Содержание
Схема сварочного инвертора, описание работы на примере сварочного аппарата РЕСАНТА САИ 140
СХЕМА СВАРОЧНОГО ИНВЕРТОРА И ОПИСАНИЕ ПРИНЦИПА РАБОТЫ
НА ПРИМЕРЕ СВАРОЧНОГО АППАРАТА РЕСАНТА САИ 140
Основных схем сварочного инвертора Ресанта САИ 140 удалось найти две. Управление у них очень похоже, а вот технологически они отличаются довольно сильно.
| |
НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ |
Первый вариант принципиальной схемы сварочного инвертора Ресанта 140 выполнен с использованием управляющего трансформатора, а второй — с использованием оптодрайверов для силовых транзисторов. Есть отличия и в питании управления. Первый с самозапитом, а второй использует отдельный источник питания. Поскольку первый похож на то, что есть у меня, т.е. используется управляющий трансформатор, то с него и начнем.
ДВА ВАРИАНТА ПРИНЦИПИАЛЬНОЙ СХЕМЫ СВАРОЧНОГО ИНВЕРТОРА РЕСАНТА САИ 140 | |
НАЖМИТЕ НА РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ |
Итак, подаем питание и смотрим что будет происходить.
Напряжение 220 вольт проходит фильтр на С3 и L… Пардон, на схеме почему то ЭТО обозначено трансформатором Т1 и доходит конденсаторов С1 и С2. Емкость этих конденсаторов для частоты 50 Гц слишком мала, но вот статику они на корпус спускают отлично и именно по этой причине крайне желательно для трансформатора использовать с заземление, только с реальным, а не иметь розетку в которой есть ни куда не подключенная клемма заземления.
Вверху есть точка №1, как раз на левом выводе термистора РТС, а на правом выводе резистора R2 есть точка №2. Эти нумерные точки идут на контакты реле RL1, которое сейчас не включено – мы только что подали напряжение питания и пока что заряжаются конденсаторы С4 и С5 через термистор и R2, разумеется пройдя диодный мост.
По мере зарядки конденсаторов напряжение +300VDC начинает увеличиваться и начинает протекать ток через резистор R21 заряжая С18 и С19.
Тут следует обратить внимание на используемый операционный усилитель LM324 который уже начинает работать при напряжении питания +3 вольта, т.е. при достижении напряжения на верхнем выводе С19 трех вольт операционный усилитель уже начинает выполнять свои функции.
Теперь смотрим очень внимательно не забыв перевести мозг в состояние ВКЛ.
Сопротивление R21 меньше суммы сопротивлений R22 и R23 в 20 раз, а емкость С19 больше емкости С20 в 4700 раз, следовательно напряжение на верхнем выводе С20 будет больше напряжения на верхнем выводе на 0,6 вольта – напряжение падения на диоде D24. Это в свою очередь однозначно переведет компаратор на U2A в состояние, когда на его выходе будет напряжение близкое к напряжению питания, следовательно LED2 будет светится, а транзистор Q8 будет открыт и пока он открыт на выходе U2D будет напряжение близкое к нулю. Это в свою очередь имитирует превышение порога срабатывания компаратора контроллера U1A и если бы он работал, то на выходе у него был бы ноль. Но он не работает, поскольку подающий на него питание транзистор Q7 еще закрыт.
Тем временем конденсатор С19 продолжает заряжаться и напряжение на нем увеличивается. Как только оно превысит 5 вольт в дело вступает формирователь опорного напряжения на D25 – он не дает напряжению на выводе 2 U2A и выводе 5 U2B стать выше 4,7 вольта.
На выводе 3 U2A напряжение по прежнему больше, чем на выводе 2 и напряжение на выходе компаратора продолжает удерживаться близким к напряжению питания.
Напряжение на выводе 6 продолжает увеличиваться, поскольку этот вывод подключен к делителю напряжения на резисторах R49 и R50. И пока напряжение на 6-м выводе меньше опорного 4,7 вольта компаратор U2B держит на своем выходе напряжение близкое к напряжению питания, а это удерживает транзистор Q7 в закрытом состоянии.
Как только напряжение на верхнем выводе С19 станет равным 12 вольтам на делителе сформируется напряжение равное 4,9 вольта, а это больше опорного напряжения 4,7 вольта и компаратор U2B сформирует на своем выходе напряжение близкое к нулю, транзистор Q7 открывается и подает питание на контроллер UC3845.
Контроллер начинает выдавать управляющие импульсы и силовые транзисторы начинают открываться. Но делают они это на очень короткий промежуток времени, поскольку на контроллере формируется имитация превышения выходного тока все еще открытым транзистором Q8.
На обмотке питания управления появляется напряжение и теперь все управление может потреблять гораздо больший ток. Это напряжение стабилизируется импульсным стабилизатором U1 и тут становится наглядной одна проблема – если первоначально напряжение с левого вывода R21 будет идти сразу на всю схему, то запуска у нас не произойдет никогда – вентилятор потребляет слишком много и напряжение не будет увеличиваться на верхнем выводе С19. Автор схемы учел этот момент и сделал на схеме поправку – только после начала работы стабилизатора напряжения для управления питание подается и на вентилятор и на реле софтстарта и на верхний вывод трансформатора управления. Что до отметки на подсветку LED1, то это исключено – напряжение там не появится пока не запуститься UC3845, а он не запустится, поскольку не будет на него питания.
Тем временем конденсатор С13 заряжается до напряжения, превышающее 5 вольт и стабилитрон D19 пропускает ток на базу Q6, тот открывается и включает реле RL1, которое своими контактами шунтирует токоограничивающий термистор и резистор R2.
Тем временем на выходе инвертора появляется напряжение и оно пройдя ограничитель тока засвечивает светодиод ISO1. Транзистор оптрона открывается и резко уменьшает напряжение на выводе 3 компаратора U2A. Поскольку напряжение на инвертирующем входе теперь больше, чем на не инвертирующем компаратор перекидывается в состояние когда на выходе у него ноль. Светодиод LED2 гаснет, а транзистор Q8 закрывается разблокируя усилитель регулирующего напряжения для контроллера UC3845 и контроллер уже формирует импульсы максимальной длительности, поскольку нагрузки еще нет и ток ограничивать не нужно.
При работе, т.е. при сварке регулировка тока производится путем сравнения напряжения с трансформатора тока с напряжением управления, которое формируется усилителем U2D. Подробно о принципе работы UC3845 есть отдельное видео и статья, ссылки в описании.
| |
НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ |
Поэтому рассмотрим лишь оставшиеся узлы.
Управление силовыми транзисторами происходит с помощью управляющего трансформатора, вторичные обмотки которого через диоды Шотки идут на затворы силовых транзисторов при наличии управляющего импульса. Как только импульс управления прекращается остаточная магнитная энергия сбрасывается D15…D17, а силовые транзисторы закрываются с помощью транзисторов Q3 и Q5, причем происходит это через конденсаторы С 9 и С 10. Эти конденсаторы позволяют получить больше энергии для закрытия транзисторов и это происходит именно в момент окончания управляющего импульса.
При наличии управляющего импульса оба транзистора сварочного инвертора открываются и через первичную обмотку протекает ток, который создает магнитное поле наводящее напряжение на вторичной обмотке. При исчезновении управляющего импульса транзисторы закрываются, а не израсходованная магнитная энергия сбрасывается на шины первичного питания через диоды D2 и D3, тем самым полностью размагничивая магнитопровод трансформатора и подготавливая его с следующему циклу передачи энергии во вторичную обмотку.
| |
НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ |
К сервису данного сварочного инвертора можно отнести защиту от перегрева и залипания электрода, выполненных на одном управляющем элементе – оптроне ISO1.
Пока светодиод данного оптрона светится открытый транзистор оптрона формирует почти ноль на выводе 3 U2A. Как только электрод касается свариваемой заготовки напряжение на светодиод еще какое то время поступает за счет накопленной в конденсаторе С34 энергии. Это время и есть время поджига дуги и если дуга не загорелась, т.е. электрод залип, то светодиод оптрона тухнет, тем самым закрывая транзистор оптрона. На выводе 3 компаратора U2A появляется практически напряжение питания и компаратор зажигает LED2 и открывает транзистор Q3, который душит на землю управляющее напряжение и контроллер выдает только очень короткие импульсы управления, которые не позволяют перегрузить силовой каскад – работа то идет практически на короткое замыкание и единственным сопротивление вторичного напряжения является реактивное сопротивление L1 индуктивность которого и выбрана таким образом, чтобы она оказывала влияние только на самые короткие импульсы.
Как только электрод отодрали от заготовки напряжение на выходе инвертора снова появляется и снова загорается светодиод оптрона. Компаратор U2A гасит светодиод LED2 и закрывает транзистор Q8, тем самым переводя контроллер UC3845 в штатный режим работы.
Если же происходит перегрев, то срабатывает самовосстанавливающийся термопредохранитель КТ, который разрывает цепь питания оптрона и светодиод гаснет и процессы повторяются – горит светодиод LED2, а на выходе сварочного инвертора очень короткие импульсы, не позволяющие производить сварочные работы и это состояние удерживается пока радиатор не остынет и термопредохранитель не включится.
Второй вариант принципиальной схемы все того же инвертора Ресанта 140 отличается не большими изменениями в самом управляющем блоке, ну например транзистор подающий питание на UC3845 открывается через стабилитрон. Питание управление организовано от отдельно блока питания, который выдает 4 напряжения:
15 вольт для питания управления, которые стабилизируются дополнительной КРЕНкой, вольт 12 для вентилятора и два напряжения для оптодрайверов силовых транзисторов. Величина должна быть порядка 25 вольт.
Оптодрайверы управляют силовыми транзисторами через дополнительный формирователь отрицательного напряжения, выполненный на R6-D5 и R9-D6. Подача отрицательного напряжения на затворы силовых транзисторов значительно уменьшает время их закрытия, следовательно уменьшается нагрев транзисторов.
Софтстарт второго варианта сварочного инвертора тоже организован несколько иначе – пока горит светодиод оптрона транзистор Q3 будет закрыт, но нагреваясь термистор RV2, имеющий отрицательную зависимость сопротивления от температуру увеличивает свое сопротивление и светодиод тухнет, тем самым разблокируя базу Q3 и реле софтстарта включается.
Откровенно говоря и в первом варианте схемы инвертора и во втором включение реле происходит довольно медленно и не зависит от состояния схемы управления, что может приводить к подгоранию контактов реле.
На последок остается добавить, что я собираю информацию по используемым в сварочных инверторах компонентам и результаты поисков свожу в таблицу с краткими характеристиками. ПОСМОТРЕТЬ МОЖНО ЗДЕСЬ.
Осциллограмма выходного напряжения без нагрузки.
Осциллограмма выходного напряжения инвертора при нагрузке 60 А.
Осциллограмма выходного напряжения инвертора Ресанта при сработанной защите.
Небольшая подборка принципиальных схем сварочных инверторов РЕСАНТА сложены в АРХИВ. Кроме принципиальных схем сварочных аппаратов приведены несколько пособий по ремонту, несколько фотографий внутренностей инверторов, несколько паспортов.
com/embed/nWV1DUzMZVE» frameborder=»0″ allowfullscreen=»»>
Адрес администрации сайта: [email protected]
Схема сварочного инвертора: принципиальная электрическая схема аппарата
Схема и схема значительно отличаются друг от друга. Во втором случае базу ранних агрегатов, чтобы провести сварочные работы, составляют трансформаторы с понижающим типом, что придает им габаритность и тяжесть.
На сегодняшний день современное оборудование, за счет частой эксплуатации во время производства, стало легким, компактным, с широким спектром возможностей и особенностей.
Главный элемент в электросхеме сварочных инверторов заключается в импульсивном преобразователе, благодаря которому вырабатывается высокочастотный ток.
Содержание
- Классификация инверторов
- Схема инвертора для сварки
- Принцип работы схемы аппарата для сварки
- Достоинства и недостатки сварочных аппаратов инверторного типа
- Итог
Классификация инверторов
Каждый отдельный тип сварочных работ подразумевает использование определенного инверторного оборудования, которое необходимо ещё правильно выбрать. У каждой модели есть схема с особенностями, отличной характеристикой от других агрегатов и спектром возможностей.
Оборудования от современных производителей одинаково используются предприятиями в производственной сфере, а также любителями бытовой эксплуатации.
Изготовители регулярно изменяют принципиальные электрические схемы для того чтобы усовершенствовать их, наделить новым функционалом и повысить качество их технических характеристик.
Инверторное оборудование является основным устройством, при помощи которого выполняют такие технологические операции:
- электродуговая сварка с использованием плавящего либо неплавящегося электрода;
- плазменная резка;
- работы со сваркой по технологии полуавтоматики либо автоматики.
Помимо перечисленного, инверторное оборудование также считается самым эффективным способом, чтобы сварить алюминиевые детали, элементы из нержавеющей стали и иных материалов со сложной свариваемостью.
Несмотря на индивидуальные особенности каждой модели и каждой электросхемы, в результате инвертор для сваривания делает шов качественным, надежным и аккуратным, вне зависимости от использованного вида технологий.
Стоит также отметить, что он отличается компактностью, легким весом, благодаря чему его можно использовать при любых условиях, отнести в любое место, где проводится сварочный процесс.
Схема инвертора для сварки
Электрическая схема сварочного инвертора
Схема инверторного сварочного агрегата имеет особенную характеристику и функционал, в который входят следующие составляющие:
- Орган управления и индикации.
- Система, отвечающая за работу термической защитной функции и управлением охлаждающим вентилятором.
Сюда также относят вентилятор самого инверторного аппарата и датчик с температурными показателями. - Электрические принципиальные схемы подразумевают под собой наличие ШИМ-контроллера, состоящий из трансформатора с током, датчика с током нагрузки.
- Система питания на детали слаботочного участка электросхемы аппаратного инвертора для сварки.
- В преобразователе схемы может устанавливаться механизм, благодаря которому в силовую систему аппарата поступает электропитание.
Сюда относится емкостный фильтр, выпрямитель, а также нелинейная зарядная цепь. - Силовая часть с однотактным конвертором.
В неё также входят: силовой трансформатор, выпрямитель вторичного типа и дроссель для выхода тока.
В каждом описании принципиальной должна быть краткая характеристика всех составляющих элементов.
Принцип работы схемы аппарата для сварки
Основной целью инверторного сварочного агрегата является создание тока с высокой мощностью, который формируется в электрическую дугу. Та, в свою очередь, плавит кромки свариваемых элементов и присадочный материал.
Все это происходит на большом диапазоне особенностей конструкции. Стоит также отметить и то, что схема сварочного аппарата помогает в ИПС ремонте любого устройства.
Схема инвертора для сварочных работ.
Примерно механизм действия электронной схемы выглядит следующим образом:
- Ток с переменной частотой в 50 гц через обычную электрическую сеть попадает в выпрямитель, в котором преобразовывается ток в постоянный.
- Затем ток происходит обработку для сглаживания за счет использования специализированной системы.
- После фильтра ток оказывается в самом инверторе, который, в свою очередь, должен переформировать его обратно в переменный, однако прибавляя к нему высокую частоту.
- Затем, применяя трансформатор, снижается напряжение в переменном токе с высокими частотами, благодаря чему усиливается его действие.
Чтобы более детально разобраться во всех нюансах принципиальной схемы сварочного инвертора, необходимо изучить все элементы по отдельности с их механизмом действия.
Инверторный сварочный аппарат, как и любая другая техника, имеет свои достоинства и недостатки.
Схема сварочного аппарата инверторного типа.
К основным преимуществам этого оборудования, которое так умело заменило обычный трансформатор, можно отнести:
- За счет нового подхода к производству конструкций инверторного типа для сваривания металлов, а также новому контролю за током большинство моделей весит от 5 до 12 килограмм, в отличие от трансформаторов, которые имеют вес в 18-35 килограмм.
- У данных устройств есть достаточно высокий показатель КПД. Это происходит благодаря тому, что аппарат потребляет минимальное количество энергии для нагрева всех систем и механизмов. К примеру, трансформатор для сварки быстро нагревается, что приводит к перегреву и выходу из строя оборудования.
- В некоторых электросхемах трансформатора, также как и в инверторах, сварка может проходить при помощи электродов вне зависимости от его вида.
- Рассматриваемые устройства, за счет повышенного показателя КПД, тратят электроэнергию вдвое меньше, нежели простой трансформатор для сваривания.
- Многие современные оборудования имеют в своей структуре опции, благодаря которым минимизируется процесс совершения ошибок мастера во время технологических работ. К таким опциям можно отнести антизалипание и быстрый розжиг дуги.
- В некоторых устройствах встроена функция программирования, благодаря которой мастер с точностью и максимальной оперативностью регулирует режим работы во время сварочного процесса конкретного вида.
- Наличие высокое универсальности данных конструкций обуславливается регулированием всех систем, используя ток в широком диапазоне. Это дает возможность применять оборудование, что сваривает разнометалловые детали и выполняет процедуру с любой технологией.
У схем также имеются и недостатки.
Они заключаются в следующих аспектах:
- Инверторные оборудования сваривания на рынке стоят достаточно дорого, до 50% больше, чем цена классических трансформаторов для сварочных работ.
- Принципиальная электрическая схема инверторного сварочного аппарата подразумевает, что чаще всего будет ломаться такой механизм, как транзистор.
Он является достаточно уязвимой деталью, что влечет за собой ремонт стоимостью до 60% от стоимости всего оборудования. Из этого можно сделать вывод, что ремонт сам по себе – дорогое удовольствие. - Поскольку принципиальные электросхемы у инверторов, чтобы сваривать материал, являются достаточно сложными, специалисты не советуют их эксплуатировать во время плохой погоды, либо на морозе, чтобы не вывести из строя механизмы и сохранить аппарат на долгий период.
Для сварочных работ в поле либо других открытых пространствах необходимо организовать и соорудить специальное закрытое место с отоплением, где можно будет воспользоваться данным агрегатом для сваривания.
Итог
Для некоторых специалистов схема сварки представляет собой дополнительную подсказку при сборке агрегатов для сваривания металлов, что позволяет быстро выполнить нужную работу. Достаточно важно обладать базовыми познаниями в сфере электротехники.
Доступность схем сварочных инверторов обуславливается их принципиальностью, иными словами любому мастеру для сборки понадобиться либо инструкция, либо чертежи. Стоит обратить внимание, что в принципиальных электрических схемах делается акцент на достижение стабильности высокого уровня у сварочной дуги.
Принцип работы сварочного инвертора: описание, схема и устройство
Традиционные сварочные аппараты с постоянными трансформаторами огромных размеров постепенно уходят в прошлое. Вместо этого теперь у них есть компактные сварочные инверторы. Они просты в использовании, даже новички могут их использовать. Для того чтобы узнать, что это за устройство, необходимо рассмотреть устройство и работу сварочного инвертора.
О конструкции
Устройство отличается от традиционных и более привычных каждому сварщику трансформаторов. В инверторе процессы преобразования рабочего тока происходят иначе. Эти процессы протекают поэтапно с помощью небольшого трансформатора, размер которого чуть больше пачки сигарет. Еще одно отличие – электронная система управления. Это облегчает сварку. Благодаря электронной системе формируются качественные швы. Вот как работает инверторный сварочный аппарат. Отзывы об этом оборудовании в основном положительные. Многие используют его из-за компактности и качества шва.
Общий принцип работы
Первоначально входные токи напряжением 220 вольт с переменной частотой протекают через выпрямитель и затем преобразуются в постоянные. Кроме того, ток сглаживается с помощью фильтра. Часто используется как традиционная схема на основе электролитических конденсаторов. Далее постоянные напряжение и ток проходят через полупроводниковый модулятор, где снова становятся переменными, но с более высокими частотами. В разных моделях этот показатель отличается, но не превышает 100 кГц. Затем ток снова выпрямляется, а напряжение снижается до значения, необходимого для сварки металлов. Принцип работы сварочного инвертора основан на высокочастотных преобразователях. Наличие этих узлов позволяет использовать небольшие трансформаторы, за счет чего в значительной степени уменьшилась масса агрегата. Например, чтобы сделать инверторный сварочный аппарат способным отдавать ток в 160 ампер, трансформатор должен весить не более 250 грамм. Чтобы добиться того же результата с помощью традиционного аппарата, трансформатор должен иметь минимальную массу 18 кг. Это очень неудобно.
Блок управления — главное достоинство инверторных сварочных аппаратов
Электроника играет очень важную роль в работе данного оборудования. Благодаря ему обеспечивается обратная связь. Это помогает полностью контролировать электрическую дугу, при необходимости регулировать или поддерживать ее параметры на нужном уровне. Малейшее отклонение характеристик дуги мгновенно считывается микропроцессором. Такой принцип работы инвертора сварочного аппарата и наличие электронного блока управления гарантируют получение электрической дуги с максимально стабильными характеристиками. Это в итоге повышает качество сварочных работ.
Схема принципиальная
В выпрямителе переменный ток частотой 50 Гц и напряжением 220 вольт проходит через мощный диодный мост. Пульсации тока с переменной частотой сглаживаются наличием в цепи электролитических конденсаторов. В процессе эксплуатации диодный мост подвержен перегреву, поэтому на диоды устанавливаются радиаторы. Кроме того, инвертор оснащен тепловым предохранителем. Работает, если диоды нагреты до 90 градусов. Термопредохранитель надежно защищает диоды. Возле диодного моста можно увидеть достаточно большие конденсаторы. Их емкость может составлять от 140 до 800 мкФ. Также в схеме обязательно присутствуют фильтры, не допускающие никаких помех при работе. Мы рассмотрели принцип сварки сварочного инвертора. Схема подразумевает и другие элементы. Рассмотрим их ниже.
Инвертор: что это такое
Непосредственно сам инвертор построен на двух швабрах. Это мощные транзисторы. Они имеют свойство сильно нагреваться, поэтому оснащены радиатором. Такие полупроводниковые элементы решают проблему коммутации токов, проходящих через импульсный трансформатор. Рабочие частоты здесь могут превышать несколько тысяч кГц. В результате генерируется ток высокой переменной частоты. Транзисторы должны быть устойчивы к перепадам напряжения. Производители оснащают устройства специальными защитными схемами. Часто их собирают по схеме на резисторах и конденсаторах. Далее в корпус идет вторичная обмотка на понижающем трансформаторе. Имеет небольшие напряжения — до 70 вольт. А вот ток может быть 130-140 Ампер.
Выходной выпрямитель
Для обеспечения постоянного тока и напряжения на выходе используются надежные выходные выпрямители. Эта схема собрана на основе двойных диодов, которые имеют общий катод. Эти элементы отличаются высокой скоростью работы, они моментально открываются и быстро закрываются. Время реакции таких диодов составляет около 50 наносекунд. Эта скорость очень важна. Диодам приходится работать с токами высокой частоты, обычные полупроводниковые элементы с такой задачей не справляются. Им просто не хватало скорости при переключении. В случае ремонта, даже зная устройство сварочного инвертора, принцип работы, эти диоды рекомендуется менять на элементы с такими же характеристиками.
Устройство и работа электронной системы
Питается от стабилизаторов напряжения на 15 вольт. Эти элементы устанавливаются на радиаторы. Напряжение питания для платы поступает от основного выпрямителя. При подаче напряжения сначала заряжаются конденсаторы. Напряжение в этот момент нарастает. Для защиты диодной сборки используется ограничительная цепь с мощным резистором. Когда конденсаторы полностью зарядятся, сварочный аппарат начнет свою работу. Контакты реле замыкаются, и резистор уже не будет участвовать в процессе.
Дополнительные узлы и системы
Устройство и принцип работы сварочного инвертора предполагает наличие других систем и узлов, обеспечивающих столь высокую производительность устройства. Итак, можно выделить систему управления, а также драйвера. Основным элементом здесь является микросхема ШИМ-контроллера. Он обеспечивает управление действием мощных транзисторов. Также в устройстве имеются различные схемы управления, а также регулировочные цепи. При этом основным элементом является трансформатор. Он нужен для контроля мощности и других характеристик тока после выходного трансформатора. Принцип работы сварочного инвертора также подразумевает наличие системы контроля напряжения и характеристик токов на выходе в питающей сети. Этот блок состоит из операционного усилителя на базе микросхемы. Основное назначение системы – запуск режима аварийной защиты в случае острой необходимости. Он также предназначен для контроля за работой и исправностью электронного блока.
СВАРОЧНЫЕ АППАРАТЫ ДЛЯ ВИГ СВАРКИ
Сварка металлов в среде инертных газов на сегодняшний день является одним из самых популярных способов ручной сварки. Работа с применением аргона обеспечивает высокое качество швов за счет полной изоляции ванны. При этом можно работать с любыми металлами, даже с алюминием, магнием, титаном и их сплавами. Принцип работы сварочного инвертора с аргоном ничем не отличается от обычного инвертора. Основное отличие состоит в том, что в процессе используется не только источник сварочного тока, но и специальная горелка. Сварка TIG предполагает постоянный нагрев рабочей зоны с помощью электрической дуги, которая создается с помощью тугоплавкого вольфрамового электрода. Многим интересно узнать, как работает инверторный сварочный аппарат такого типа. Давай выясним.
Конструкция аппарата для сварки ВИГ
Устройство для аргонно-дуговой сварки представляет собой источник тока и специальную горелку. Первый нужен для генерации электрической дуги, а также для поддержания ее величины в нормальных параметрах. Огромное количество металлов и сплавов, с которыми можно работать таким образом, подразумевает множество корректировок. Сегодня для этой цели используются полупроводниковые инверторные блоки. Это сварочный инвертор TIG. Принцип работы не отличается от обычного инвертора, но выход у такого устройства комбинированный. Постоянный ток применяют для работы с нержавеющими сталями, медными сплавами. Переменная также подходит для магния, алюминия и других подобных сплавов. Режим работы, когда применяются прерывистые токи, применяется для сварки тонких деталей. Также в конструкции присутствует горелка. Что это? Это специальное устройство, в которое вмонтирован вольфрамовый электрод. Он имеет сопло, через которое подается аргон. В отличие от традиционных сварочных полуавтоматов, подача газа в сварочную горелку TIG начинается до зажигания дуги. Это позволяет избежать выгорания металлов.
Заключение
Доступная стоимость такого оборудования позволяет всерьез задуматься о приобретении такого агрегата для домашнего хозяйства. Если научиться уверенно пользоваться таким устройством, можно даже заработать. Сегодня аргонная сварка пользуется большим спросом. Вы можете купить недорого отечественный сварочный инвертор ТИГ-180 с. Принцип работы данного аппарата позволяет использовать его в ручном режиме сварки. Это универсальное решение. Стоимость его от 13 до 15 тысяч рублей. Самые дешевые китайские модели можно приобрести по цене от 6 тысяч рублей. Профессиональные устройства стоят около 50 тысяч рублей.
какой лучше использовать дома? • Good Welders
Сварочные аппараты – это инструменты, пользующиеся большой популярностью среди домашних мастеров, поскольку их использование позволяет выполнять большой объем работ как в процессе строительства дома, так и просто в быту. Изготовление калитки, металлической лебедки, ограждение садового участка и другие работы требуют электросварки. Каждый раз обращаться за помощью к специалистам дорого и неудобно, поэтому желательно купить сварочный аппарат для домашнего использования и разобраться в принципе его работы.
Содержание
- Основные типы сварочных аппаратов
- Особенности подбора понижающих сварочных трансформаторов
- На что следует обратить внимание при выборе сварочного выпрямителя?
- Как выбрать лучший сварочный инвертор?
- Заключение
Основные виды сварочных аппаратов
Разбираясь, какая модель сварочного аппарата для дома лучше, нужно понимать, в каком режиме будет происходить сварка, что является основанием для выбора подходящее устройство. Но независимо от режимов работы все электросварочные аппараты делятся на три типа:
- Сварочный трансформатор понижающего типа, осуществляющий сварку переменным током. В таких устройствах параметры сварочных токов изменяются путем регулировки магнитного зазора. Эти устройства обладают высокой надежностью и успешно применяются в режиме сварки ММААС для соединения углеродистых марок стали, не требующих качественного сварного шва.
- Выпрямитель сварочный — аппарат, работающий в режимах ММАПТ, т.е. на постоянном токе. Такие агрегаты подходят для сварки как углеродистой, так и нержавеющей стали, а также некоторых алюминиевых сплавов. В таком сварочном аппарате сварной шов получается достаточно качественным.
- Инверторы для дома работают практически во всех существующих режимах. Они являются универсальными агрегатами и используются для сварки всех видов металла током высокой частоты.
- Инверторные устройства завоевали большую популярность среди любителей, не занимающихся постоянными сварочными работами. Несмотря на то, что стоимость таких устройств достаточно высока, она полностью окупается за счет универсальности устройства. Естественно, в целях экономии лучше отдать предпочтение трансформаторным агрегатам.
Особенности подбора понижающих сварочных трансформаторов
Выбирая хороший сварочный аппарат для дома, работающий на базе понижающего трансформатора, следует обратить внимание на показатели рабочего напряжения. Некоторые модели работают от стандартной сети 110 В, а другие подключаются к сети переменного тока 220 В. Комбинированные блоки, которые можно подключить к любой стандартной электросети переменного тока, более универсальны.
Мощность сварочных трансформаторов также играет важную роль в качестве сварки металла. Электросварка, работающая от сети 220 В, имеет более высокую мощность и не вызывает сильных колебаний напряжения в общей электросети, но не каждый дом подключен к такому источнику питания. Поэтому использование такой электросварки в домашних условиях не всегда возможно. При этом важно, чтобы мощность сварочного агрегата не превышала показателей общей электросети.
Выбирая хороший электросварщик для дома, важно учитывать диапазон рабочего тока и размер электродов, которые будут использоваться. Для сварки углеродистых сталей достаточно, чтобы параметры тока варьировались от 80 до 160 А, при этом применялись электроды сечением от 1,6 до 6 мм в зависимости от толщины металла. Если в процессе использования сварочного аппарата планируется его частое перемещение, большую роль играет вес и размер аппарата. В первую очередь – это связано с тем, что большинство этих агрегатов имеют большой вес и лучше, чтобы они были оснащены колесами.
На что следует обратить внимание при выборе сварочного выпрямителя?
Принцип работы сварочного выпрямителя основан на использовании импульсного выпрямленного тока, что позволяет повысить стабильность дуги и значительно уменьшить количество брызг металла. Также благодаря работе на постоянном токе значительно снижается расход электродов. Благодаря таким особенностям шов при сварке получается достаточно ровным и тонким, что очень полезно с эстетической точки зрения.
Выпрямители сварочные могут работать как от переменного тока напряжением 220 В, так и от стандартной однофазной электросети. Поэтому подключение выпрямителя должно быть по однофазному или трехфазному мостовому принципу. Трехфазная схема подключения позволяет добиться большей стабильности дуги и высоких показателей мощности. Также выбирая лучший сварочный аппарат для дома, важно учитывать диапазон сварочного тока, возможность изменения различных режимов и максимальную толщину используемых электродов. Большинство сварочных выпрямителей имеют ступенчатое регулирование основных параметров.
Как выбрать лучший сварочный инвертор?
Инверторы – универсальные устройства с широким набором режимов, поэтому пользуются популярностью как у домашних мастеров, так и у профессиональных сварщиков. Естественно, стоимость таких агрегатов выше, чем у их аналогов, но их габариты, вес и показатели энергопотребления позволяют использовать такие устройства в самых нестандартных условиях.
Основным критерием, на котором должен базироваться выбор инверторного электросварщика, является параметр напряжения питающих сетей. В этом случае, как и в других ситуациях, трехфазные приборы имеют наибольшую мощность, от которой зависит срок службы устройства. При одинаковой нагрузке более мощное устройство работает намного дольше.
Еще одним важным критерием выбора хорошего инверторного сварочного аппарата является наличие различных режимов и диапазона тока. Выбор должен основываться на параметрах толщины свариваемого металла. Инверторы, используемые в домашних условиях, обычно имеют диапазон тока от 60 до 160 А. Также при выборе инвертора следует обратить внимание на изучение продолжительности работы агрегата в непрерывном режиме при максимальном значении тока. Если это значение высокое, агрегат может работать достаточно долго без перегрева.
Исходя из практики, значение продолжительности непрерывной работы сварочного инвертора зависит от частоты смены электродов и технологических пауз на подготовку деталей. Проще говоря, если производителем заявлена продолжительность 80%, то непрерывный режим сварки составит 4 минуты, а пауза для замены электрода не менее 1 минуты. В реальности таких пауз намного больше, но никакой электросварке дополнительный запас хода пока не помешал. Не стоит забывать и о дополнительных функциях инвертора, популярными из которых считаются следующие возможности:
- функция горячего старта, предполагающая резкое увеличение параметров тока на первом этапе сварки для облегчения образования дуги;
- Антиприлипание – полезная функция, снижающая параметры тока при залипании электродов, позволяя им отрываться от металла;
- Дожигатель дуги – опция, используемая для улучшения качества вертикального шва.
Эти функции реализованы практически во всех классических инверторах. Все инверторные агрегаты комплектуются двумя проводами с зажимами на концах и электрододержателем для электродов, а также клеммными элементами для подключения к сварочному агрегату.