Содержание
Как подключить двигатель 380 на 220 без конденсаторов
Главная » Разное » Как подключить двигатель 380 на 220 без конденсаторов
Пуск трёхфазного двигателя без конденсаторов: 4 схемы
Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.
Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.
Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.
Содержание статьи
С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.
Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.
Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.
Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.
Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов
Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.
Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.
Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.
Три обмотки статора необходимо подключать по схеме треугольника.
Их выводы собираются на клеммной колодке тремя последовательными перемычками.
Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.
Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».
Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.
Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.
Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.
Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.
Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».
Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.
Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.
Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.
Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.
При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.
Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе
Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.
Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.
За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.
Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.
Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).
Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.
Максимальное введение сопротивления резистора R7 закрывает электронный ключ.
Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.
Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.
Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.
Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.
Электронный блок ключа работает под напряжением сети 220 вольт. Его детали должны быть надежно заизолированы и защищены от случайного прикосновения человеком. Меры безопасности от поражения электрическим током необходимо соблюдать.
2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия
Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.
Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…
Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.
Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.
Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик
Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.
Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.
При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.
Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.
Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.
Рекомендации автора по сборке и наладке
Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.
На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.
При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.
Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.
Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами
Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.
На картинке ниже их полярность показана точками.
В этой ситуации создается больший крутящий момент для запуска ротора.
Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.
Рекомендации автора по наладке и работе не изменились.
Преимущества схемы тиристорного преобразователя: автор В Соломыков
Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.
Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.
Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.
Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.
Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:
- DD1 — К176ЛЕ5;
- DD2 — К176 ИР2.
Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.
Логическая часть
Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.
Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.
Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.
Таблица данных К176ИР2 и состояний регистров
Число разрядов | 4х2 | Входы | Выход | |||
Сторона сдвига | Направо | C | D | R | Q0 | Qn |
Тип ввода | Последовательно | ∫ | H | Н | H | Qn-1 |
Тип вывода | Параллельно | ∫ | B | H | B | Qn-1 |
Тактовая частота | 2,5MHz | ∫ | X | H | Q1 | Qn не меняется |
Рабочая температура | -45÷+85 | X | X | B | H | H |
Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.
Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.
Силовая часть схемы, принципы ее управления и наладки
При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.
При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.
В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.
Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.
Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.
Емкость конденсаторов предварительно рассчитывают по формуле:
С = 0.01P (Вт) / n ∙ 1 / 30n (мкФ).
При номинальной частоте вращения ротора выставляют n=1.
Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.
Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.
Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.
Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.
Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.
Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.
Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.
Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.
Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.
Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.
Как подключить электродвигатель от 380 до 220: цепи
Существуют ситуации, когда оборудование рассчитано на 380 вольт, вам необходимо подключиться к домашней сети на 220 В. Поскольку двигатель не запускается, вам необходимо изменить в нем некоторые детали. Это легко сделать самостоятельно. Хотя эффективность несколько снижается, такой подход оправдан.
Трехфазные и однофазные двигатели
Чтобы понять, как подключить электродвигатель от 380 до 220 вольт, мы выясним, что такое 380-вольтный источник питания.
Трехфазные двигатели имеют много преимуществ по сравнению с бытовыми однофазными. Поэтому их использование в промышленности обширно. И дело не только в мощности, но и в коэффициенте полезного действия. Они также включают пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. Например, защитное реле запуска холодильника отслеживает, сколько обмоток обрезано. И в трехфазном двигателе этот элемент больше не нужен.
Это достигается тремя фазами, во время которых электромагнитное поле вращается внутри статора.
Почему 380 В?
Когда поле внутри статора вращается, ротор также перемещается. Обороты не совпадают с пятьдесят герц сети из-за того, что больше обмоток, число полюсов отлично, и по разным причинам происходит проскальзывание. Эти индикаторы используются для регулирования вращения вала двигателя.
Все три фазы имеют значение 220 В. Однако разница между любыми двумя из них в любое время будет отличаться от 220. Таким образом, получится 380 Вольт.То есть двигатель использует 220 В для работы с фазовым сдвигом в сто двадцать градусов.
Следовательно, как напрямую подключить электродвигатель 380 к 220В невозможно, нужно использовать хитрости. Конденсатор считается самым простым способом. Когда контейнер проходит фазу, последний изменяется на девяносто градусов. Хотя он не достигает ста двадцати, этого достаточно для запуска и эксплуатации трехфазного двигателя.
Как подключить электродвигатель от 380 В к 220 В
Чтобы понять задачу, необходимо понять, как устроены намотки.Обычно корпус защищен кожухом, а под ним расположена проводка. Убрав его, нужно изучить содержимое. Часто схему подключения можно найти здесь. Для подключения электродвигателя к сети 380-220 используется коммутация в форме звезды. Концы обмоток находятся в общей точке, называемой нейтральной. Фазы подаются на противоположную сторону.
«Звезда» должна быть изменена. Для этого обмотка двигателя должна быть соединена в другую форму — в форме треугольника, совмещая их на концах друг с другом.
Как подключить электродвигатель от 380 до 220: цепи
Диаграмма может выглядеть следующим образом:
- Напряжение сети подается на третью обмотку;
- , тогда первое напряжение обмотки будет проходить через конденсатор с фазовым сдвигом в девяносто градусов;
- вторая обмотка будет зависеть от разности напряжений.
,
Понятно, что фазовый сдвиг составит девяносто и сорок пять градусов. Из-за этого вращение не является равномерным.Кроме того, форма фазы на второй обмотке не будет синусоидальной. Поэтому после подключения трехфазного электродвигателя к 220 вольт это будет возможно, это невозможно реализовать без потери мощности. Иногда вал даже залипает и перестает вращаться.
Работоспособность
После набора оборотов, пусковая мощность больше не будет необходима, так как сопротивление движению станет незначительным. Чтобы уменьшить емкость, она сокращается до сопротивления, через которое ток больше не проходит.Для правильного выбора рабочей и пусковой емкости необходимо сначала принять во внимание, что напряжение на рабочем конденсаторе должно существенно перекрывать 220 вольт. Как минимум должно быть 400 В. Также необходимо обратить внимание на провода, чтобы токи были рассчитаны на однофазную сеть.
Если рабочая емкость слишком низкая, вал заклинивает, поэтому для него используется начальное ускорение.
Работоспособность также зависит от следующих факторов:
- Чем мощнее двигатель, тем больше номинальная емкость. Если значение составляет 250 Вт, то достаточно нескольких десятков мкФ. Однако если мощность выше, то номинальное значение можно считать сотнями. Конденсаторы лучше покупать пленочные, потому что электрические придется дополнительно комплектовать (они рассчитаны на постоянный, не переменный ток и без переделки могут взорваться).
- Чем выше частота вращения двигателя, тем выше рейтинг. Если вы возьмете двигатель при 3000 об / мин и мощности 2,2 кВт, то для батареи потребуется от 200 до 250 мкФ.И это огромная ценность.
Эта мощность также зависит от нагрузки.
Заключительный этап
Известно, что электродвигатель 380 В при 220 В будет работать лучше, если напряжения получаются с равными значениями. Для этого не следует прикасаться к обмотке, соединяющей сеть, но потенциал измеряется на обеих других.
Асинхронный двигатель имеет собственное реактивное сопротивление. Необходимо определить минимум, при котором он начинает вращаться.После этого номинал постепенно увеличивается, пока все обмотки не выровняются.
Но когда двигатель раскручивается, может оказаться, что равенство нарушено. Это связано с уменьшением сопротивления. Поэтому перед подключением двигателя от 380 до 220 вольт и его фиксацией необходимо сравнить значения, даже когда устройство работает.
Напряжение может быть выше 220 В. Обратите внимание, чтобы обеспечить стабильную стыковку контактов, и не было потери питания или перегрева. Наилучшее переключение выполняется на специальных клеммах с фиксированными болтами.После подключения электродвигателя от 380 до 220 вольт получилось с необходимыми параметрами, кожух снова надевается на агрегат, а провода пропускаются через боковые стенки через резиновое уплотнение.
Что еще может случиться и как решить проблемы
Часто после сборки обнаруживается, что вал вращается не в том направлении, в котором это необходимо. Направление должно быть изменено.
Для этого третья обмотка подключается через конденсатор к резьбовой клемме второй обмотки статора.
Бывает, что из-за длительной работы с током появляется шум двигателя. Однако этот звук совершенно другого типа по сравнению с гулом при неправильном подключении. Это происходит со временем и вибрацией двигателя. Иногда вам даже приходится вращать ротор с силой. Это обычно вызвано износом подшипника, который вызывает слишком большие зазоры и шум. Со временем это может привести к заклиниванию, а позже — к повреждению деталей двигателя.
Лучше не допускать этого, иначе механизм станет непригодным для использования.Подшипники легче заменить новыми. Тогда электродвигатель прослужит еще много лет.
,
Как использовать трехфазный двигатель в однофазном источнике питания
На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал, когда столкнулся с чрезвычайной или критической ситуацией. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?
Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном источнике питания с помощью постоянного конденсатора. Эта маленькая вещь (конденсатор) очень полезна для того, чтобы трехфазный двигатель работал в однофазном источнике питания. поставка.
Согласно нашему последнему обсуждению о трехфазном двигателе, обычно у него есть два (2) соединения с общей обмоткой, соединение STAR или DELTA. В этом посте я объяснил, как подключить конденсатор к трехфазному двигателю, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.
Как установить и подключить конденсатор для трехфазного двигателя с однофазным источником питания?
1) Проводка конденсатора для вращения ВПЕРЕД
-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединении DELTA, как показано на рисунке ниже.
* символ -> Смена клеммы * конденсатора позволяет изменить направление вращения двигателя.
2) Проводка конденсатора для ОБРАТНОГО поворота
— Для ОБРАТНОГО вращения, мы должны установить конденсатор в любые две фазы обмотки в соединении STAR (Y), как показано на рисунке ниже.
* символ -> Смена клеммы * конденсатора позволяет изменить направление вращения двигателя.
Мощность двигателя
Мы должны учитывать мощность двигателя, когда мы преобразовали трехфазный в однофазный источник питания, чтобы соответствовать и соответствовать нашему применению. Но мы не можем получить фактическое значение из-за большого количества аспектов, которые мы должны рассчитать, и это так сложно. Можно оценить приблизительное значение выходной мощности двигателя в процентах (%) ниже: —
Как выбрать подходящий конденсатор?
Это очень важное решение, которое мы должны учитывать размер конденсатора при планировании работы трехфазного двигателя в однофазном источнике питания.Если не сделать правильный выбор, это может повлиять на состояние двигателя и производительность, а также может повредить обмотку двигателя.
Ниже приведено приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS Напряжение сети, чтобы избежать любого повреждения обмотки трехфазного двигателя или его конденсатора. См. Таблицу ниже: —
,
5,5 кВт / 7,5 кВт / 11 кВт 220 В — 380 В VFD Преобразователь с частотным преобразователем для управления скоростью двигателя | |
● Входные и выходные характеристики
Диапазон входного напряжения: 220 В ± 15%
Диапазон входных частот: 47 ~ 63 Гц
Диапазон выходного напряжения: 0 ~ номинальное входное напряжение
Диапазон выходных частот: 0 ~ 650 Гц
● Функции периферийного интерфейса
Программируемый цифровой вход: 4 входа
Программируемый аналоговый вход: AI1: вход 0 ~ 10 В, AI2: 0 ~ + 5 В или вход потенциометра панели
Выход с открытым коллектором: 1 выход
Выход реле: 1 выход
Аналоговый выход: 1 выход, дополнительно 4 ~ 20 мА или 0 ~ 10 В
● Технические характеристики
Управление: векторное управление без PG, управление V / F
Пусковой момент: без векторного управления PG: 0. 5 Гц / 150% (SVC)
Коэффициент скорости: нет управления вектором PG: 1: 100
Точность контроля скорости: векторное управление PG: ± 0,5% от максимальной скорости
Несущая частота: 0.5k ~ 15.0kHz
● Особенности
Режим настройки частоты: цифровая настройка, аналоговая настройка, настройка последовательной связи, многоскоростной режим, настройка PID.
Функция ПИД-управления
Функция многоскоростного управления: 8-скоростное управление
Функция контроля частоты качания
Мгновенное отключение электроэнергии без функции остановки
Функция клавиши REV / JOG: пользовательские многофункциональные сочетания клавиш
Функция автоматической регулировки напряжения: при изменении напряжения сети выходное напряжение может автоматически поддерживаться постоянным
Обеспечивают до 25 видов защиты от сбоев: от перегрузки по току, перенапряжения, пониженного напряжения, перегрева, потери фазы, перегрузки и другой защиты.
● Схема подключения клемм управления
,
Подключение трехфазного двигателя к однофазной сети
Большинство электрооборудования оснащается 3-х фазными двигателями асинхронного типа. При минимальном техническом обслуживании они надежно работают в течение длительного времени. Для нормального функционирования им не требуется совместное использование дорогих и сложных приборов. Эти двигатели нашли широкое применение среди населения, особенно в частном секторе. Однако, большинство домовладений питается от обычной сети на 220 вольт. Поэтому многим хозяевам приходится решать проблему, как выполнить подключение трехфазного двигателя к однофазной сети.
Технически это вполне возможно, достаточно лишь базовых знаний электротехники. Кроме того, нужно знать все о самом двигателе, прежде чем приступать к решению задачи, как подключить 380 вольт к сети на 220.
Содержание
Общие правила
Прежде чем подключить электродвигатель, нужно обязательно уточнить его номинал. Если напряжение превысит расчетное – наступит перегрев обмоток, если оно будет низким – его не хватит для запуска.
Данное значение присутствует в маркировке, чаще всего в двух показателях верхнего и нижнего пределов: 660/380, 380/220 и 220/127 вольт.
Номинал должен совпадать со схемой, по которой выполнено соединение обмоток. Подключение «звезда» объединяет их концы в одной точке, а фазы соединяются с выводами катушек. Здесь используется больший номинал напряжения, отмеченный в маркировке. По схеме «треугольник» выполняется последовательное соединение концов между собой. Образуется полностью замкнутый контур. В данном случае уже используется меньшее значение напряжения. Подключение агрегатов выполняется разными способами, в том числе и смешанным.
Решая, как подключить трехфазный двигатель на 220 вольт, следует помнить, что его нельзя просто взять и подключить к обычной сети. Вал не будет вращаться поскольку отсутствует переменное поле, поочередно воздействующее на ротор. Проблема разрешается путем смещения тока и напряжения в обмотках фаз. Для получения желаемого результата, выполняется подключение двигателя через конденсатор, из-за которого напряжение начинает отставать до минус 90 градусов.
В любом случае полноценно сместить напряжение и сделать 380 вольт из 220 не удастся, поэтому его КПД составит от 30 до 50% в зависимости от схемы подключения обмоток.
В таких режимах двигатель включается только под нагрузкой, а периоды холостого хода сокращаются до минимума. Несоблюдение правил приведет агрегат к выходу из строя.
Как устроен трехфазный асинхронный двигатель
В свою конструкцию электродвигатель на 380 вольт включает короткозамкнутый ротор. В этом случае какие-либо электрические контакты между статором и ротором полностью исключаются. Они не требую щеток и коллекторов, которые в обычных двигателях изнашиваются с высокой интенсивностью. Этим деталям нужны регулярное техническое обслуживание и периодическая замена.
Все детали устройства собраны в литом корпусе (7). Основные элементы состоят из неподвижного статора и подвижного ротора. Основой статора служит сердечник (3). Для его изготовления применяется высококачественная электротехническая сталь, в состав которой входят железо и кремний. Именно они придают материалу необходимые магнитные свойства.
Листовая конструкция статора позволяет избежать появления вихревых токов Фуко, создаваемых переменным магнитным полем. Дополнительную изоляцию листов создает специальный лак, нанесенный с обеих сторон. Таким образом, проводимость в сердечнике полностью исключается, остаются лишь его магнитные свойства.
В пазы сердечника укладываются три медные обмотки (2), с проводниками, защищенными эмалью. Между собой они расположены под углами 120 градусов. Концы обмоток выводятся и размещаются в клеммной коробке, расположенной внизу двигателя.
Ротор закрепляется на валу (1) и свободно вращается внутри статора. Между ними остается минимальный зазор – от 0,5 до 3 мм, чтобы повысить КПД. В сердечнике ротора (5) также использована электротехническая сталь. Однако в его пазах установлены не обмотки, а короткозамкнутые проводники, расположенные в виде беличьего колеса. Поэтому данный элемент именно так и называется.
В состав беличьего колеса входят продольные проводники, имеющие электрическую и механическую связь с кольцами, расположенными в торцах конструкции. В мощных двигателях все элементы изготавливаются из меди.
Способы и схемы подключения
При необходимости, подключение трехфазного двигателя в однофазную сеть может выполняться разными способами. При этом, нужно учитывать характеристики и особенности самого агрегата, тип нагрузки, ожидаемый результат и другие факторы. Основным способом считается подключение электродвигателя через конденсатор с точно подобранными параметрами. Однако, при его отсутствии можно использовать другие рабочие схемы, чтобы из 220 вольт условно создать 380.
Без конденсаторов
Схема подключения трехфазного электродвигателя к 220 В может обойтись и без емкостных элементов. Вместо них следует воспользоваться полупроводниковыми – транзисторными или динисторными ключами. Излишние потери мощности сокращаются до минимума. Конденсатор, используемый в схеме, обеспечивает работу пускового устройства, а не запуск самого двигателя.
Одна из таких схем – «треугольник» (рис. 1) – используется для запуска маломощных агрегатов с низкими оборотами, до 1500 в минуту. Порядок ее работы будет следующий:
- На ввод подается напряжение и проводники соединяются с двумя точками двигателя.
- Третья точка подключается к цепочке R-C, задающей время открытия ключа.
- Бегунок сопротивлений R1 и R2 перемещается, выполняя тем самым, регулировку интервала сдвига.
- После полной зарядки конденсатора сигнал с динистора VS1 открывает симистор VS
Более мощные агрегаты с высокими оборотами до 3000 в минуту используют такое же пусковое устройство, но подключаются по схеме «звезда» (рис. 2).
Данные схемы подключения трехфазного двигателя на 220 хотя и считаются рабочими, на практике почти не используются. Основными причинами являются значительные потери мощности агрегата и необходимость точных настроек транзисторного ключа. Более надежными вариантами считаются подключения на 220в через конденсатор или с помощью частотного преобразователя.
С конденсаторами
Наибольшее распространение в домашних условиях получила схема подключения двигателя через конденсатор. Запуск осуществляется с помощью двух элементов – пускового и рабочего. Пусковой конденсатор необходим лишь на короткое время, увеличивая за счет дополнительной емкости сдвиг напряжения в нужной обмотке. В результате, создается нужное усилие, обеспечивающее пуск асинхронного двигателя.
На рисунке представлены схемы подключения звезда и треугольник. В обоих случаях, независимо от схемы, подача напряжения от 220 вольт для пуска осуществляется через точки подключения L и N. К ним подключаются две обмотки, а третья тоже соединяется с однофазной линией через кнопочные переключатели SA1 и SA2. С их помощью выполняется коммутация конденсаторов С1 и С2, включенных параллельно.
На практике схема запуска от однофазной сети работает следующим образом:
- Нажатая кнопка ПУСК приводит в движение две пары контактов SA1 и SA Далее в обмотках начинается течение тока.
- Отпущенная пусковая кнопка оставляет контакт SA2 в замкнутом положении. От него фаза со смещением подается через конденсатор С1. Одновременно происходит размыкание контакта SA1, отключающего пусковой конденсатор С2.
- Пусковой ток возвращается к номинальному значению, и работа двигателя продолжается в обычном режиме.
Однако, такая схема подключения электродвигателя обеспечивает лишь одностороннее вращение ротора. Для того чтобы вал начал вращаться в другую сторону, потребуется изменение точек подключения или использование функции реверса.
Используя пускатель
Если изначально известно, что агрегат обладает значительными нагрузками – пусковой и рабочей – рекомендуется подключить электродвигатель с 380 на 220 вольт с использованием контактора или магнитного пускателя.
Использование пусковых устройств повышает надежность коммутации, а в ходе эксплуатации защищает устройство от возможных аварий.
Включение производится простым нажатием пусковой кнопки. В результате, наступает замыкание цепи, управляющей катушкой пускового устройства. Напряжение поступает к пусковому конденсатору Спуск.
Ток, протекающий по катушке К1, вызывает замыкание контактов К1.1 и К1.2. Контакты К1.1 замыкают линию, питающую двигатель, а контакты 1.2 осуществляют шунтирование пусковой кнопки, возвращая ее в отключенное положение. После этого, цепь, питающая пусковой конденсатор, оказывается разомкнутой. С помощью этого устройства очень просто сделать из 220 вольт 380, превратив трехфазное устройство в однофазный агрегат.
С реверсом
Наличие функции реверса имеет большое значение при подключении трехфазного двигателя, когда приходится создавать 380 вольт из 220. За счет прямого и обратного вращения вала возможности агрегата значительно увеличиваются. Для решения этой задачи существуют специальные схемы, последовательно выполняющие чередующиеся изменения напряжения на обмотках. Благодаря им, проблема, как сделать реверс, решается довольно легко и не представляет особых сложностей.
Простейший эффективный реверс осуществляется посредством коммутатора, в котором установлены две пары контактов противоположного действия. Стандартная кнопка заменяется тумблером или поворотным выключателем. Для создания рабочей схемы реверсивного подключения асинхронного двигателя потребуются магнитные пускатели КМ1 и КМ2, а также трехкнопочная станция с двумя контактами нормально разомкнутыми и одним нормально замкнутым.
Последовательность работы реверсивной схемы:
- Вначале включаются автоматические предохранители силовой линии и управляющей цепи. Ток подается к трехкнопочному выключателю и магнитным пускателям, клеммы которых разомкнуты в исходном положении.
- После нажатия кнопки ВПЕРЕД ток поступает к катушке электромагнита 1-го контактора. Он выполняет притяжение якоря, где расположены силовые контакты. Одновременно, цепь управления 2-го контактора обрывается, и кнопка РЕВЕРС оказывается отключенной.
- Вращение вала начинается в основном направлении.
- Нажатая кнопка СТОП прерывает подачу тока в цепь управляющей обмотки. Электромагнит уже не удерживает якорь. Он отпускается и вызывает размыкание силовых контактов. Одновременно происходит замыкание контакта, блокирующего кнопку РЕВЕРС, и она готова к работе.
- После нажатия на РЕВЕРС начнутся те же самые процессы, но уже в цепи 2-го контактора. Вращение вала будет противоположным от основного направления.
Звезда треугольник
Прежде чем рассматривать, как подключить электродвигатель 380 на 220 данным способом, следует еще раз вспомнить его конструкцию. Основными элементами являются статор с тремя обмотками и ротор. После подачи напряжения вокруг обмоток создается поле, воздействующее на ротор и вызывающее вращение.
Обмотки статора в условиях конденсаторного подключения соединяются разными способами:
- Схема «звезда». Концы обмоток сходятся вместе в одной точке. У специалистов она известна как ноль или нейтраль. Подача трехфазного напряжения осуществляется к началу обмоток, в точки a, b, c.
- Схема «треугольник». Концы обмоток соединяются между собой последовательно. Напряжение поступает к местам соединения – точкам a, b, c.
Думая, как подключить электродвигатель 380 на 220 В, многие не до конца понимают, какая схема лучше. Каждая из них имеет свои особенности. Подключение треугольником способствует более мягкому пуску и требует меньших пусковых токов. Однако, в дальнейшем, агрегат не может развить расчетной мощности. «Звезда», наоборот, развивает мощность до паспортной, но в момент пуска токи очень высокие, требующие специальных мер по предотвращению негативных последствий. Кроме того, каждая схема требует разного питающего напряжения.
Оптимизировать запуск и дальнейшую работу после подключения электродвигателя на 220в позволила схема «звезда-треугольник», соединившая в себе оба варианта.
Для такой схемы потребовалось дополнительное оборудование:
- Защитный автомат Q1, имеющий встроенную тепловую защиту.
- Контакторы (К1, К2, К3), оборудованные дополнительными контактами.
- Реле времени КТ4.
- Предохранитель F1.
- Кнопка СТОП S1.
- Кнопка ПУСК S2.
- Трехфазный электромотор М1.
Данная схема работает в следующем порядке:
- Нажатием кнопки S2 обеспечивается поступление тока на катушку К1. Происходит замыкание силовых и нормально разомкнутого контакта. Последний вводит в действие самоподхват кнопки ПУСК. Одновременно ток подается на катушку реле времени. Далее, после замыкания контактора К3, двигатель запускается по схеме «звезда».
- Через определенное время контакт реле времени размыкается, и катушка К3 становится обесточенной. Второй контакт К4 через установленное время замыкается, перенаправив питание в катушку К2. После этого, трехфазный двигатель в однофазной сети будет работать по схеме «треугольник».
Вторые контакты на К2 и К3 обеспечивают электрическую блокировку – предотвращают одновременное включение контакторов К2 и К3. Эту защиту рекомендуется продублировать механической блокировкой, не указанной на рисунке.
Трехфазный асинхронный двигатель — на что обратить внимание до его подключения
Новые агрегаты стоят довольно дорого, поэтому многие предпочитают покупать их с рук, после того, как они побывали в эксплуатации. Чаще всего, документы отсутствуют, поэтому, перед тем как подключить электродвигатель с 380 В на 1 фазу, нужно проверить его состояние. Такая проверка поможет избежать дальнейших проблем, сократит время наладочных работ, предотвратит возможные аварии и травматизм.
Механическое состояние статора и ротора, что может мешать работе двигателя
В состав неподвижного статора входят три компонента: основной корпус и две боковые крышки, соединенные между собой шпильками. До того, как подключить асинхронный двигатель, следует проверить зазоры между деталями и затяжку гаек на шпильках.
Все детали статора должны как можно плотнее прилегать друг к другу. Внутри него установлены подшипники, в которых вращается вал ротора. Его следует покрутить вручную, проверить, чтобы не было биений в посадочных местах. Проверить наличие посторонних шумов, не задевает ли ротор за статор. Точно так же определяется явное заклинивание, не вызывающее сомнений.
Такую же проверку нужно сделать на холостом ходу после того как двигатель в однофазную сеть уже включен. Чтобы получить максимально полную картину внутреннего состояния, рекомендуется сделать полную разборку статора, выполнить промывку и смазку роторных подшипников.
Электрические характеристики статорных обмоток, как проверять схему сборки
Все показатели и основные значения указываются производителем в табличке, закрепленной на корпусе агрегата. Прежде чем включить двигатель в однофазной сети, нужно проверить, по какой схеме подключены обмотки. Иногда случается, что предыдущий владелец ее изменил, и она не совпадает с табличными данными.
В некоторых случаях отсутствует и сама табличка. В этом случае рекомендуется заглянуть в клеммник, и посмотреть, по какой схеме выполнено подключение движка. В нем сосредоточены шесть концов, подключенные к клеммам так, как изображено на рисунке. Ручное переключение со звезды на треугольник и обратно выполняется путем перестановки перемычек.
Электрические методики проверки схемы и сборки обмоток
Нередко встречаются движки, собранные не по комбинированной схеме, а либо «звездой» или «треугольником». Поэтому в клеммной коробке расположено не 6 концов, а лишь 4 – 3 фазы и 0. Перед тем, как переделать электродвигатель, нужно проверить фактическую схему подключения.
Иногда встречаются экземпляры, у которых отсутствует заводская маркировка, а провода не соединены с клеммами и просто выведены наружу. Поэтому, еще до пуска электродвигателя 380 В нужно прозвонить каждый провод, определить принадлежность и промаркировать. Для этого используется мультиметр или тестер, установленный в положение омметра. Первый щуп устанавливается на любой вывод, а второй – на один из 5-ти концов, что остались. Если прибор покажет короткое замыкание, следовательно, оба конца – от одной обмотки. Остальные выводы проверяются аналогично.
Еще до включения в сеть следует установит где конец и начал каждой обмотки. Эта процедура проводится с использованием вольтметра и батарейки. К любому концу подключается минус этой батарейки, а плюсом следует коснуться другого вывода. В цепи возникает токовый импульс, наводящий ЭДС в двух других обмотках. Наведенное напряжение проверяется вольтметром на предмет полярности. Начало обмотки соответствует положительным показаниям. При замыкании стрелка движется вправо, а после размыкания – в левую сторону. После маркировки рекомендуется провести контрольную проверку – сделать подачу импульса к поочередно к следующим обмоткам.
Другой метод проверки: концы двух произвольных обмоток замыкаются параллельно. Далее, к ним подключаем вольтметр. К оставшейся обмотке подается переменное напряжение. Если прибор показывает соответствие напряжения и наведенной ЭДС, значит у концов одна полярность, и они принадлежат к одной обмотке. При нулевом показании концы меняются, и делается повторный замер.
Перед тем как делать подключение 380 вольт на 220, нужно проверить изоляцию обмоток. С этой целью используется мегаомметр с напряжением на выходе 1000 В. Чтобы получить точный результат, замеры проводятся всем трем обмоткам, а также между корпусом и каждой обмоткой. Если показания более 0,5 Мом – статор считается исправным. Иначе, может потребоваться его ремонт или профилактическая сушка с помощью теплого сухого воздуха. Следует учесть, что данный способ не годится для определения межвитковых замыканий обмоток. Для этого нужен мультиметр в режиме омметра, чтобы проанализировать и сравнить величину активных сопротивлений во всех цепочках.
Как подобрать конденсаторы
Для подключения агрегата с 380В на 220 используются конденсаторы. Данные элементы должны быть только бумажными или пусковыми, с номинальным напряжением, равным или превышающим сетевое напряжение. На практике такое превышение составляет не менее чем в два раза.
Решая задачу, как подключить конденсатор к электродвигателю, следует максимально точно подобрать емкость. В идеале, фактические показатели должны совпадать с расчетными. Известно, что подключение конденсатора с такими параметрами позволит лучше всего оптимизировать сдвиг векторов напряжения и тока относительно друг друга. В результате, улучшится пусковой момент и общие показатели КПД агрегата.
Если же нет возможности найти элемент с расчетной емкостью, то можно использовать несколько таких конденсаторов, соединенных параллельно. В сумме их емкости должны составлять требуемое значение. В этом случае схема с конденсатором представляет собой сборный конденсаторный блок.
Мощность 3х-фазного двигателя, кВт | 0,4 | 0,6 | 0,8 | 1,1 | 1,5 | 2,2 |
Емкость рабочего конденсатора Ср , мкф, min | 40 | 60 | 80 | 100 | 150 | 230 |
Емкость пускового конденсатора (Сп), мкф, min | 80 | 120 | 160 | 200 | 250 | 300 |
Все элементы, которые нужно подключать в группе, должны быть однотипными, с одинаковой частотой и номинальным напряжением. Ориентировочные параметры приведены в таблице. Если же в ней отсутствуют нужные параметры, их можно определить по формулам:
- При подключении 3-х фазных устройств звездой – Сраб = (2800 х I)/U
- При подключении двигателя в сеть 220 В треугольником – Сраб = (4800 х I)/U
Здесь I – является силой тока, проходящего через обмотки, U – напряжением сети. Емкость конденсатора определяется путем умножения полученного результата на два.
Меры безопасности при подключении трехфазного двигателя напоминание
Существую общие правила, требующие соблюдения при решении задачи, как из 220 сделать 380 вольт для асинхронного двигателя на 380 В:
- Все подключения выполняются только с использованием отдельного автоматического выключателя.
- Решать задачу по двигателю 380 вольт, как подключить и опробовать его, должны люди, прошедшие специальное обучение. Всегда помнить о мерах электробезопасности.
- При наладочных работах под напряжением нужно пользоваться разделительным трансформатором.
Использование специального защищенного инструмента позволит не только быстро запустить двигатель, но и полностью обезопасить специалиста.
Видеоинструкция
youtube.com/embed/wYt2upLycko?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>Подключение трехфазного двигателя к однофазной и трехфазной сети
Из всех видов электроприводов наибольшее распространение получили асинхронные двигатели. Они неприхотливы в обслуживании, отсутствует щеточно-коллекторный узел. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит практически вечно. Но есть одна проблема — большинство асинхронных двигателей, которые можно купить на ближайшей барахолке, трехфазные, так как предназначены для использования на производстве. Несмотря на тенденцию перехода на трехфазное электроснабжение в нашей стране, подавляющее большинство домов по-прежнему с однофазным вводом. Поэтому давайте разберемся, как подключить трехфазный двигатель к однофазной и трехфазной сети.
- Что такое звезда и треугольник в электродвигателе
- Подключение к трехфазной сети
- Подключение к однофазной сети
Что такое звезда и треугольник в электродвигателе
Для начала разберемся, какие бывают схемы соединения обмоток. Известно, что односкоростной трехфазный асинхронный электродвигатель имеет три обмотки. Подключаются двумя способами, по схемам:
- звезда;
- треугольник.
Такие способы подключения характерны для любого типа трехфазной нагрузки, а не только для электродвигателей. Вот как они выглядят на схеме:
Питающие провода подключаются к клеммной колодке, которая находится в специальной коробке. Его называют брно или борно. Он выводит провода от обмоток и крепится к клеммникам. Сама коробка снимается с корпуса двигателя, как и расположенные в ней клеммники.
В зависимости от конструкции двигателя брно может иметь 3 провода, а может и 6 проводов. Если проводов 3, то обмотки уже соединены по схеме звезда или треугольник и при необходимости их нельзя быстро переключать, для этого нужно вскрывать корпус, искать соединение, разъединять его и делать изгибы.
Если в Брно 6 проводов, что встречается чаще, то в зависимости от характеристик двигателя и напряжения сети (см. ниже) можно соединить обмотки так, как считаете нужным. Ниже вы видите брно и клеммники, которые в нем установлены. Для 3-х проводного варианта в клеммной колодке будет 3 контакта, а для 6-ти проводного — 6 контактов.
Начало и концы обмоток соединяются со шпильками не просто «абы как» или «как удобно», а в строго определенном порядке, чтобы можно было соединить треугольник и звезду одним комплектом перемычек. То есть начало первой обмотки над концом третьей, начало второй обмотки над концом первой и начало третьей над концом второй.
Таким образом, если установить перемычки на нижние выводы клеммной колодки в линию, получится соединение обмотки звездой, а установив три перемычки вертикально параллельно друг другу — соединение треугольником. На «заводских» двигателях в качестве перемычек используются медные шины, что удобно использовать для подключения – не нужно гнуть провода.
Кстати, на крышках ответвлений электродвигателя часто нанесено расположение перемычек этих цепей.
Подключение к трехфазной сети
Теперь, когда мы разобрались, как соединяются обмотки, давайте разберемся, как они подключаются к сети.
6-проводные двигатели позволяют переключать обмотки для различных напряжений питания. Так получили распространение электродвигатели с питающими напряжениями:
- 380/220;
- 660/380;
- 220/127.
Причем больше напряжение для схемы соединения звезда, а меньше для треугольника.
Дело в том, что не всегда трехфазная сеть имеет привычное напряжение 380В. Например, на кораблях есть сеть с изолированной нейтралью (без нуля) 220В, а в старых советских постройках первой половины прошлого века и сейчас иногда есть сеть 127/220В. Пока сеть с линейным напряжением 660В встречается редко, чаще в производстве.
О различиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: https://my.electricianexp.com/ru/linejnoe-i-faznoe-napryzhenie. html.
Итак, если вам необходимо подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите напряжение питания.
Электродвигатели на шильдике которых указано 380/220 к нашим сетям можно подключать только звездой. Если вместо 380/220 написано 660/380 — соедините обмотки треугольником. Если вам не повезло и у вас старенький двигатель 220/127, то либо понижающий трансформатор, либо однофазный тут нужен преобразователь частоты с трехфазным выходом (3х220). В противном случае подключить его к трем фазам 380/220 не получится.
Наихудший сценарий, когда номинальное напряжение трехпроводного двигателя с неизвестной цепью обмотки. В этом случае нужно вскрывать корпус и искать точку их соединения и, если возможно, и они соединены по схеме треугольника — переделывать в схему звезда.
С подключением обмоток разобрались, теперь поговорим о том, какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками на номинальное напряжение 380В, если у вас катушки на 220В — подключайте их между фазой и нулем, то есть второй провод на ноль, а не на фазу «В».
Электродвигатели почти всегда подключаются через магнитный выключатель (или контактор) Схему подключения без реверса и самоподхвата вы видите ниже. Он работает таким образом, что двигатель будет вращаться только при нажатии кнопки на панели управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты при удержании нажатыми, как те, что используются в клавиатурах, мышах и дверных звонках.
Принцип работы данной схемы: при нажатии кнопки «СТАРТ» через катушку контактора КМ-1 начинает протекать ток, в результате якорь контактора притягивается и силовые контакты контактора КМ-1 закрываются, двигатель начинает работать. Когда вы отпустите кнопку СТАРТ, двигатель остановится. QF-1 представляет собой автоматический выключатель, обесточивающий как силовую цепь, так и цепь управления.
Если вам нужно, чтобы вы нажали на кнопку и вал начал вращаться — вместо кнопки поставьте тумблер или кнопку с защёлкой, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.
Но делают это нечасто. Чаще электродвигатели запускаются с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент — контактная колодка пускателя (или контактора), включенная параллельно кнопке «ПУСК». Такую схему можно использовать для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одну сторону.
Принцип работы схемы:
При включении автоматического выключателя QF-1 на силовых контактах контактора и цепи управления появляется напряжение. Кнопка СТОП нормально замкнута, т.е. ее контакты размыкаются при нажатии на нее. Через «СТОП» подается напряжение на нормально разомкнутую кнопку «СТАРТ», контакт блока, и в конечном счете катушку, поэтому при ее нажатии происходит цепь управления катушкой будет обесточена и контактор выключится.
На практике в кнопочном посте каждая кнопка имеет нормально разомкнутую и нормально замкнутую пару контактов, выводы которых расположены с разных сторон кнопки (см. фото ниже).
При нажатии на кнопку «СТАРТ» через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается как А1 и А2) начинает протекать ток, в результате его якорь притягивается и мощность контакты КМ-1 замкнуты. КМ-1.1 — нормально разомкнутый (НО) блок-контакт контактора, при подаче напряжения на катушку замыкается одновременно с силовыми контактами и шунтирует кнопку «СТАРТ».
После отпускания кнопки «ПУСК» двигатель продолжит работу, так как ток на катушку контактора теперь подается через контакт блока КМ-1.1.
Это называется «самоблокирующийся».
Основная трудность, которая возникает у новичков в понимании этой базовой схемы, заключается в том, что не сразу становится понятно, что кнопочный пост находится в одном месте, а контакторы в другом. При этом КМ-1.1, подключаемый параллельно кнопке «СТАРТ», реально может находиться в пределах десятка метров.
Если Вам необходимо, чтобы вал двигателя вращался в обе стороны, например, на лебедке или другом грузоподъемном механизме, а также на различных станках (токарных и т. п.) — используйте схему подключения трехфазного двигателя с реверсом .
Кстати, эту схему часто называют «схемой обратного стартера».
Реверсивные схемы подключения представляют собой две нереверсивные схемы подключения с некоторыми изменениями. КМ-1.2 и КМ-2.2 — нормально замкнутые (НЗ) блок-контакты контакторов. Они включены в цепь управления катушкой встречного контактора, это так называемая «защита от дурака», она нужна для того, чтобы не произошло межфазного замыкания в силовой цепи.
Между кнопкой «ВПЕРЕД» или «НАЗАД» (назначение их то же, что и в предыдущей схеме для «ПУСК») и катушкой первого контактора (КМ-1) нормально-замкнутый (НЗ) блок-контакт подключен второй контактор (КМ-2). Таким образом, при включении КМ-2 нормально-замкнутый контакт соответственно размыкается и КМ-1 не включится, даже если нажать «ВПЕРЕД».
Наоборот, НК от КМ-2 устанавливается в цепи управления КМ-1, для предотвращения их одновременного включения.
Для запуска двигателя в обратном направлении, то есть для включения второго контактора, необходимо отключить существующий контактор. Для этого необходимо нажать кнопку СТОП, при этом цепь управления двумя контакторами обесточивается, а после этого нажать кнопку пуска в обратном направлении вращения.
Это необходимо для предотвращения короткого замыкания в цепи питания. Обратите внимание на левую часть схемы, отличия в подключении силовых контактов КМ-1 и КМ-2 заключаются в порядке подключения фаз. Как известно, для изменения направления вращения асинхронного двигателя (реверс) нужно поменять местами 2 из 3-х фаз (любых), здесь фазы 1 и 3 перепутаны местами.
В остальном работа схемы аналогична предыдущей.
Кстати, на советских пускателях и контакторах были совмещенные блочные контакты, т.е. один из них был замкнут, а второй разомкнут, в большинстве современных контакторов необходимо сверху установить блочно-контактную приставку, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.
Подключение к однофазной сети
Для подключения трехфазного электродвигателя 380В к однофазной сети 220В чаще всего применяют схему фазосдвигающие конденсаторы (пусковые и рабочие). Без конденсаторов двигатель может запуститься, но только без нагрузки, а его вал при запуске придется раскручивать вручную.
Проблема в том, что для работы АД нужно вращающееся магнитное поле, которое невозможно получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через дроссель, можно сдвинуть фазу напряжения на -90˚, а с помощью конденсатора +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз рассмотрен в статье: https://my.electricianexp.com/ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.
Чаще всего для сдвига фаз используются именно конденсаторы, а не дроссели. Таким образом, он не вращающийся, а эллиптический. В результате вы теряете примерно половину мощности от номинальной. Однофазные АД лучше работают при таком включении, в связи с тем, что их обмотки изначально рассчитаны и расположены на статоре для такого включения.
Типовые схемы подключения двигателей без реверса для схем звезда или треугольник показаны ниже.
Резистор на схеме ниже нужен для разряда конденсаторов, т.к. после отключения питания на его выводах останется напряжение и вас может ударить током.
Емкость конденсатора для подключения трехфазного двигателя к однофазной сети можно выбрать на основании приведенной ниже таблицы. Если вы наблюдаете сложный и затяжной запуск, вам часто требуется увеличить пусковую (а иногда и рабочую) мощность.
Или посчитайте по формулам:
Если двигатель мощный или запускается под нагрузкой (например, в компрессоре), нужно подключить пусковой конденсатор.
Для упрощения включения вместо кнопки «РАЗГОН» использовать «ПНВС». Это кнопка запуска двигателей с пусковым конденсатором. У нее три контакта, к двум из них подключаются фаза и ноль, а через третий — пусковой конденсатор. На передней панели две клавиши – «СТАРТ» и «СТОП» (как на станках АП-50).
При включении двигателя и нажатии первой клавиши до упора замыкаются три контакта, после того как двигатель раскрутился, и отпускаешь «ПУСК», средний контакт размыкается, а два крайних контакта остаются замкнутыми, пусковой конденсатор удаляется из цепи. При нажатии кнопки STOP все контакты размыкаются. Схема подключения практически такая же.
Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:
Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом показана ниже. Переключатель SA1 отвечает за реверс.
Обмотки двигателя 380/220 соединены треугольником, а у двигателей 220/127 звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если вывода всего три, а не шесть, то поменять схемы подключения обмоток без вскрытия не получится. Здесь есть два варианта:
- Номинальное напряжение 3×220В — вам повезло, используйте приведенные выше схемы.
- Номинальное напряжение 3х380В — вам повезло меньше, так как двигатель может плохо запуститься или вообще не запуститься, если вы подключите его к сети 220В, но попробовать стоит, наверняка получится!
А вот при подключении электродвигателя 380В к 1 фазе 220В через конденсаторы возникает одна большая проблема — потеря мощности. Они могут достигать 40-50%.
Основным и эффективным способом подключения без потери мощности является использование частотника. Однофазные преобразователи частоты выдают 3 фазы с линейным напряжением 220В без нуля. Таким образом, можно подключать двигатели до 5 кВт, для большей мощности преобразователи, способные работать с однофазным вводом, просто большая редкость. В этом случае вы не только получите полную мощность двигателя, но и сможете полностью регулировать его скорость и реверс.
Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!
Сопутствующие материалы:
- Подключение магнитного пускателя на 380 и 220В
- Как собрать трехфазный щит
- Как выбрать преобразователь частоты
Подключение трехфазного двигателя 380В к однофазному 220В.
При наличии трехфазного двигателя для подключения к однофазному сектору есть несколько решений.
Это конденсаторная сборка, о которой пойдет речь
Важно:
Подключение трехфазного двигателя к моно с конденсатором снижает его выходную мощность. Мы теряем в среднем 30% полезной мощности и 50% при запуске.
В столовых приборах эта система будет хорошо работать для машин, которые не запускаются под нагрузкой, например барабан или полировальный станок. Не используйте этот узел для двигателей, которые начинают заряжаться или большой мощности в качестве задней стойки или песта.
Все системы с конденсаторами еще прихватки, которые могут работать хорошо, но результат никогда не гарантируется, надо пробовать и тестировать.
Конденсатор можно купить девятку (штуки техники) а так же восстановить на старый двигатель или стиральную машину. Всегда убедитесь, что это конденсатор для 230 В переменного тока (поэтому неполяризованный) и для непрерывной работы двигателя. Конденсаторам в пластиковой оболочке (так называемые «самовосстанавливающиеся») следует отдавать предпочтение конденсаторам, упакованным в алюминий (старое поколение).
Для изменения направления вращения двигателя необходимо перекрестить 2 провода сектора.
Крепление:
Для подключения нашего трехцилиндрового двигателя 380 В к моно 220 В (фаза + нейтраль) мы будем использовать треугольную муфту.
Подключим например: фазу в «u», нейтраль в «v», и нужно будет добавить конденсатор между «v» и «w»
Очень важно!
Конденсатор должен иметь напряжение более 230 В и переменный ток ??~, НИКОГДА не используйте поляризованный конденсатор, иначе он взорвется!
Обычная емкость конденсатора выражается в микрофарадах «мкф»
Чтобы найти его значение, достаточно мощность в л.с. умножить на 50.
Пример: двигатель мощностью 250 Вт (0,25 кВт)
для начала вам нужно преобразовать ватты в лошадиные силы. для этого делим ватты на 736 (1 л.с. = 736 Вт)
В нашем примере 250/736 = 0,34 л.с., наш двигатель 0,34 л.с.
Чтобы найти емкость конденсатора: 0,34 x 50 = 17, значит, для работы двигателя мощностью 0,25 кВт требуется конденсатор емкостью 17 мкФ.
Если емкость конденсатора меньше 17 мкф, двигатель будет работать намного хуже, либо вообще не будет.
Если значение больше 17 мкФ, это вообще не раздражает.
Резюме:
C = 50 x P
C = емкость конденсатора в микрофарадах «мкФ»
P = мощность двигателя в лошадиных силах
*** Помощь: Преобразование ***
Перевод из кВт в Вт :
Вт = кВт x 1000 ——- пример ——- 0,25 кВт x 1000 = 250 Вт
Чтобы преобразовать Вт (ватт) в CV (лошадей):
CH = Вт / 736 ——- пример ——- 250 Вт/736 = 0,34 л.с.
*** Справка: Конденсаторы ***
Если у вас нет конденсатора нужного номинала, вы можете ассоциировать несколько:
Конденсаторы:
Соединение нескольких конденсаторов
— При добавлении дополнительных значений номиналов к ответвлениям параллельно.
Пример: C1=10 мкФ и C2=15 мкФ => C total = 25 мкФ
— При добавлении обратных величин последовательно.
пример: C всего = 1 / ( ( 1 / C1 ) + ( 1 / C2 ))
( 1 / 10 ) = 0,1 ; (1/15)=0,0666666
(1/10) + (1/15)=0,1666666
1 / ( ( 1 / 10 ) + ( 1 / 15 ) ) = 6
C1=10 мкФ и C2=15 мкФ => Ctotal = 6 мкФ
*** Помощник: le Bornier du moteur***
При наличии трехфазного двигателя для подключения к однофазному сектору есть несколько решений.
Это конденсаторная сборка, о которой пойдет речь
Важно:
Подключение трехфазного двигателя к моно с конденсатором снижает его выходную мощность. Мы теряем в среднем 30% полезной мощности и 50% при запуске.
В столовых приборах эта система будет хорошо работать для машин, которые не запускаются под нагрузкой, например барабан или полировальная машина. Не используйте этот узел для двигателей, которые начинают заряжаться или большой мощности в качестве задней стойки или песта.
Все системы с конденсаторами еще прихватки, которые могут работать хорошо, но результат никогда не гарантирован, надо пробовать и тестировать.
Конденсатор можно купить девятку (штуки техники) а так же восстановить на старый двигатель или стиральную машину. Всегда убедитесь, что это конденсатор для 230 В переменного тока (поэтому неполяризованный) и для непрерывной работы двигателя. Конденсаторам в пластиковой оболочке (так называемые «самовосстанавливающиеся») следует отдавать предпочтение конденсаторам, упакованным в алюминий (старое поколение).
Для изменения направления вращения двигателя необходимо перекрестить 2 провода сектора.
Крепление:
Для подключения нашего трехдвигательного двигателя 380 В к моно 220 В (фаза + нейтраль) мы будем использовать треугольную муфту.
Подключим например: фазу в «u», нейтраль в «v», и нужно будет добавить конденсатор между «v» и «w»
Очень важно!
Конденсатор должен иметь напряжение более 230 В и переменный ток ??~, НИКОГДА не используйте поляризованный конденсатор, иначе он взорвется!
Обычная емкость конденсатора выражается в микрофарадах «мкф».
Чтобы найти его значение, достаточно умножить мощность в л.с. на 50.
Пример: двигатель мощностью 250 Вт (0,25 кВт)
должны преобразовать ватты в лошадей. для этого делим ватты на 736 (1 л.с. = 736 Вт)
В нашем примере 250/736 = 0,34 л.с., наш двигатель 0,34 л.с.
Чтобы найти емкость конденсатора: 0,34 x 50 = 17, значит, для работы двигателя мощностью 0,25 кВт требуется конденсатор емкостью 17 мкФ.