Содержание
Устройство Генератора Переменного Тока и Принцип Действия
Мощный тяговый генератор переменного тока – строение
Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.
Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.
Содержание
- Теоретическая часть
- Базовые принципы
- Переменный ток
- Строение генератора переменного тока
- Основные рабочие части и их подключение
- Виды генераторов переменного тока
- Трехфазные генераторы
- Различие по виду
- Способы возбуждения обмотки
- Применение генераторов переменного тока на практике
- Автомобильные генераторы
- Генератор на жидком топливе
Теоретическая часть
Основной принцип работы альтернатора
Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.
Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.
Базовые принципы
Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.
- Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
- Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.
Строение простейшего электромагнитного генератора
- Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.
Генератор переменного тока — как устроен
- Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
- Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
- Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
- Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.
Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.
Переменный ток
В его честь была названа частота тока
Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.
Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.
Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.
Мощнейшие генераторы, установленные на Пушкинской ГЭС
Строение генератора переменного тока
Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.
Основные рабочие части и их подключение
Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины, а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.
За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.
Устройство и принцип действия генератора переменного тока
- Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
- Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
- В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.
Трехфазные генераторы переменного тока и устройство их
Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.
- Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
- Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме
Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.
- Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.
Синхронный генератор электрического тока и принцип действия этого устройства
- При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
- Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
- Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).
Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.
Вращать легче центральную часть
Виды генераторов переменного тока
Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.
Трехфазные генераторы
Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.
Схема трехфазного генератора
- Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
- Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.
Смещение синусоид на 1/3 такта
- Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
- Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
- Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
- Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.
Варианты соединения обмоток у трехфазного генератора
- Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
- Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
- В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
- Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.
Принципиальная схема генератора тока
Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.
Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.
Различие по виду
Отличаются генераторы и по виду, которых существует 2:
Синхронный генератор
- Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.
Принцип действия и устройство синхронного генератора.
- Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
- На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
- Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
- К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
- Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
- К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
- Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.
Асинхронный электрический двигатель
- Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
- Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
- Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.
Способы возбуждения обмотки
Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.
Тут можно выделить 4 типа:
- Питание на обмотку подается через сторонний источник.
- Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
- Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу. Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
- Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.
Применение генераторов переменного тока на практике
Промышленное производство мощных генераторов
Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.
Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.
Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.
Автомобильные генераторы
На фото — электрический генератор для автомобиля
Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.
Принципиальная схема автомобильного генератора
Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.
Для выпрямления трехфазного тока используется несколько диодов.
Генератор на жидком топливе
Бензиновый генератор
Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.
Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.
Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.
Панель управления генератора
На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…
На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.
устройство, принцип работы и схемы подключения, виды генераторов, особенности их конструкции и работы
08. 05.2020354 3 1 Генераторы
Генераторный узел представляет собой электродвигатель, предназначенный для преобразования механической энергии в электрическую. В зависимости от типа и назначения габариты, устройство и принцип работы генераторов переменного тока могут будут отличаться.
Содержание
- 1
Как работает генератор переменного тока?
- 1.1
Схема и устройство простейшего генератора
- 1.2
Принцип действия
- 1.1
- 2
Основные виды генераторов переменного тока
- 2.1
Синхронный генератор
- 2.2
Асинхронный генератор
- 2.1
- 3
Схемы подключения
- 3.1
Однофазный генератор
- 3.2
Трехфазный генератор
- 3.1
- 4
Особенности генераторов с разными типами двигателя
- 4.1
Бензогенераторы
- 4.2
Дизельные генераторы
- 4.1
- 5
Инверторные генераторы
- 6
Как сделать генератор переменного тока своими руками
- 7
Видео «Принцип действия генераторного устройства»
- *
Комментарии и Отзывы
Открытьполное содержание
[ Скрыть]
Как работает генератор переменного тока?
Работа генератора заключается в создании электродвижущей силы в проводнике под действием изменяющегося магнитного поля.
Схема и устройство простейшего генератора
По конструкции электрогенератор включает в себя следующие элементы:
- вращающаяся индукторная составляющая, называющаяся рамкой;
- движущая щеточная часть;
- коллекторное приспособление, оснащенное щетками, предназначенное для отвода напряжения;
- магнитное поле;
- контактные кольца.
Схема простейшего генераторного устройства переменного тока
Принцип действия
Образование электродвижущей силы в обмотках статорного механизма осуществляется после появления электрополя. Для последнего характерны вихревые образования. Данные процессы происходят в результате изменения магнитного потока. Причем последний меняется из-за быстрого вращения роторного механизма.
Ток от него поступает в электроцепь посредством контактных элементов, выполненных в виде деталей скольжения. Для более упрощенного прохождения напряжения к концам обмотки производится подсоединение колец. К этим контактным составляющим подключаются неподвижные щеточные элементы. С их помощью между электропроводкой и обмоткой роторного устройства появляется связь.
В витках магнитного элемента происходит образование поля, в нем формируется ток небольшой величины. По сравнению с напряжением, которое выдает простейший генераторный агрегат на внешнюю электроцепь. Если узел характеризуется небольшой мощностью, то в нем поле образует постоянный магнит, который может прокручиваться. Благодаря такому устройству и принципу работы генератора переменного тока в целом упрощается вся система. Поэтому из конструкции можно убрать щетки и контактные элементы.
Канал «Top Generators» наглядно и схематично в видеоролике показал принцип функционирования агрегата.
Основные виды генераторов переменного тока
Между собой устройства, позволяющие генерировать напряжение, делятся на синхронные и асинхронные. Они могут использоваться в различных сферах жизнедеятельности, но работать будут по разному принципу.
Синхронный генератор
Одним из свойств такого типа устройств является то, что частота тока, который оно воспроизводит, пропорциональна скорости вращения роторного механизма.
Между собой синхронные агрегаты делятся на несколько типов:
- Повышенной частоты. В основе принципа функционирования устройства лежит процесс изменения магнитного потока, достигающегося путем вращения роторного механизма касательно неподвижного статора. Такой тип агрегатов используется преимущественно для питания антенн длинноволновых станций на расстоянии до 3 км. Подключать устройства для работы с более короткими волнами не получится, поскольку необходимо увеличить значение частоты.
- Гидротурбинные агрегаты работают за счет активации гидравлической турбины, которая приводит в движение узел. В таких устройствах роторный механизм устанавливается на одном шкиве с колесом турбинного элемента. Его мощность может составить до 100 тысяч кВт, если скорость вращения будет 1500 оборотов в минуту, а напряжение — до 16 тыс. В. По массе и габаритам такой тип агрегатов считается самым большим, поскольку в них диаметр одного ротора составляет 15 метров. На величину мощности кружения турбины влияют три параметра — скорость вращения, длина электролинии, а также маховый момент роторного механизма.
- Паротурбинные агрегаты, которые приводятся в действие посредством активации паровой турбины. Такой тип устройств функционирует со скоростью вращения 1,5-3 тысячи оборотов в минуту и они бывают двухполосными и четырехполосными. Роторный механизм выполнен в виде большого железного цилиндра, оснащенного прямоугольными пазами, внутри элемента располагается обмотка возбуждения. Корпус статорного устройства всегда неразъемный и выполнен из стали. Общий диаметр агрегата составляет до 1 метра, однако длина его ротора может быть до 6,5 м.
Схема и устройство
Синхронный агрегат конструктивно включает в себя два основных элемента:
- Ротор. Это подвижная составляющая оборудования. Она предназначена для преобразования системы вращающихся электрических магнитов, которые питаются от внешнего источника.
- Статорный механизм или неподвижная составляющая агрегата. В обмотке этого устройства посредством образования магнитного поля появляется ЭДС, которая идет на наружную электроцепь оборудования. Благодаря таким конструктивным особенностям в цепях нагрузок синхронных электрогенераторов не используются скользящие контакты. Магнитный поток от оборудования, который появляется посредством вращения ротора, возбуждается от стороннего источника. Последний монтируется на общем валу или может подключаться к нему с помощью муфты либо ременной передачи.
Схематическое устройство синхронного генераторного агрегата
Особенности работы
Принцип действия может незначительно отличаться в зависимости от типа устройства — явнополюсного либо неявнополюсного. Количество пар полюсных элементов роторного механизма определяется скоростью вращения узла. Если частота образующейся ЭДС составляет 50 Гц, то при 3 тысячах об/мин неявнополюсное устройство обладает одной парой полюсов. В явнополюсных агрегатах, вращающихся при 50-750 оборотах в минуту, количество пар полюсных элементов составит от 60 до 4.
В маломощных синхронных агрегатах питание обмотки возбуждения осуществляется посредством воздействия выпрямленного тока. Электроцепь появляется в результате активации трансформаторных устройств, которые входят в общую цепь нагрузки узла. Также она включает в себя полупроводниковый выпрямительный блок, который может собираться по любой схеме, но обычно как трехфазный мост. Основная электроцепь включает в себя обмотку возбуждения агрегата с регулировочным реостатным устройством.
Процедура самовозбуждения оборудования состоит в следующем:
- При запуске установки в магнитной составляющей образуются небольшие ЭДС, это происходит благодаря явлению остаточной индукции. Одновременно в рабочей обмотке агрегата появляется ток.
- В результате ЭДС образуется во вторичных электрообмотках трансформаторных устройств. А в электроцепи появляется небольшой ток, который способствует усилению общей индукции магнитного поля.
- Увеличение параметра ЭДС осуществляется до момента, пока магнитная система агрегата не возбудится до конца.
Асинхронный генератор
Такой узел представляет собой устройство, производящее электроэнергию с использованием принципа действия асинхронного двигателя. Данный тип агрегатов именуется индукционным. Асинхронное устройство обеспечивает оперативный поворот роторного механизма, а его скорость вращения намного выше по сравнению с синхронным. Простой двигатель может применяться в качестве генераторной установки без дополнительных настроек.
Асинхронные агрегаты используются в разных сферах:
- для моторов ветровых электрических станций;
- для автономного питания жилых помещений и частных домов либо в качестве миниатюрных ГЭС-станций;
- для инверторных агрегатов сварки;
- с целью организации бесперебойного питания от переменного тока.
Схема и устройство
Схематическое подключение асинхронного агрегата
Основными составляющими элементами данного типа устройств считаются статорный механизм и ротор. Первый является неподвижным, а второй прокручивается внутри него. Ротор отделен от статорного механизма воздушным зазором. Чтобы снизить величину вихревых токов, сердечники составляющих элементов делаются из отдельных листов электротехнической стали. Их толщина в зависимости от производителя может составить от 0,35 до 0,5 мм. Сами листы оксидируются при изготовлении, то есть подвергаются термической обработке, что позволяет увеличить их поверхностное сопротивление.
Сердечник статорного механизма устанавливается внутрь станины, которая является наружной частью агрегата. На внутренней стороне детали располагаются пазы, в них находится обмотка. Статорная электрообмотка зачастую выполняется из катушек с небольшим шагом. В ее основе используется медный изолированный проводник.
Особенности работы
Асинхронный тип двигателей производит электроэнергию при увеличенной скорости прокручивания роторного механизма. Этот параметр всегда выше, чем у синхронных агрегатов. При прокручивании роторного устройства и выработки электричества потребуется сильный крутящий момент. Если в двигателе используется так называемый вечный холостой ход, это обеспечит равную скорость прокручивания в течение всего ресурса эксплуатации установки.
Схемы подключения
По числу использующихся фаз все генераторные агрегаты делятся на две группы:
- однофазные;
- трехфазные.
Однофазный генератор
Схема подключения оборудования с одной фазой
Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.
Самые простые конструкции состоят из:
- магнитного поля;
- прокручивающейся рамки;
- коллекторного устройства, предназначенного для отвода тока.
Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.
Трехфазный генератор
Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.
Это обусловлено следующими преимуществами:
- В основе агрегата используется вращающееся круговое магнитное поле. Это обеспечивает возможность хорошей экономии при разработке оборудования.
- Трехфазные генераторы состоят из уравновешенной системы. Это обеспечивает ресурс эксплуатации агрегата в целом.
- В работе трехфазного устройства одновременно используется два напряжения — линейное и фазовое. Оба применяются в единой системе.
- Одно из основных преимуществ — повышенные экономические показатели. Это обеспечивает снижение материалоемкости силовых проводов, а также трансформаторных агрегатов. Благодаря данной особенности упрощается процедура передачи электричества на большие расстояния.
Схема соединения «звездой»
Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).
Схема типа «звезда» для подключения трехфазного оборудования
Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.
Схемы соединения «треугольником»
Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.
При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.
Электросхемы соединений агрегата «треугольником»
Особенности генераторов с разными типами двигателя
Автомобильные и бытовые установки могут разделяться между собой в соответствии с видом топлива, на котором они функционируют. Генераторный узел может работать на бензине или дизеле.
Бензогенераторы
В таких устройствах источником механической энергии является двигатель. Агрегат относится к классу четырехконтактных карбюраторных ДВС. В бензогенераторах используются двигатели, рассчитанные на 1-6 кВт. В продаже можно встретить агрегаты, разработанные для функционирования при 10 кВт, с их помощью можно обеспечить питание всех световых и электроприборов в частном доме.
Бензогенераторы могут похвастаться невысокой стоимостью и длительным ресурсом эксплуатации, хотя по сравнению с дизельными — они немного меньше. Выбор агрегата осуществляется с учетом нагрузок, в условиях которых он будет функционировать. Если узел работает с большим пусковым током и применяется для электросварки, то лучше отдать предпочтение синхронным устройствам. При выборе асинхронного типа агрегата двигатель сможет справиться с пусковыми токами. Но важно, чтобы генераторная установка была полностью загружена, в противном случае топливо будет расходоваться нецелесообразно.
Канал «Olifer TV» рассказал о выборе агрегатов для частного дома в соответствии с типом горючего, на котором он будет использоваться.
Дизельные генераторы
Такой агрегат приводит в действие мотор, функционирующий на дизеле.
В его основе используется:
- механическая составляющая;
- панель с кнопками, предназначенная для управления;
- система подачи топлива;
- охладительный узел;
- система смазки трущихся компонентов и узлов.
Мощность генераторной установки полностью определяется аналогичным параметром самого двигателя. Если она будет невысокой, к примеру, для запитки бытового электрооборудования, то лучше отдать предпочтение бензиновым установкам. Дизельный тип агрегатов целесообразно использовать там, где требуется высокая мощность. Двигатели внутреннего сгорания обычно применяются с верхней установкой клапанов. Они обладают более компактными размерами, а также высокой надежностью.
Кроме того, дизельные ДВС при функционировании выделяют меньше токсичных газов, опасных для здоровья человека, и более удобны в плане ремонта. Специалисты рекомендуют отдать предпочтение агрегатам, корпус которых выполнен из стали, так как пластмасса имеет меньший ресурс использования.
Более надежными являются генераторные дизельные установки, не оснащенные щетками.
Напряжение, которое они вырабатывают, стабильнее. В среднем, если бак заправлен дизельным горючим под завязку, это обеспечит возможность работы генератора в течение семи часов. Если агрегат будет установлен стационарно, то его конструкцию можно дополнить внешним резервуаром для залива топлива.
Канал «Фабрика Тока» продемонстрировал работу дизельного агрегата, использующегося для обеспечения энергией частного дома.
Инверторные генераторы
Производство электрической энергии осуществляется аналогично, как на любой классической модели генератора. В первую очередь производится выработка переменного тока. Он выпрямляется и подается на инверторный узел, а затем преобразуется опять в переменный, только с необходимыми техническими параметрами.
В основе агрегата используется электронный модуль, включающий в себя:
- выпрямительный узел;
- микропроцессорное устройство;
- преобразовательный механизм.
По типу выходного напряжения инверторные агрегаты могут разделяться на:
- Прямоугольные. Такой вид устройств считается наиболее дешевым. Его энергии хватит только для запитки электроинструментов и маломощных приборов.
- Устройства с трапецеидальным сигналом. Могут использоваться для питания большинства электроприборов, кроме высокочувствительной техники. Стоимость таких агрегатов средняя.
- Устройства, работающие с синусоидальным напряжением. Такие генераторы характеризуются стабильными характеристиками и подходят для большинства электрических приборов.
- Прямоугольные. Такой вид устройств считается наиболее дешевым. Его энергии хватит только для запитки электроинструментов и маломощных приборов.
- Устройства с трапецеидальным сигналом. Могут использоваться для питания большинства электроприборов, кроме высокочувствительной техники. Стоимость таких агрегатов средняя.
- Устройства, работающие с синусоидальным напряжением. Такие генераторы характеризуются стабильными характеристиками и подходят для большинства электрических приборов.
Инверторные агрегаты могут функционировать без перерыва либо промежутками. В качестве объектов потребления энергии обычно выступают учреждения, где нельзя допустить перепадов напряжения.
Основные преимущества инверторных установок:
- маленькие размеры и масса;
- низкий расход горючего в результате регулировки выработки определенного объема электричества, необходимого в конкретный момент времени;
- инверторные агрегаты могут функционировать в течение короткого временного интервала с перегрузкой.
Минусы:
- высокая стоимость устройств по сравнению с классическими вариантами генераторных установок;
- повышенная чувствительность к температурным изменениям в электронной составляющей;
- невысокий уровень мощности установки;
- дорогостоящий ремонт электронного модуля при его поломке.
Использование инверторных устройств актуально в случае, когда требуемая величина мощности составляет не больше 6 кВт. Если агрегат будет использоваться на постоянной основе, то лучше отдать предпочтение классическому типу.
Канал «Garage КАХОВКА» протестировал бензиновую установку инверторного класса от производителя «ПилоД».
Как сделать генератор переменного тока своими руками
Для самостоятельного изготовления асинхронного агрегата понадобится следующее:
- Мотор. Двигатель можно соорудить своими руками, но эта процедура слишком длительная и трудоемкая. Поэтому лучше использовать агрегат от старого неработающего бытового электрооборудования. Оптимальным вариантом будет применение двигателя от дренажного насосного устройства, стиральной машинки либо пылесоса.
- Статорный механизм. Рекомендуется приобрести готовое устройство, оборудованное обмоткой.
- Комплект электрических проводов.
- Изолента, допускается применение термоусадочных трубок.
- Трансформаторный узел или выпрямительный блок. Этот элемент потребуется в случае, если на выходе генератора переменного тока энергия будет иметь разную мощность.
Перед началом работ необходимо сделать несколько манипуляций, которые позволят правильно выполнить расчет параметра мощности агрегата:
- Использующийся двигатель подключается к электросети для определения скорости вращения. Чтобы выполнить эту задачу, потребуется специальное устройство — тахометр. После считывания информации полученное значение надо записать и прибавить к нему еще 10%. Это — компенсаторная величина. Если добавить 10% к скорости вращения, это позволит предотвратить перегрев агрегата во время функционирования.
- Выполняется подбор конденсаторных элементов с учетом требуемой величины мощности. Если на этом этапе возникли сложности, можно воспользоваться таблицей.
- Генераторная установка во время работы продуцирует электроэнергию, соответственно, заранее необходимо продумать заземление устройства. При его отсутствии и некачественной изоляции агрегат не только износится быстрее, но и может представлять опасность для человека.
- После подготовки выполняется процедура сборки, она не займет много сил. К двигателю, который будет использоваться в основе, подключаются конденсаторные элементы в соответствии со схемой. В ней указана очередность подсоединения компонентов. Надо учесть, что величина емкости каждой конденсаторной детали соответствует предыдущему устройству.
- Схема сборки простого генератора переменного тока
- Таблица выбора емкости конденсатора для агрегата
Полученный узел сможет обеспечить энергией электрическую пилу, циркулярку или болгарку, т. е. любой маломощный инструмент.
При использовании самодельного генератора переменного тока нельзя допустить перегрева двигателя, иначе это приведет к его поломке и даже взрыву.
В процессе сборки и эксплуатации надо учитывать следующие нюансы:
- Если коэффициент полезного действия падает прямо пропорционально в соответствии с длительностью работы, это норма. Данный нюанс связан с тем, что периодически генераторный агрегат должен отдыхать и остывать. Важно время от времени снижать температуру двигателя до 40 градусов Цельсия.
- Поскольку в простой схеме устройства не используется автоматика, потребитель должен сам контролировать все процессы работы приспособления. Время от времени к агрегату необходимо подключать измерительное оборудование — тахометр, вольтметр.
- Перед выполнением сборки нужно правильно подобрать электроприборы в соответствии с расчетом его технических параметров и свойств. Приведенная схема наиболее простая в плане реализации.
Видео «Принцип действия генераторного устройства»
Канал «Halyk Smart» рассказал о нюансах функционирования агрегата переменного тока.
Загрузка …
| |||||
ТРЕХФАЗНЫЙ ГЕНЕРАТОР Трехфазный генератор, как видно из названия, имеет три однофазные обмотки, разнесенные Рис. 3-8. — Подключение трехфазного генератора. Вместо шести проводов, выходящих из трехфазного генератора, те же провода Нейтраль выводится на клемму, когда должна быть подключена однофазная нагрузка. В трехфазном генераторе переменного тока, соединенном звездой, общее напряжение или линейное напряжение на Трехфазный статор можно также подключить так, чтобы фазы были соединены встык; Большинство генераторов переменного тока, используемых сегодня в военно-морском флоте, представляют собой трехфазные машины. Они Трехфазные соединения
Рис. 3-9. — Подключение трехфазного генератора или трансформатора. Трехфазный трансформатор может состоять из трех однофазных трансформаторов, соединенных На рис. 3-10 показаны однофазные трансформаторы, соединенные по схеме «треугольник-треугольник» для работы в Рис. 3-10. — Три однофазных трансформатора, соединенных треугольником-треугольником. На рис. 3-11 показаны три однофазных трансформатора, соединенных звездой-звездой. Опять же, обратите внимание, что Электрически соединения образуют букву Y. Нижние соединения каждой обмотки Рис. 3-11. — Три однофазных трансформатора, соединенных звездой-звездой. Переменный ток на большинстве кораблей распределяется по трехфазной трехпроводной сети на 450 вольт. На данном этапе важно помнить, что такая система распределения включает в себя Q.14 В трехфазном генераторе переменного тока, каково фазовое соотношение между отдельными |
|