазу на землю, сопротивление должно быть порядка нескольких мегоОм и выше. Затем берём мегоомметр и проверяем сопротивление изоляции каждой обмотки на корпус.

    Определились с неисправной обмоткой, в нашем случае неисправна обмотка статора, а ротор имеет неразборную конструкцию. Демонтаж статора не совсем простая задача, как казалось бы на первый взгляд.

    Если обмотка оплавилась очень сильно и электродвигатель вышел из строя от перегрева, то выбивать её не понадобится, она достаточно легко снимется со своих мест крепления. Случилось так, что обмотка подгорела немного или она в обрыве, то лак очень хорошо будет держать, и даже попытки сбить зубилом не приведут к полному удалению старых частей.

    Как вариант, можно развести костёр и нагреть корпус статора чтобы весь лак внутри выгорел. После таких действий старые отложения высыпятся сами.

    Необходимо дать остыть корпусу на воздухе, не прибегая к жидкостному охлаждению, в противном случае корпус не выдержит разности температур и треснет. Зачистка внутренней поверхности требуется до состояния блеска. Не должно остаться окалин от оплавленного лака и меди.

    Потребуется подсчёт количества витков и параметры провода. Подбираем для перемотки именно обмоточный провод. Эта проводка имеет особенные свойства. По форме бывают округлые и прямоугольного сечения.

    Проводка обладает очень малым сопротивлением изоляции. В мастерских по ремонту имеются механические устройства намотки обмоток, провода берутся с повышенной прочностью изоляции, в маркировке добавляется буква М. Мы проводим перемотку своими руками, поэтому возьмём провод с обычной изоляцией с параметрами соответствующими предыдущей.

    Перемотка обмоток электродвигателя

    Перематывать обмотки нужно с помощью шаблона, его мы изготавливаем самостоятельно по размерам корпуса статора. Первое с чего начнём наш ремонт прокладку картона в качестве изоляции от корпуса.

    По шаблону изготавливаем первый виток обмотки, затем прокладываем его в паз, не перекусывая проводника, провод должен быть целым, соединённым со всеми витками одной фазы.

    Перематывать следует сначала витки одной фазы и укладывать в пазы. После перекусываем проводку, делая выводы свободных концов. Для получившихся витков проделываем хорошую изоляцию картоном.

    Аналогичные действия проделываем для каждой отдельной фазы. Особое внимание нужно уделить качеству изоляции электрокартоном, чтобы не допустить межвитковых замыканий. Промаркировать начальные и конечные части обмоток.

    Обвязка витков необходима. Внешние части формируются в нужную геометрию и обвязываются. Выступать витки с картоном должны за пределы корпуса статора на 5 миллиметров до формирования и обвязки. Для перемотки можно использовать ручной намоточный станок.

    Изоляцию прокладывать необходимо таким образом, чтобы исключить касание корпуса мотора в будущем. Условие достаточного изолирования можем проверить омметром, прозвонив обмотки за выведенные концы и проверив сопротивление изоляции на землю-корпус.

    Особенности перемотки электродвигателя своими руками

    Соблюдать количество витков необходимо очень точно. Мы имеем 6 катушек по 2 области. Разность витков приведёт к различию токов в обмотках и как следствие подгорание витоков.

    Не должно быть перехлёста проводников при перемотке. Перематывать ровно с одинаковым расстоянием между проводами, для облегчения укладывания витков в паз статора.

    Шаблон можно изготовить по размеру из двух округлых палок, соединив их на нужном расстоянии под количество витков одной обмотки. Геометрия витков не должна отличаться друг от друга. Для помещения витков в статор можно использовать специальное приспособление — трамбовку.

    Она представляет собой вид лопатки с толщиной под размер паза и позволяет экономить время укладки при большом количестве двигателей. Следует помнить катушки располагаются в пазах статора со смещением. Необходимое условие работы ротора в электромагнитном поле.

    Верхняя часть над витками в пазах статора закрывается электрокартоном. Заготовленные стрелки из изолирующего материала вставляем и просовываем так, чтобы зафиксировать их. Междуфазное изолирование проводим тем же материалом с обвязкой каждого витка. Укладываем витки вдоль передней части статора.

    Выводы катушек заправляем в изолирующие трубки и проводим в отверстие, идущее в место установки борно. Трубки должны изолироваться материалом не только имеющей необходимую пластичность, но и хорошую температуростойкость. Провода при работе и корпус электродвигателя будут сильно нагреваться.

    Перекусанные концы, оставшиеся после прокладки изоляции, собираем в схему «звезда», соединения обмоток производим методом обычной спайки паяльником. Накладываем на эти места изоляцию-трубки и придаём окончательную форму передней части обмоток.

    Фиксируем их кордовой нитью или обвязочной проволокой и приступаем к окончательной процедуре изоляции. Все части, выпирающие за пределы корпуса пазов и статора, хорошо утрамбовываем.

    Сборка электродвигателя

    Чтобы собрать двигатель следует поставить ротор на место и наживить необходимое количество болтов. Все крепления ставить не нужно, собираем для замера токов в цепи.

    Замерять токи каждой фазы необходимо прибором «токовые клещи». Токи должны быть равны по трём фазам и соответствовать табличным данным.

    После проведения испытаний вращения двигателя и проверки работы на холостом ходу, разбираем мотор снова.

    Производим покрытие статора лаком. Когда пропитались обмотки и заполнились все пустоты, статор размещают в подвешенном состоянии на длительное время. Лишний лак должен стечь и высохнуть в течение 3 часов на открытом воздухе. Можно просушить покрытые детали в печи.

    Просушив двигатель, проводим сборку электродвигателя, проверяем ещё раз сопротивление изоляции. Затем осуществляем проверку токов на холостом ходу.

    1. Не рекомендуется перемотанный двигатель сразу включать в полное напряжение. Сначала подвергают запуск через трансформатор — понижающий. Электродвигатель должен слабо начать вращение, отсутствие дыма и запахов подгорания свидетельствует об исправной работе.
    2. Если замечены какие-то отклонения в работе, следует выявить причину на неработающем моторе. Только после этого повторив проверку при помощи трансформатора, следует включать на полное напряжение.

    В итоге получили перемотанный электродвигатель.

    Рекомендации специалистов по перемотке

    • При определении неисправности двигателя необходимо помнить, что в довольно в частых случаях, когда сопротивление изоляции упало и имеет какие-то малые значения, двигатели достаточно очистить от грязи и просушить от накопленной влаги применяя печку, называемой «тепловой пушкой».
    • В редких случаях возможен ремонт старой изоляции: если произошло короткое замыкание из-за вибрации и место соприкосновения под фланцами. Поможет зачистка изоляции, её восстановление и залить лаком.
    • При прозвонке установлено межвитковое замыкание? Сопротивление одной обмотки ниже чем других. Определяется омметром. Можно попытаться определить нужный виток. Для этого придётся перекусывать провода между витками и определять сопротивление каждого.
    • В редких случаях можно извлечь испорченный виток, заменить на новый, спаять концы и проверить на стенде. Такие же шаги можно использовать при коротком замыкании.
    • Перематывать виток на шаблон необходимо равномерно, заполняя провод к проводу, без перекосов, без нахлестов, согласно размерам статора. Иначе есть риск при сборке не вставить ротор. Сечение и марка проводов должно соответствовать оригиналу.

    Далее, следует залить обмотку специальным лаком. Обязательно перед заливкой надо проверить вращение двигателя с помощью трансформатора. Потом под полным напряжением. Эта проверка исключит возможность испорченного материала.

    Использование поверенных приборов для определения параметров двигателя: сопротивления и тока холостого хода. При проверке в схеме питания двигателя должна стоять исправная защита, настроенная выше двух третьих номинального тока.

    Оцените статью: Поделитесь с друзьями!

    elektro.guru

    СХЕМЫ ТРЕХФАЗНЫХ ОБМОТОК. - СХЕМЫ ОБМОТОК -

    Схемы трёхфазных обмоток.

    Трехфазные обмотки:В трехфазных обмотках те катушки, активные стороны которых расположены под двумя соседними разноименными полюсами, обычно соединяют последовательно между собой в катушечные группы. Катушечные группы, как правило, образуют одну пару полюсов одной фазы обмотки.

    Соединение катушечных групп:Катушечные группы соединяют в фазы обмотки. Для образования фаз может быть использовано последовательное, параллельное или смешанное соединение катушечных групп между собой, однако при этом должно соблюдаться правильное чередование полюсов магнитного поля, создаваемого обмоткой.Полюса можно определять по направлению тока в данной стороне катушки (условно принимая одно из направлений за какой-нибудь полюс, в таком случае противоположное направление - противоположный полюс). Так как ток переменный, то и полюс с частотой тока меняет свою полярность, поэтому на схемах удобнее пользоваться направлением тока в витках катушки, расположенных в данном пазу (рис. 1.1—1.5).

    шаблонная обмотка вразвалку

    Рис. 1.1 Шаблонная обмотка вразвалку при 2ρ = 2, z = 24, q = 4, y = 10 (1-11)< a = 1.

    концентрическая обмотка вразвалку

    Рис. 1.2 Концентрическая обмотка вразвалку (трехплоскостная) при 2ρ = 4, z = 48, у = 11(1 — 12), 9(2—11), а = 1.

    двухслойная концентрическая обмотка

    Рис. 1.3 Схема двухслойной концентрической обмотки при 2ρ= 4, z = 48, q = 4, у = 13(1 — 14), 11(2— 3), 9(3—12), 7(4—11).

    концентрическая обмотка однофазного электродвигателя

    Рис. 1.4 Однослойная (концентрическая вразвалку) обмотка однофазного двигателя с пусковым элементом при 2ρ = 4, z = 24.

    схема обмотки однофазного электродвигателя

    Рис. 1.5 Однослойная обмотка (шаблонная вразвалку) однофазного двигателя с пусковым элементом при 2ρ = 4, z = 36.

    Характеристика трехфазных обмоток:Все три фазы обмотки должны быть симметричными. Поэтому в каждой из них содержится равное количество катушек, одинаково соединенных между собой и симметрично расположенных в магнитном поле машины. Только при этом условии суммарные ЭДС в фазах будут равными по величине и сдвинутыми относительно друг друга на ⅓ периода, т. е. образуют симметричную трехфазную систему ЭДС. Фазы обмотки могут соединяться между собой в звезду или в треугольник.Одной из важнейших характеристик трехфазных обмоток является показатель q, равный числу пазов, приходящихся на полюс и фазу:

    где z — число пазов, в которых размещена обмотка; 2ρ — число полюсов магнитного поля; m— число фаз.Число q также показывает, из скольких катушек состоят катушечные группы данной обмотки. Так, если трехфазная (m = 3) четырехполюсная (2ρ= 4) обмотка расположена в 60 пазах (z = 60), то:

    Такая обмотка будет иметь по пять катушек в каждой катушечной группе.Если же в 60 пазах разместить трехфазную восьмиполюсную обмотку, то число пазов на полюс и фазу окажется не целым, а дробным q = 60/(8 ∙ 3) = 2 ½. Такие обмотки называются обмотками с дробным показателем q.Так как в каждой отдельной катушечной группе может быть лишь целое число катушек, то при дробном q катушечные группы в каждой фазе обмотки не будут одинаковыми, а будут содержать разное количество катушек. В этом случае число q показывает среднее количество катушек, приходящихся на одну катушечную группу. На рис. 2.12 изображена обмотка однофазного двигателя, у которого пусковая обмотка имеет дробное а.Обычные трехфазные обмотки выполняются как шестизонные. В таких обмотках пазы, занимающие два полюсных деления (360 эл. град.), распределяются на шесть частей — зон (по одной зоне на каждую фазу в пределах одного полюсного деления). Если обмотка выполнена с q, равным целому числу, и с диаметральным шагом у = т, то каждая зона шестизонной обмотки занимает 60 эл. град.Для трехфазных обмоток существует следующее соотношение между частотой вращения магнитного поля машины, числом его полюсов и частотой тока в обмотке:

    где n- частота вращения магнитного поля, об/мин;ρ- число пар полюсов; ƒ - частота проходящего по обмотке тока, Гц.

    Источник:

    energo.ucoz.ua

    Определение начала и конца обмоток электродвигателя

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Здравствуйте, дорогие посетители и постоянные читатели сайта «Заметки электрика».

    Продолжаю серию статей из раздела «Электродвигатели». В прошлых статьях я рассказывал Вам про устройство асинхронного двигателя, соединение в звезду и треугольник его обмоток, провел эксперимент подключения трехфазного двигателя в однофазную сеть.

    Бывают ситуации, когда Вы подходите к двигателю с целью подключить его в сеть, а в клеммной колодке находятся 6 проводов, совершенно без бирочек и маркировки.

    Что делать в такой ситуации? 

    Делается это не очень трудно. В качестве примера я покажу Вам наглядно как определить начало и конец обмоток электродвигателя АИР71А4.

     

     Шаг 1

    Самым первым шагом в определении начала и конца обмоток асинхронного двигателя является написание бирочек (кембриков). Для этого воспользуемся трубкой ПВХ диаметром 5 (мм) и маркером.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Нарезаем из трубки ПВХ шесть отрезков одинаковой длины и подписываем их маркером.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Про маркировку обмоток трехфазного асинхронного двигателя я Вам рассказывал в статье про соединение звездой и треугольником. Кто забыл, то переходите по ссылке и читайте.

    Вот что получилось.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

     Шаг 2

    Вы уже знаете, что обмотка статора асинхронного двигателя состоит из 3 обмоток, сдвинутых относительно друг друга на 120 электрических градуса. Так вот вторым шагом в определении начала и конца обмоток асинхронного двигателя  является определение принадлежности всех шести выводов к соответствующим обмоткам.

    Как это делается?

    Можно воспользоваться обычным омметром, но я предпочитаю использовать цифровой мультиметр. Кстати, скоро в свет выйдет интересная и подробная статья о том, как пользоваться мультиметром при проведении различных видов электрических измерений.

    Чтобы не пропустить выход новых статей на сайте, Вам необходимо подписаться на получение новостей в конце статьи или в правой колонке сайта.

    Итак, с помощью мультиметра определяем первую обмотку. Переключатель режима работы  мультиметра ставим в положение 200 (Ом).

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Одним щупом встаем на любой из шести проводников. Вторым ищем его конец. Как только попадаем на искомый проводник, показания мультиметра покажут нам значение отличное от нуля. В моем примере это 14,7 (Ом).

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Это и есть первая обмотка статора нашего электродвигателя. Одеваем на нее бирки U1 и U2 в произвольном порядке.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Аналогично продолжаем искать остальные две обмотки.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    На найденные обмотки одеваем бирочки (кембрики), соответственно, V1, V2 и W1, W2.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    В итоге получаем шесть проводов с надетыми на них бирочками (кембриками) в произвольной форме.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Шаг 3

    Чтобы перейти к третьему шагу определения начала и концов обмоток трехфазного электродвигателя необходимо вкратце вспомнить теорию электротехники.

    Кстати, кое-что Вы уже можете почитать в разделе «Электротехника». Правда этот раздел еще не наполнен статьями, все руки до него не доходят. Также можете почитать мой отзыв про курс электротехники от Михаила Ванюшина. Я его приобрел в свой архив и совсем не пожалел.

    Итак, две обмотки, находящиеся на одном сердечнике, можно подключить либо согласовано, либо встречно.

    При согласованном включении двух обмоток возникнет электродвижущая сила ЭДС, состоящая из суммы ЭДС первой и второй обмоток. Таким образом, в этих обмотках возникает процесс электромагнитной индукции, который наводит в рядом расположенной обмотке ЭДС, т.е. напряжение.

    Если же две обмотки подключить встречно, то сумма ЭДС этих двух обмоток будет равна нулю, т.к. ЭДС каждой обмотки будут направлены друг на друга, и тем самым компенсируют друг друга. Поэтому в рядом расположенной обмотке ЭДС не наведется или наведется, но очень малой величины.

    Перейдем к практике.

    Берем первую катушку (U1и U2) и соединяем ее со второй (V1 и V2) следующим образом. Напоминаю, что эти обозначения у нас условные.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Эта же схема на моем примере.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    На вывод U1 и V2 подаем переменное напряжение порядка 100 (В). Можно подать напряжение и 220 (В), но я ограничился 100 (В).

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    После этого с помощью вольтметра или мультиметра производим измерение переменного напряжения на выводах W1 и W2.

    Если мультиметр покажет некоторое значение напряжения, то первая и вторая обмотки включены согласовано. Если напряжение на выводах будет равняться нулю или иметь совсем маленькое значение, то значит обмотки включены встречно.

    Смотрим, что получилось в нашем случае.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Замеряю напряжения на выводах W1 и W2. Получаю значение около 0,15 (В). Это очень маленькое значение, поэтому я делаю вывод, что обмотки я подключил встречно. Поэтому на второй обмотке я меняю местами бирочки V1 и V2 и снова провожу измерение.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    После замены на выводах W1 и W2 я измерил напряжение порядка 6,8 (В). Это уже что-то похожее на правду.

    Делаю вывод, что первая (U1 и U2) и вторая (V1 и V2) обмотки подключены согласовано, а значит, данная маркировка их начал и концов верна.

    Осталось дело за малым – это найти начало и конец у третьей обмотки (W1 и W2). Все делаем аналогично, только подключаем их согласно схемы, приведенной ниже.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Измерение переменного напряжения проводим на выводах V1 и V2.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Получилось напряжение 6,8 (В). Значит маркировка начала и конца третьей обмотки верна.

     

     Шаг 4

    После определения начала и конца обмоток трехфазного асинхронного двигателя необходимо проверить себя. Для этого соединяем звездой или треугольником обмотки в зависимости от типа двигателя и напряжения сети. В нашем случае обмотки двигателя я соединил треугольником.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Подаю питающее трехфазное напряжение на обмотки – двигатель работает.

    opredelenie_nachala_i_konca_obmotok_elektrodvigatelya_определение_начала_и_конца_обмоток_электродвигателя

    Можно сделать вывод, что начала и концы обмоток двигателя мы нашли правильно.

    Существует еще несколько способов определения начала и концов обмоток электродвигателя, но лично я пользуюсь именно этим.

    Для наглядности предлагаю посмотреть видео:

    P.S. Если статья оказалась Вам полезной. то поделитесь ей со своими друзьями в социальных сетях. А если возникли вопросы по материалу данной статьи, то задавайте их в комментариях.

    Если статья была Вам полезна, то поделитесь ей со своими друзьями:

    zametkielectrika.ru


    Каталог товаров
      .