Схема обмотки 3 фазного двигателя: Схема обмоток трехфазных электрических двигателей и их соединение на клеммных панелях Статьи

Как определить начало и конец обмоток трехфазного электродвигателя

В данной статье мы постарались максимально подробно объяснить, как правильно определить необходимые выводы обмотки асинхронного трехфазного электродвигателя, в частности АИР, для дальнейшего правильного его подключения.

Определение пар выводов с помощью тестера

Пара выводов – это конец и начало одной обмотки трехфазного электродвигателя. Для определения пары начало/конец одной обмотки используют тестер, установленный на предел измерения сопротивления:

  1. Первый щуп тестера подсоединяют к одному из выводов
  2. Вторым поочередно касаются остальных проводов.
  3. Если на какой-то паре покажется целостность цепи – это и будет одна из фазных обмоток
  4. Аналогично выделяются все обмотки
  5. Каждую из обмоток помечают

Определение начала и конца одной обмотки

При  подаче напряжения на любую из обмоток статора, оно индуцируется в оставшиеся 2 обмотки.

Используя эту особенность, тестер и сеть низкого напряжения, можно определить начала и концы обмоток:

  1. Произвольно соединяются 2 вывода разных обмоток
  2. На оставшиеся концы обмоток подается низкое напряжение и проверяется напряжение на соединенных обмотках: (напряжение есть – значит соединенные провода – начало одной и конец другой обмотки. Напряжения нет – значит соединены 2 конца, либо 2 начала)
  3. Концы без напряжения условно помечаются как начала
  4. Повторяется опыт и соединяется уже найденное начало одной из обмоток с любым выводом на которое подавалось напряжение ранее. Теперь напряжение подается на оставшуюся обмотку.
  5. Поочередно, подобным образом, проверяются все обмотки.

Найдя начала и концы обмоток, можно приступать к подключению асинхронного электродвигателя по схемам «звезда» либо «треугольник».

Как видно из таблиц обмоточных данных электродвигателей серии АИР, большинство электродвигателей АИР предполагают подключение к сети 220/380 В. Соединив концы обмоток по схеме “треугольник” двигатель будет работать от питания 220 В, а по схеме “звезда” – от 380 В.

Маркировка концов обмотки

Как правило, выводы обмоток асинхронных электродвигателей АИР маркированы попарно и имеют такие обозначения:

Фаза 1: С1 (начало) С4 (конец)

Фаза 2: С2 (начало) С5 (конец)

Фаза 3: С3 (начало) С6 (конец)

Первоочередно определяют и выделяют каждую из пар обмоток электродвигателя. Но порой, для правильного подключения, необходимо определить концы и начала обмоток самостоятельно.

Для более подробного просмотра электрических параметров – переходите к интересующей Вас модели электродвигателя АИР.




Эта запись была опубликована Полезные статьи и обзоры.

Контакты менеджера

Менеджер Артем

+38 (099) 40-20-100

+38 (098) 40-20-100

г. Харьков, ул. Родниковая 74

Полезное:

Мы вам рекомендуем:

>

Особенности схем обмоток одно- и двухфазных двигателей

Страница 18 из 84

Однофазные асинхронные двигатели мощностью до 1, редко до 2 кВт, широко применяют в условиях, когда имеется только однофазная сеть, например, для привода механизмов различных приборов, электрифицированного инструмента, в бытовых механизмах и т. п. Если обмотку двигателя питать однофазным током, то электромагнитное поле в нем будет не вращающимся, как в трехфазных машинах, а пульсирующим, энергетические показатели будут хуже, чем у трехфазных, а пусковой момент будет равен нулю, т. е. двигатель без специальных устройств не сможет начать работать. Поэтому в статорах однофазных двигателей устанавливают две обмотки, которые часто называют также фазами обмотки. Одна из них — главная, или рабочая, другая — вспомогательная.

Рис. 39. Оси обмоток двух- и однофазных двигателей: а — расположение катушек разных фаз в пазах статора, б — условное изображение фаз обмотки

Обмотки располагаются по пазам статора так, что их оси сдвинуты друг относительно друга в пространстве на электрический угол 90° (рис. 39). Если фазы токов обмоток будут не одинаковы, т. е. сдвинуты во времени, то электромагнитное поле в двигателе становится вращающимся. Энергетические показатели двигателя улучшаются и появляется пусковой момент. При сдвиге фаз токов на электрический угол 90° и одинаковых мдс обмоток поле становится круговым и кпд однофазного двигателя будет наибольшим. Добиться этого можно, выполнив обе обмотки двигателя одинаковыми и подключив последовательно к одной из них конденсатор (рис. 40, а). Такие двигателями называются однофазными конденсаторными.

Емкость конденсатора, необходимая для получения кругового поля, зависит от активных и индуктивных сопротивлений обмоток двигателя и от его нагрузки. Для однофазных конденсаторных двигателей конденсатор рассчитывают так, чтобы поле было круговым при номинальной нагрузке. Его включают последовательно с одной из фаз обмоток на все время работы. Этот конденсатор называют рабочим и обозначают Ср. Во время пуска двигателя емкость рабочего конденсатора оказывается недостаточной для образования кругового поля и пусковой момент двигателя невелик. Для увеличения пускового момента параллельно с рабочим конденсатором включают второй — пусковой конденсатор (С). Суммарная емкость рабочего и пускового конденсаторов обеспечивает получение кругового вращающегося поля во время пуска двигателя и пусковой момент его увеличивается. После разгона двигателя пусковой конденсатор отключают, а рабочий остается включенным (рис. 40, б). Таким образом, двигатель запускается и работает с номинальной нагрузкой при вращающемся круговом поле.

Рис. 40. Схемы включения однофазных двигателей:
а — с постоянно включенным конденсатором (конденсаторные двигатели), б — с рабочим и пусковым конденсаторами, в — с пусковым элементом; Ср — рабочий конденсатор, Сп— пусковой конденсатор; ПЭ — пусковой элемент

Рис. 41. Схема однослойной концентрической обмотки с т—2, Z— 16, 2р—2, выполненной вразвалку

В однофазных конденсаторных двигателях обе обмотки, и главная и вспомогательная, выполняются одинаковыми, т. е. с одинаковым числом витков и катушек, из одинакового обмоточного провода. Они располагаются в одинаковом числе пазов, симметрично со сдвигом осей на 90°.

В статорах большинства одно- и двухфазных двигателей применяют всыпные однослойные обмотки с концентрическими катушками (рис. 41). Они имеют либо четыре выводных конца — начала и концы главной и вспомогательной фаз, либо только три. При трех выводах концы главной и вспомогательной фаз соединяются между собой внутри корпуса и наружу выводится провод от места их соединения — общая точка обмотки. Обозначение выводов обмоток приведено в табл. 3.
Для уменьшения вылета лобовых частей катушек однослойные обмотки часто выполняют вразвалку. Если число пазов на полюс и фазу четное, то обмотки вразвалку по существу не отличаются от таких же обмоток трехфазных машин (см. рис. 24). Если же число q нечетное, то большие катушки в группах делают «расчесанными», т. е. отгибают лобовые части половины их витков в одну, а второй половины — в другую сторону (рис. 42).

Рис. 42. Схема однослойной концентрической обмотки с т— 2, Z—24, 2р=4, q= 3, выполненной с «расчесанными» катушками

Необходимость установки конденсаторов удорожает однофазные двигатели, увеличивает их габариты и снижает надежность, так как конденсаторы выходят из строя чаще, чем сами двигатели. Поэтому большинство однофазных асинхронных двигателей рассчитывают на работу только с одной — главной обмоткой. Однако для того, чтобы их можно было пустить, устанавливают и вторую — вспомогательную обмотку, которую часто называют пусковой. Она предназначается только для создания вращающегося поля при пуске двигателя. Такие однофазные двигатели называют двигателями с пусковой фазой.

Сдвиг фаз токов главной (рабочей) и пусковой обмоток достигается изменением сопротивления пусковой обмотки путем включения последовательно с ней так называемого пускового элемента (см. рлс. 40, в) — конденсатора или резистора (чаще всего используют более дешевый — резистор).

Пусковые обмотки, как правило, отличаются от рабочих и по числу витков, и по числу катушек, и сечением провода. Они обычно занимают 2/3 всех пазов статора. В оставшихся 2/3 пазов располагается рабочая обмотка. Схемы соединений и числа полюсов рабочей и пусковой обмоток одинаковы (рис. 43).

Рис. 43. Схема однослойной концентрической обмотки однофазного двигателя с пусковой фазой с Z=24, 2р=4; C1— С2 — главная фаза, В l— В2 — пусковая фаза

Рис. 44. Образование бифилярных витков

Рис. 45. Схема обмотки с катушками, имеющими бифилярные витки:
а — изображение катушек с би- филярными витками на схеме обмотки, б — схема обмотки с Z = 24, 2р=4

Чтобы избежать установки резисторов, которые должны быть рассчитаны на полный пусковой ток, во многих однофазных двигателях пусковую обмотку выполняют с повышенным сопротивлением пусковой фазы. Для этой цели пусковую обмотку наматывают из провода меньшего сечения, чем рабочую, или выполняют ее с частично бифилярной намоткой. При этом длина провода обмотки возрастает, ее активное сопротивление увеличивается, а индуктивное сопротивление и мдс остаются такими же, как и без бифилярных витков. Чтобы образовались бифилярные витки, катушку пусковой обмотки выполняют из двух секций со встречным направлением намотки (рис. 44). Одна секция, направление намотки которой совпадает с нужной для пуска машины полярностью, называется основной, а секция со встречной намоткой — бифилярной. Бифилярная секция имеет всегда меньше витков, чем основная. На схемах обмоток катушки, имеющие частично бифилярную намотку, обозначают петлей (рис. 45, а). На рис. 45, б показана схема обмотки с пусковой фазой, имеющей частично бифилярную намотку. Главная обмотка выполнена концентрическими катушками вразвалку. Петли у катушек пусковой фазы на схеме обозначают, что они выполнены с частично бифилярной намоткой.

Пусковая обмотка однофазных двигателей рассчитана только на кратковременную работу — на время пуска двигателя. Ее необходимо отключить от сети сразу же, как только двигатель разгонится, иначе она перегреется и двигатель выйдет из строя.   

Рис. 46. Короткозамкнутый виток на полюсе асинхронного однофазного двигателя:

1 — короткозамкнутый виток, 2 —обмотка, 3 — сердечник
Такие двигатели применяются, например, для привода компрессоров во всех бытовых холодильниках. Тепловое реле холодильника включает обе обмотки двигателя, а после его разгона отключает пусковую обмотку. Двигатель работает с одной включенной рабочей обмоткой.

В небольших, мощностью до нескольких десятков ватт однофазных асинхронных двигателях вращающееся поле и в период пуска и во время работы получают более простым способом. Двигатель делают с явнополюсным статором. Часть площади полюсного наконечника охватывают короткозамкнутым витком (рис. 46), в котором индуктируется ЭДС и возникает ток. Под влиянием тока в витке поток полюса раздваивается и фаза потока под частью полюсного наконечника, охваченной короткозамкнутым витком, сдвигается по сравнению с основным потоком. В результате поле становится вращающимся, однако не круговым, так как нельзя таким образом достичь сдвига фаз на 90°, а эллиптическим, но достаточным для возникновения небольшого пускового момента. Такие двигатели называют однофазными с экранированными полюсами или с короткозамкнутыми витками на полюсе. _ Они широко применяются, например, в различных бытовых вентиляторах, так как пуск вентиляторов происходит с малым моментом сопротивления на валу. Основным достоинством двигателей с экранированными полюсами является простота их конструкции и технологии изготовления.

В отличие от однофазных двухфазные двигатели питаются от двухфазной сети. Они используются в основном в различных системах управления, в которых сдвиг фаз питающей сети создается самой схемой. Их статор имеет также две обмотки, одна из которых носит название обмотки возбуждения, а вторая — обмотки управления. Обмотка возбуждения подключена к сети с неизменным по амплитуде напряжением. Регулирование частоты вращения двигателей осуществляется изменением амплитуды тока обмотки управления или его фазы. Иногда применяется и тот и другой метод управления одновременно. При равенстве токов и сдвиге их фаз на 90° поле двигателя круговое. При изменении тока обмотки управления или его фазы поле становится эллиптическим, электромагнитный момент двигателя и частота его вращения уменьшаются.
Двигатели рассчитывают так, что при пульсирующем поле они работать не могут. Поэтому при уменьшении сдвига фаз токов в обмотках до нуля или снятия напряжения с обмотки управления двигатели останавливаются. Как только фаза тока в обмотке управления изменится или подано напряжение при постоянном сдвиге фаз, двигатели начинают работать. Обмотки двухфазных двигателей в большинстве случаев одинаковые и симметрично расположены в пазах статора.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1. Какую обмотку называют однослойной концентрической?
  2. В чем состоит особенность концентрических обмоток вразвалку?
  3. Чем отличаются равнокатушечные однослойные обмотки от концентрических?
  4. Как изображается катушечная группа двухслойной обмотки на условной схеме?
  5. Во сколько параллельных ветвей можно соединить двух- и однослойную обмотки шестиполюсной машины?
  6. Чем отличается обмотка с дробным числом пазов на полюс и фазу от обмотки с целым q?
  7. Какие двигатели называют многоскоростными и в чем особенность их обмоток?
  8. Как называются обмотки двухфазных двигателей?
  9. Какие двигатели называют однофазными конденсаторными?
  10. Какие схемы применяют для пуска однофазных асинхронных двигателей?
  • Назад
  • Вперёд

Обмотка трехфазных двигателей переменного тока | Программное обеспечение серии Generator

 
 
Обмотка трехфазного двигателя переменного тока
В учебном пособии «Обмотка двигателя переменного тока» представлены основы обмоток двигателей переменного тока, а также обмотки однофазных двигателей. В этом учебном пособии представлены обмотки трехфазных двигателей переменного тока.
Базовая конструкция обмотки трехфазного двигателя переменного тока

Хорошо известно, что как электродвижущая сила, индуцируемая в трехфазном двигателе переменного тока, так и вращающееся магнитное поле, генерируемое в трехфазном генераторе переменного тока, исходят от важной части двигателя или генератора, то есть от обмоток.
Основные требования к обмоткам трехфазных двигателей переменного тока:
Форма волны потенциала, генерируемая трехфазным двигателем переменного тока, и магнитное поле трехфазного двигателя переменного тока должны быть близки к синусоиде и достигать требуемой амплитуды.
Потенциальное или магнитное поле, создаваемое трехфазными обмотками, должно быть симметричным, а сопротивление и реактивное сопротивление каждой обмотки должны быть сбалансированы.
Медные потери обмотки малы и равны количеству меди.
Его изоляция должна быть надежной, требуется высокая механическая прочность, рассеивание тепла и простота изготовления.
Конкретные обмотки трехфазного двигателя переменного тока в основном основаны на следующих данных:

P Пары магнитных полюсов      
Для двигателя с P парами магнитных полюсов количество магнитных полюсов равно 2p. Например, двигатели с одной парой магнитных полюсов создают вращающееся магнитное поле со скоростью 3000 об/мин при трехфазном переменном токе частотой 50 Гц, а двигатели с двумя парами магнитных полюсов создают вращающееся магнитное поле со скоростью 1500 об/мин.
Полюс τ   
Ширина каждого полюса (измеряется по количеству пазов),
τ=Z/2p      Z — общее количество пазов статора,
Фазовый диапазон q    
Ширина каждой фазы под каждым столбом (измеряется по количеству пазов),
q = Z / 2pm   m количество фаз
Например, для трехфазного двигателя с общим количеством пазов 24 и двумя парами магнитных полюсов шаг полюсов равен 6, а фазовый диапазон равен 2.
Применение фазового деления для проектирования обмоток является основным методом, который является простым и легким. Основные этапы:
1. Сначала определите количество фаз двигателя, количество полюсов двигателя и форму обмотки
2. Нарисуйте круговую диаграмму со всеми слотами
3. Рассчитайте количество слотов в каждом полюсе и фазе
.
4. Рассчитать шаг полюсов и шаг
5. Фаза дивизии
6. Соедините концы, чтобы сформировать катушку
.
7. Соедините катушки, чтобы сформировать обмотку
Для других сложных обмоток нужны какие-то другие методы. Ниже приведен пример анализа двух трехфазных двигателей методом разделения фазового диапазона.

Обмотки трехфазного двигателя переменного тока
2-полюсная 6-пазовая однослойная трехфазная обмотка

Самым простым является трехфазная обмотка с 2 полюсами и 6 пазами, которая является самым основным режимом обмотки в учебном пособии «Принципиальная модель трехфазного двигателя переменного тока». Его шаг полюсов равен 3, а ширина фазовой полосы равна 1,9.0037

Установите слоты 1, 2 и 3 как N полюса, а слоты 4, 5 и 6 как S полюса (полюса здесь не являются северным и южным полюсами определенного магнитного поля), и есть 3 фазы ленты под каждым полюсом, пазы под каждой фазовой полосой соединяются как одна катушка, и направления намотки каждой соседней фазовой полосы меняются местами. См. рисунок 1, светло-голубая катушка представляет собой одиночную обмотку фазы U, зеленая катушка представляет собой одну обмотку фазы V, а красная катушка представляет собой обмотку одной фазы W.

Рисунок 1 — 2-полюсная 6-слотовая однослойная цепочка с развернутой обмоткой
2 полюса и 12 пазов однослойная цепь трехфазная обмотка

Использование ядра 6-слотового двигателя слишком низкое и используется только для объяснения принципа. 12 пазов применим как минимум для трехфазного двигателя. Далее описывается однослойная цепная обмотка с 2 полюсами и 12 пазами трехфазного двигателя.

Простой расчет показывает, что шаг полюсов равен 6, а ширина фазового диапазона равна 2. На рис. 2 представлена ​​круговая диаграмма трехфазного двигателя с 2 полюсами, 12 слотами, 2 полюсами и 12 слотами, где от 1 до 6 слотов указаны как N полюсов. и от 7 до 12 слотов в качестве S-полюсов.

Имеется 3 фазовых диапазона U, V и W под полюсами N и S, соедините слоты в одном и том же фазовом диапазоне под каждым полюсом N и полюсом S в катушку. Прорези 1 и 8 состоят из катушки, прорезь 1 — это первый конец, прорези 2 и 7 состоят из катушки, прорезь 2 — это первый конец, и две катушки соединены встык, образуя обмотку U-фазы, так что эффективная стороны одной и той же обмотки имеют одинаковую полярность. Направления намотки одинаковы (направление тока одинаково), а направления намотки под противоположными магнитными полюсами противоположны. Один и тот же способ подключения к обмотке V-фазы и обмотке W-фазы. я

Катушки соседних фазных полос намотаны в противоположных направлениях, см. рисунок 2.

Токопроводящие провода каждой фазной обмотки должны быть разделены электрическим углом 120°. Для 2-полюсного двигателя электрический угол такой же, как и механический, оба они равны 120°. Выберите 2 слота в качестве конца U1, выберите 10 слотов в качестве конца V1 и выберите 6 слотов в качестве конца W1; тогда 8 слотов предназначены для конца U2, 4 слота для конца V2 и 12 слотов для конца W2.

Рисунок 2 — 2 полюса и 12 пазов, однослойная цепная обмотка
На рис. 3 показан увеличенный чертеж однослойной обмотки цепи с 2 полюсами и 12 пазами. На рисунке светло-голубая катушка — это обмотка фазы U, зеленая катушка — обмотка фазы V, а красная катушка — обмотка фазы W.
0099

В учебном пособии «Модель трехфазного двигателя переменного тока» есть стереограмма 2-полюсных 12-пазовых однослойных цепных обмоток и схематическая диаграмма нисходящего процесса намотки с анимацией.

Некоторые расширительные чертежи трехфазных обмоток будут представлены позже без анализа.

2-полюсная 12-пазовая однослойная концентрическая трехфазная обмотка
Рисунок 4 — 2-полюсная 12-пазовая однослойная концентрическая трехфазная обмотка
2-полюсная 18-пазовая однослойная с перекрестной трехфазной обмоткой
Рисунок 5 — 2-полюсная 18-пазовая однослойная перекрестная трехфазная обмотка
2-полюсный 18-пазовый однослойный с концентрической поперечной обмоткой
Рисунок 6 — 2-полюсная 18-пазовая однослойная концентрическая поперечная обмотка
2-полюсный 12-слотовый двухслойный пакет с обмоткой вокруг трехфазной обмотки
Для упрощения сложной графики витки в двухслойной обмотке представлены одной рамкой.
Рисунок 7 — 2-полюсная 12-слотовая двухслойная обмотка вокруг трехфазной обмотки
2-полюсный 18-слотовый двухслойный пакет с обмоткой вокруг трехфазной обмотки
Рисунок 8 — 2-полюсная 18-слотовая двухслойная обмотка вокруг трехфазной обмотки
4-х полюсная 24-х слотовая двухслойная обмотка вокруг трехфазной обмотки

 

Рисунок 9 — 4-полюсная двухслойная обмотка с 24 слотами вокруг трехфазной обмотки  
Соединение обмоток трехфазного двигателя переменного тока
Трехфазный двигатель переменного тока обычно вводит шесть концов, включая первую и конечную клемму трех обмоток, в распределительную коробку корпуса и подключается к шести клеммам. Они соединяются друг с другом в распределительной коробке и подключаются к внешнему трехфазному источнику питания. Звезда и треугольник являются основным способом соединения.
Соединение звездой
Соединение звездой также называется соединением Y, а левая схема на рисунке 10 представляет собой соединение звездой трех обмоток со спиральной катушкой, представляющей обмотку. На рисунке справа показана клеммная колодка в распределительной коробке. На плате есть 6 клемм, W2, U2, V2, U1, V1, W1, соедините W2, U2 и V2 закорачивающими контактами (точка соединения называется нейтральной линией N), U1, V1 и W1 соответственно подключены к трехфазный источник питания снаружи A, B и C.
Рис. 10. Трехфазное соединение обмотки звездой
Треугольное соединение
Треугольное соединение также называется Δ-соединением. Левая схема рисунка 11 представляет собой треугольное соединение трех обмоток. На правой схеме показана клеммная колодка в распределительной коробке. На плате есть шесть клемм: W2, U2, V2, U1, V1 и W1. Соедините W2 и U1 перемычками и используйте их в качестве входной клеммы питания фазы A; соедините U2 и V1 перемычками и используйте в качестве входной клеммы питания фазы B; используйте перемычки V2 и W1, подключенные и используемые в качестве внешнего входа питания фазы C.
Рисунок 11. Треугольное соединение трехфазной обмотки

Конкретный метод подключения должен соответствовать методу подключения, указанному на паспортной табличке двигателя.

В большинстве трехфазных двигателей переменного тока используется треугольное соединение, но некоторые названия двигателей помечены как «напряжение 380 В/220 В» и «соединение Y/Δ», что указывает на то, что соединение Y применяется для линейного напряжения источника питания. 380В; при линейном напряжении источника питания 220В выбрано Δ-соединение.

Трехфазный асинхронный двигатель большой мощности имеет большой пусковой ток. Чтобы избежать чрезмерного воздействия на энергосистему, используется пуск «Y-Δ», Y-соединение при запуске, пусковой ток будет небольшим, так как скорость двигателя близка к номинальной скорости. Затем перейти на Δ-соединение.

Трехфазные двигатели переменного тока обычно выводятся из машины через соединение звездой.

 
  Вернуться на предыдущую страницу  

Как проверить обмотки трехфазного двигателя с помощью омметра ~ Изучение электротехники

Каждый трехфазный двигатель имеет шесть (6) клемм, а напряжение питания подключено к трем (3) из этих клемм. Наиболее распространенной конфигурацией трехфазного двигателя является конфигурация треугольник (∆) – звезда (звезда), где сторона треугольника подключена к напряжению питания. Конфигурация клемм трехфазного двигателя показана ниже:

Конфигурация терминалов 3 -фазового двигателя

. Сторог W2U2V2 терминальный комплект — это звезда 3 -й фазовой мотор W. подключен к напряжению питания.

Трехфазный двигатель представляет собой прочное устройство, но, как и все, что создано руками человека, наступает время, когда это прекрасное устройство выходит из строя из-за старости, неправильного использования, неправильной эксплуатации или по любой другой неблагоприятной причине.

Наиболее частым видом неисправности трехфазного двигателя переменного тока является перегорание или короткое замыкание обмотки, что приводит к повреждению двигателя. Часто требуется проверить обмотку трехфазных обмоток с помощью мультиметра или омметра, чтобы определить, исправен ли двигатель, сгорел или закоротил.

Как проверить обмотку трехфазного двигателя

Чтобы определить, исправен ли трехфазный двигатель или вышел из строя, простой тест омметра на обмотках двигателя покажет его истинное состояние. Как показано ниже, указанная терминальная матрица ( синие линии ) показывает, как следует проверять обмотки трехфазного двигателя с помощью омметра:

Первое, что необходимо сделать перед проверкой обмоток двигателя, это удалить перемычки, соединяющие клеммы W2U2V2 , и отключить двигатель от источника питания (L1, L2, L3). Клеммы мультиметра, размещенные на этой матрице клемм, будут показывать следующие показания для исправного трехфазного двигателя:

(a) Терминалы W1W2 , U1U2 , V1V2 будет указывать на Непрерывность для хорошего мотора

(b) Каждую другую терминальную комплекта (c) Показания между любой из шести (6) клемм и рамой двигателя, обозначающей заземление      

    (E), должны указывать разомкнут для исправного двигателя.