Содержание
Регулятор напряжения для тена от 1 до 6 кВт
Kopatich aliexpress, радиоэлектроника, Статьи, Техника 3
Содержание:
- 1 Схема регулятора напряжения на 220 вольт
- 1.1 Детали для схемы:
- 2 Изготовление схемы
- 3 Как происходит процесс регулировки напряжения в дистилляторном аппарате.
Регулятор напряжения в электрических цепях, служит для изменения мощности, подаваемой в нагрузку. С помощью регулятора напряжения можно управлять скоростью вращения электродвигателей, уровнем освещенности и нагревательными приборами такие как паяльник, электрическая плитка, тэн. В радиомагазинах можно купить готовое изделие но сделать регулятор напряжения своими руками не сложно.
В процессе самогоноварения выяснилось что на газу процес нагревания браги происходит достаточно долго (около 2-х часов) и к тому же, неудобно регулировать процесс дистилляции браги, газовой плиткой. В следствии чего возникла острая необходимость в модернизации самогонного(дистиллятного) аппарата, врезкой в него электрического нагревателя. Изначально задумывалось, что тен будет ставится мощностью 3 kW но в дальнейшем передумали и уменьшили до 2500 ватт. Далее нам понадобилась регулировка напряжения для управления процессом дисциляции, её мы решили изготовить своими руками, благо схем в общем доступе полно, они простые, минимум деталей и изготовление много времени не занимает.
Схема регулятора напряжения на 220 вольт
- Рисунок 1. Схема.
Схема состоит из симистора, BTA41-800B по названию можно определить его параметры ток и напряжение. Например BTA это обозначение симистора, 41 это его ток в амперах и 800B это его напряжение. Симистор можна заменить на более слабый ток для этого нужно мощность вашего тена разделить на напряжение, например: 2 кВт разделить на напряжение в сети 220 вольт мы получим нужный нам ток 2000/220=9,1 Ампер. В этом случае мы можем использовать другой симистор BTA12-600B, но так как симистор будет работать практически на пределах своих возможностей, он будет греться и придется закрепить его на радиатор, в противном случае он может выйти из строя.
- Рисунок 2. Схема с вольтметром.
Примечание.В схеме можно применять любой симистор не менее 600B и током в зависимости применяемого нагревательного элемента. В любом случае для облегчения работы симистора его следует разместить на радиаторе охлаждения. Дополнительно можно поставить вольтметр на выход схемы, чтобы видеть изменение напряжения наглядно и на вход поставить автомат на 16-25 ампер.
Детали для схемы:
1.Симистор выбираем от нагрузки но можете как в моем случае чем больше тем лучше BTA8-600b, BTA12-600b, BTA16-600b, BTA20-600b, BTA24-600b, BTA25-600b, BTA26-600b, BTA40-600b, BTA41-600b.
2.Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом (МОм). Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм.
3.Динистор DB3 у него нет полярности припаиваем как хотим.
4.Резистор 10 кОм.
5.Конденсатор керамический 0,1 мкФ.
Изготовление схемы
- Рисунок 3. Схема в моем исполнение.
Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током (как и во всем электрическом).
И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме. Останется прикрепить симистор на радиатор. Я взял радиатор из старого блока питания телевизора. И останется самое сложное найти корпус и разместить схему в нем. На собирание схемы по времени у меня ушло буквально 15 минут.
- Рисунок 4. Схема регулятора мощности в моем исполнение.
Примечание. Эта схема часто встречается в пылесосах, китайских точильных станках.
- Рисунок 5. Регулировка с пылесоса.
Также можно заказать с сайта Алиэкспресс вот несколько вариантов. 1 вариант, 2 вариант по заверению китайца способен держать 5 кВт, 3 вариант в красивом корпусе с вольтметром, 4 вариант.
Как происходит процесс регулировки напряжения в дистилляторном аппарате.
На начальном этапе нагреватель включаем на полную мощность. После достижения температуры (78,8) градусов, что соответствует точки кипения этилового спирта, мощность нагревателя уменьшаем. Опытным путем меняя положения регулятора, нужно добиться того, чтобы весь выделяющийся пар конденсировался системой охлаждения. Это поможет избежать лишних потерь спирта и в то же время при правильно подобранной мощности позволит сократить время производства до возможного минимума.
Регулятор напряжения
Kopatich
Имею богатый жизненный опыт, могу Вам помочь советом,
С уважением, Копатыч.
Свежие записи
Реклама
4 схемы на Регулятор напряжения своими руками 0-220в
8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля
Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.
Регулятор напряжения
Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!
ТЕСТ:
4 вопроса по теме регуляторов напряжения
- Для чего нужен регулятор:
а) Изменение напряжения на выходе из прибора.
б) Разрывание цепи электрического тока
- От чего зависит мощность регулятора:
а) От входного источника тока и от исполнительного органа
б) От размеров потребителя
- Основные детали прибора, собираемые своими руками:
а) Стабилитрон и диод
б) Симистор и тиристор
- Для чего нужны регуляторы 0-5 вольт:
а) Питать стабилизированным напряжением микросхемы
б) Ограничивать токопотребление электрических ламп
Ответы.
а,а,б,а.
2 Самые распространенные схемы РН 0-220 вольт своими руками
Схема №1.
Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.
СНиП 3.05.06-85
Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.
Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.
Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.
Схема №2.
Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.
СНиП 3.05.06-85
В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.
Как избежать 3 частых ошибок при работе с симистором.
- Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
- Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
- При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.
3 Основных момента при изготовлении мощного РН и тока своими руками
Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.
Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.
СНиП 3.05.06-85
Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.
2 основных принципа при изготовлении РН 0-5 вольт
- Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
- Питание микросхем производится только постоянным током.
Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.
Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:
- Первый вывод – входной сигнал.
- Второй вывод – выходной сигнал.
- Третий вывод – управляющий электрод.
Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.
СНиП 3.05.06-85
Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.
Регулятор напряжения 0 — 220в
Топ 4 стабилизирующие микросхемы 0-5 вольт:
- КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
- 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
- TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
- L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.
РН на 2 транзисторах
Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.
СНиП 3.05.06-85
Ответы на 4 самых частых вопроса по регуляторам:
- Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
- От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
- Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
- Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.
4 Схемы РН своими руками и схема подключения
Коротко рассмотрим каждую из схем, особенности, преимущества.
Схема 1.
Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.
СНиП 3.05.06-85
Схема 2.
Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.
СНиП 3.05.06-85
Схема 3.
Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.
СНиП 3.05.06-85
Схема 4.
Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.
СНиП 3.05.06-85
В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.
Название | Мощность | Напряжение стабилизации | Цена | Вес | Стоимость одного ватта |
Module ME | 4000 Вт | 0-220 В | 6. 68$ | 167 г | 0.167$ |
SCR Регулятор | 10 000 Вт | 0-220 В | 12.42$ | 254 г | 0.124$ |
SCR Регулятор II | 5 000 Вт | 0-220 В | 9.76$ | 187 г | 0.195$ |
WayGat 4 | 4 000 Вт | 0-220 В | 4.68$ | 122 г | 0.097$ |
Cnikesin | 6 000 Вт | 0-220 В | 11.07$ | 155 г | 0.185$ |
Great Wall | 2 000 Вт | 0-220 В | 1.59$ | 87 г | 0.080$ |
Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.
Подборка тематических выдержек из статей
Регулятор мощности на индуктивной нагрузки
Регулятор напряжения и тока
Регулятор, сборка
Ватт Дешевле 110 или 220 Вольт?
Поиск
- Продукты
- Учебный центр
- Отзывы
- Контакт
- Логин
- Просмотр корзины
Распродажа по ликвидации инвентаря! Скидка 90% при самовывозе с нашего склада!
Ватт Дешевле 110 или 220 Вольт?
Сколько я сэкономлю на счетах за электроэнергию, если буду использовать для освещения 220 вольт?
Быстрый ответ: Наверное, ничего.
Это распространенное заблуждение о том, как работает электричество и как
компании взимают с вас плату за это. Пункт, часто упоминаемый в качестве аргумента экономии денег
заключается в том, что сила тока в два раза меньше, когда вместо этого используются лампы для выращивания растений на 220 вольт.
от 110 вольт. Это правда, но коммунальная компания не берет с вас плату за силу тока,
они берут плату за мощность. Они выставляют счет в киловатт-часах. киловатт-час
составляет 1000 Вт использования в течение одного часа или примерно соответствует 1000-ваттному включенному свету.
на один час. Для этого есть хорошая формула: мощность / напряжение = сила тока. Если
мы подставляем цифры для 1000-ваттной натриевой лампы для выращивания, вы можете видеть, что, хотя
напряжение и сила тока могут меняться, мощность всегда остается неизменной.
1000 Натриевая лампа для выращивания растений
На 110 В: 1100 Вт / 110 В = 10 А — На 220 В: 1100 Вт / 220 В = 5 А
Обратите внимание, что натриевый балласт мощностью 1000 Вт потребляет 1100 Вт.
Прямо сейчас, когда я получаю вопрос «Ну, почему они делают вещи, чтобы работать
на 220 вольт?» Обычно это большие машины и приборы, которые потребляют много энергии.
работать от 220 вольт (или больше) в основном из-за размера провода, который вам нужно будет использовать
чтобы запустить их на 110 вольт было бы очень большим. Калибр и длина провода будут
определите максимальную силу тока, которую он выдержит, прежде чем он расплавится! В цепи 220 вольт,
нагрузка разделена между двумя проводами 110 вольт. Это позволяет прокладывать меньший провод.
Это подводит нас к «вероятной» части ответа. Есть еще один фактор, это
падение напряжения или потеря напряжения при передаче питания по проводу. Нижний
сопротивление на проводе, тем меньше падение напряжения. Если вы используете один или
два источника света в типичном доме с коробкой выключателя на небольшом расстоянии, эффективность
потери из-за падения напряжения могут быть недостаточно значительными, чтобы оправдать переподключение
Комната для выращивания на 220 вольт.
Дополнительная информация:
Рассчитайте стоимость электроэнергии для работы
свет для роста.
Как построить четыре светильника для выращивания растений
Контроллер менее чем за 80 долларов США
Калькулятор падения напряжения Джеральда Ньютона
Этот калькулятор использует K = 12,9 круговых мил Ом на фут для меди или K = 21,2 круговых мил Ом на фут для алюминия. Эти значения предполагают рабочую температуру проводника 75 градусов C. Для других значений K, основанных на температуре проводника, используйте расширенный калькулятор падения напряжения.
Выберите материал
МедьАлюминий
Выберите размер
18 AWG16 AWG14 AWG12 AWG10 AWG8 AWG6 AWG4 AWG3 AWG2 AWG1 AWG1/0 AWG2/0 AWG3/0 AWG4/0 AWG250 kcmil300 kcmil350 kcmil400 kcmil500 kcmil600 kcmil700 kcmil750 kcmil800 kcmil900 kcmil1000 kcmil1250 kcmil1500 kcmil1750 kcmil2000 kcmil
Выберите напряжение и фазу
120 В 1 фаза 240 В 1 фаза 208 В 3 фазы 3 провода 120/208 В 3 фазы 4 провода 277 В 1 фаза 480 В 3 фазы 277/480 3 фазы 4 провода 24 DC или 1 фаза AC 48 DC или 1 -фазный AC124 DC или 1-фазный AC
Введите длину односторонней цепи в футах
Введите нагрузку в амперах
Падение напряжения
Напряжение на конце цепи нагрузки
Процентное падение напряжения
смa проводника
Поиск
Главная | Продукты | Учебный центр | Возвраты и возмещения | Доставка | Конфиденциальность | Отказ | Отзывы | Контакты | Войти | Посмотреть корзину
Copyright 1992-2022 Greentrees Hydroponics
2180 Chablis Court, Suite 108, Escondido, California 92029
Объяснение вариантов фаз и напряжения для промышленных генераторов
При принятии решения о том, какой тип генератора лучше всего подходит для вашей среды, прежде всего нужно убедиться, что вы выбрали правильную электрическую конфигурацию. Электрическая конфигурация обычно включает фазу, напряжение, кВт и герц, которые лучше всего подходят для вашего приложения. Чтобы объяснить, как работают фазы и напряжение, полезно понять, что включает в себя генераторная установка. Генераторная установка (также известная как генераторная установка) состоит из двух основных компонентов — промышленного двигателя (обычно дизельного, природного газа или пропана) и генераторной части. Двигатель производит лошадиные силы и обороты в минуту, а конец превращает их в электричество.
Объяснение фаз
Однофазные генераторы – для небольших однофазных нагрузок эти генераторы обычно не превышают 40 кВт. Они обычно используются в жилых помещениях и имеют коэффициент мощности 1,0.
3-фазные генераторы – в основном для крупных промышленных электростанций, эти генераторные установки могут обеспечивать как однофазное, так и 3-фазное питание для работы промышленных двигателей с более высокой мощностью, разветвлять питание на отдельные линии и в целом являются более гибкими. Они обычно используются в коммерческих условиях и имеют коэффициент мощности 0,8.
Увеличение номинальной выходной мощности — вы можете преобразовать однофазную мощность в 3-фазную и иногда увеличить номинальную выходную мощность примерно на 20-30% кВт, но конец должен быть повторно подключаемым, а также необходимо учитывать нагрузку балансы и некоторые другие переменные.
Снижение номинальной мощности (преобразование трехфазной сети в однофазную) — обычно снижает номинальную выходную мощность примерно на 30 %. Например, мощность трехфазного генератора мощностью 100 кВт упадет примерно до 70 кВт при преобразовании в однофазный.
• Чтобы точно рассчитать скорректированную мощность, которую вы получите после снижения номинальной мощности, вы всегда должны пытаться снизить номинальную мощность от номинальной мощности в кВА, а не от номинальной в кВт. Формула: 2/3 кВА (например, однофазная мощность 150 кВА будет снижена до 100 кВА), а затем, при необходимости, преобразовать ее в киловатты.
• Чтобы снизить номинальные параметры генераторной установки, рассматриваемый конец генератора обычно должен иметь 12 или 10 проводов, которые можно повторно подключить. Нагрузка на сам двигатель не влияет, потому что это часть генератора, по сути, переходит в ускорение. Если генератор не подлежит повторному подключению (или может подключаться только для высокого/низкого напряжения), вы все равно можете подавать на него однофазные нагрузки до тех пор, пока вы не превысите номинальный ток на отдельной линии.
• Генераторная установка ограничена своей электрической мощностью на стороне генератора и на самом деле не имеет большого отношения к двигателю.
Общие напряжения на коммерческих генераторных установках
Однофазный
• 120
• 240
• 120/240
3-фазный
• 208
• 120/208
• 240
• 480 (наиболее распространенное напряжение для промышленных электростанций)
• 277/480
• 600 (в основном для регионов Канады)
• 4160 Вольт
Требования к напряжению могут сильно различаться для различных типов оборудования (например, другие варианты напряжения включают: 220, 440, 2400, 3300, 6900, 11500 и 13500)
Как определить требуемое напряжение
Чтобы убедиться, что конфигурация напряжения именно то, что вам нужно, вы всегда должны проконсультироваться с электриком или электриком. Они могут оценить вашу среду и определить различные нагрузки, которые потребуются вашему объекту или операции, а также смогут принять во внимание другие переменные, такие как напряжение, поступающее в здание, максимальная сила тока, выходная мощность электродвигателя и многое другое. Вы также можете обратиться к нашему Калькулятору мощности, чтобы просчитать цифры. Используйте эти цифры в качестве отправной точки и воспользуйтесь таблицей силы тока, которая доступна здесь и на других сайтах производителей в Интернете. Обязательно примите во внимание следующие ключевые элементы, перечисленные ниже, которые помогут вам определить правильное напряжение для установки вашего генератора:
• Требуемое напряжение, подаваемое на ваше предприятие, или питание от сетевого трансформатора, подаваемого в здание.
• Максимальная сила тока, необходимая для работы вашего конкретного оборудования. Если вы не знаете эту информацию, ампер генератора переменного тока (для трехфазных генераторов) обычно можно сопоставить с таблицей, чтобы определить размер автоматического выключателя, который потребуется вашему генератору.
• Также следует учитывать пусковую силу тока для промышленных двигателей. Многие двигатели будут работать при определенной мощности в кВт, но требуют гораздо более высокой пусковой мощности. Например, вам может понадобиться 200 кВт и повышенная сила тока при запуске, даже если ваша средняя рабочая нагрузка составляет всего 90 кВт. Также полезно оценить требования к мощности электродвигателя. Некоторые двигатели поставляются с устройством плавного пуска, которое помогает контролировать ускорение путем подачи напряжения. Некоторые промышленные двигатели предоставляют всю эту информацию на своей бирке данных.
• Сетевая частота также играет роль — в большинстве США и некоторых частях Азии используется частота 60 Гц, а в остальном мире — 50 Гц. Большинство крупных кораблей и самолетов используют специализированную частоту 400 Гц. Чтобы изменить мощность сети на другую частоту, иногда можно использовать преобразователь частоты, но необходимо учитывать дополнительные факторы. Большинство генераторов можно переоборудовать, но некоторые генераторные установки не будут работать должным образом или могут потребовать дополнительных деталей и настройки. Обратитесь к производителю генератора для получения дополнительной информации о подобных ситуациях.
Регулировка напряжения генератора
Регулировка напряжения генераторов — это то, что наши опытные специалисты выполняют каждые несколько дней, чтобы удовлетворить все различные комбинации и особые электрические требования наших клиентов. Хотя на большинстве генераторов можно регулировать напряжение, ваши конкретные параметры всегда будут ограничены в зависимости от стороны генератора, с которой вы работаете.
Сам процесс изменения напряжения является относительно технической электрической процедурой, которая в основном включает регулировку проводов на стороне генератора. На большинстве 3-фазных генераторных установок мы обычно берем 10 или 12 проводов со стороны генератора и реконфигурируем их расположение и подключение, корректируем их маршрут к панели управления и некоторым другим местам — в зависимости от того, чего мы пытаемся достичь. Мы хорошо изолируем провода, при необходимости регулируем провода датчиков, а затем при необходимости вносим дополнительные изменения оттуда. Именно здесь часто упоминаются такие термины, как изгиб и двойная дельта (или зигзаг), Y-образная конфигурация и другие различные схемы разводки. Подробнее об этих терминах читайте в нашей статье о фазовых преобразованиях. Например, на 3-фазных генераторных установках мы можем изменить 208 В на 480 В или 480 В на 240 В или почти любое количество других комбинаций и фаз, используя все напряжения, которые в настоящее время доступны (при условии, что конец генератора можно повторно подключить).
Конец генератора является основным компонентом, который определяет реакцию генератора на изменение фазы и/или напряжения. При правильном выполнении изменение напряжения не должно повредить или вызвать перегрузку устройства. Многим клиентам требуется наличие двух или более системных напряжений от их резервной генераторной установки. Это могут быть электродвигатели, работающие на 480 В, приборы и производственное оборудование, работающие на 208 В, а также небольшие нагрузки и электроинструменты на 240 В. Вы можете добиться этого с помощью трехфазного генератора либо с помощью переключателя, либо с помощью генератора двойного напряжения, который уже создан для этой цели. Однако имейте в виду, что вы не можете одновременно выводить несколько напряжений от одного генератора, вам нужно будет вручную переключать выход на каждое другое напряжение или использовать для этого трансформатор.
Есть несколько ограничений, о которых следует помнить при рассмотрении вопроса об изменении напряжения. Специализированные или высоковольтные генераторы (например, 4160 или 13 500 Вольт) не очень практичны для переделки. Вы можете изменить 600 В на 480 В, но не наоборот. Кроме того, на многих трехфазных генераторах некоторые элементы иногда могут быть труднодоступными и обходными. Например, у них может быть гибкий кабелепровод, который обертывается, панельные двери, которые находятся в нестандартных местах, или корпуса, которые не обеспечат легкого доступа нашим техническим специалистам. Хотя почти всегда есть способ получить доступ к стволу и проводке на концах 3-фазного генератора, иногда это может быть затруднительно. Следует также иметь в виду, что некоторые концы генератора нельзя повторно соединить, поэтому варианты проводки и схемы, доступные для этих типов генераторов, очень ограничены.
Еще одна обычная вещь, которую мы делаем при изменении напряжения, — это обновление компонентов и рассмотрение других возможных соображений по оборудованию в вашей системе, включая следующее:
• Замена манометров — всякий раз, когда мы изменяем напряжение на старом генераторе, нам часто приходится заменять ряд датчики, чтобы мы могли прочитать новые выходные уровни. Одним из приятных преимуществ новых цифровых панелей управления является то, что их обычно можно перепрограммировать.
• Автоматические выключатели — мы регулярно меняем автоматические выключатели на блоках, чтобы удовлетворить требования наших клиентов по силе тока. Прерыватель обычно прикрепляется к концу генератора, и это важный компонент, который поможет защитить генератор, гарантируя, что вы не превысите номинальную силу тока для этого устройства. В зависимости от того, хочет ли клиент, чтобы все было на одном выключателе или было разделено по какой-либо конкретной причине, мы можем изменить конфигурацию на что-то другое (например, один выключатель на 1200 А или два на 600 А).
• Регулятор напряжения – на большинстве генераторных установок при повторном подключении проводов к другому напряжению необходимо также тщательно отрегулировать чувствительные провода, идущие к регулятору и/или панели управления. Если это не будет сделано должным образом, вы можете в конечном итоге сжечь плату или нанести другой ущерб. Большинство современных коммерческих генераторов теперь имеют регулятор напряжения, встроенный в панель управления, поэтому вы можете регулировать параметры напряжения оттуда, и это помогает выполнять все регулировки. В первую очередь это хорошее достижение, но оно делает замену платы намного более дорогостоящей из-за дополнительных функциональных возможностей. К старым генераторным установкам часто подключается отдельное оборудование, выполняющее те же функции. Все эти регуляторы работают, чтобы автоматически поддерживать постоянное напряжение, чтобы убедиться, что ваше оборудование выдает стабильный выходной сигнал.
• Трансформатор — если в вашей системе есть трансформатор, возможно, потребуется переконфигурировать часть проводки, чтобы приспособиться к новому напряжению.
• Автоматический ввод резерва (АВР) — определение силы тока для этого типа выключателя также важно, поскольку АВР является ключевой частью обеспечения автоматического включения генераторной установки во время отключения электроэнергии, а также ее отключения после питание возвращается.
Подводя итог, можно сказать, что существует множество вариантов комбинаций фаз и напряжений, конфигураций и преобразований. Это может быть сложным процессом, поэтому лучше всего обратиться за профессиональной помощью к профессиональному электрику или опытному специалисту по генераторам. Однако, если у вас есть какие-либо вопросы по вопросам, затронутым в этой статье, вам нужна помощь в определении размера генераторной установки или вам нужна помощь в определении того, что лучше всего подходит для вашей конкретной среды, просто позвоните по телефону 800-853-2073 или свяжитесь с нами.