интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Регуляторы яркости компактных люминесцентных ламп, и не только... Клл схема


РЕМОНТ КОМПАКТНОЙ ЛЮМИНИСЦЕНТНОЙ ЛАМПЫ КЛЛ

РЕМОНТ КОМПАКТНОЙ ЛЮМИНИСЦЕНТНОЙ ЛАМПЫ КЛЛ

     1. Технология проверки, ремонта и замены деталей в компактных люминисцентных лампах. Прежде всего проверяем нити накала лампы. Если нить перегорела то её можно зашунтировать резистором 10 Ом. Правда при этом запуск лампы может происходить с небольшим мерцанием несколько секунд. В принципе, если нить у ЛДС перегорела, то восстанавливать ее и питать от ЭПРА считаю нецелесообразно, так как такой лампы хватит ненадолго и скоро она снова сгорит. Лучше эту ЛДС запитать от преобразователя на блокинг-генераторе.

разобранная люминисцентная лампа КЛЛ

     2. Если в схеме лампы имеется ограничительный резистор - его обычно ставят для снижения броска напряжения при включении КЛЛ или в качестве предохранителя. Сопротивление данного резистора примерно несколько Ом. Такие резисторы ставятся только в качественных ЭПРА в китайских они отсутствуют.     3. Проверяем диодный мост и фильтрующий конденсатор (4,7мф х 400В). В китайских ЭПРА этот конденсатор является более частой неисправностью, конденсатор выходит из строя даже чаще чем транзисторы. Поэтому если есть возможность - просто меняем всегда. По поводу диодного моста, тут все просто, позваниваем все диоды и при пробое заменяем на заведомо исправные. Чаще всего в схемах применяют диоды 1N4007. Диоды и конденсатор иногда подходят от зарядников сотового телефона.     4. Часто неисправностью ЭПРА является выход из строя транзисторов генератора. Перед проверкой транзисторов их необходимо выпаять, в связи с тем, что в цепи транзисторов между переходами могут быть включены диоды что может привести к ложным показателям мультиметра при проверке транзисторов на их целостность. В качестве транзисторов используются транзисторы различных производителей серии 13003 и 13001. Правильный выбор транзисторов определяет надежность и срок службы генератора. Так например для энергосберегающих ламп мощности 1-9Вт рекомендуется использовать транзисторы серии 13001 ТО-92, для 11Вт– серии 13002 ТО-92, для 15-20Вт – серии 13003 ТО-126, для 25-40Вт – серии 13005 ТО-220, для 40-65Вт – серии 13007 ТО-200, для 85ВТ – серии 13009 ТО-220.

транзисторы и динистор

     Так же обязательно проверить обвязку из резисторов вокруг транзисторов. Чаще всего выходит из строя резистор в цепи базы транзисторов (примерно 22 ома).     5 Если ЛДС мерцает, вероятная неисправность - это выход из строя высоковольтного конденсатора, включенного между нитями накала лампы из-за воздействия повышенного напряжения. Конденсатор можно заменить на более высоковольтный с номиналом 3,3 нФ на 2 кВ.     6 Проверка динистора. В принципе проверить динистор на целостность с помощью мультиметра нереально. Но все же. Итак, выпаиваем динистор. Проверяем его мультиметром - он не должен проводить ни в одном направлении.Динистор DB3, его отечественный, более громоздкий аналог - КН102. Данный полупроводниковый прибор открывается при достижении на нём напряжения в 30 Вольт.     Технические параметры динистора DB3 DO-35:Напряжение в открытом состоянии (Iоткр - 0.2А), В - 5Максимально допустимый средний ток в открытом состоянии, А - 0.3Импульсный ток в открытом состоянии, А - 2Максимальное напряжение в закрытом состоянии, В - 32Постоянный ток в закрытом состоянии, мкА - 10Максимальное импульсное неотпирающее напряжение,В 5     Принципиальных различий между динистором и тринистором нет, однако если включение динистора происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, то в тринисторе напряжение включения может быть специально снижено, путём подачи импульса тока определённой длительности и величины на его управляющий электрод при положительной разности потенциалов между анодом и катодом, и конструктивно тринистор отличается только наличием управляющего электрода.     Итак идем дальше при выходе из строя динистора вероятен выход из строя конденсатора (на 99%) припаянного к одному из выводов динистора. По неисправности этого конденсатора можно судить о выходе из строя динистора. С другой стороны, вероятна ситуация, что при выходе из строя динистора схема сгорит почти вся и просто будет невыгодно ремонтировать её. Четверть бракованных энергосберегающих ламп связано с динисторами. Не стартуют или через раз стартуют лампочки. Динистор превращается в обычный 30-ти вольтовый стабилитрон. Зачастую, после прогрева паяльником на некоторое время восстанавливается работа. В некоторых случаях неонка-стартер, используемая в U-образной настольной дневной лампе, установленная вместо сгоревшего динистора, может помочь запустить лампу. Поэтому если нет под рукой DB3, можно попробовать заменить динистор неонкой. Материал предоставил: А. Кулибин.     ФОРУМ по ремонту.

 

Поделитесь полезной информацией с друзьями:

elwo.ru

Регуляторы яркости компактных люминесцентных ламп, и не только...

Читать все новости ➔

Автор предлагает несколько вариантов регуляторов яркости для компактных люминесцентных ламп, регулирующий элемент в которых — мощный полевой транзистор.

Компактная люминесцентная лампа (КЛЛ) — газоразрядный источник света, в котором электрический раз­ряд в стеклянной трубке (колбе) в па­рах ртути или её соединений создаёт ультрафиолетовое излучение, преобра­зуемое в видимый свет с помощью нанесённого на внутренние стенки трубки люминофора. Компактной её называют потому, что, в отличие от линейных люминесцентных ламп, трубка сделана П-образной или свёрнута в спираль.

Рис. 1

Схема одного из вариантов КЛЛ по­казана на рис. 1 (нумерация элементов приведена в соответствии с обозна­чениями на печатной плате). Она со­держит газоразрядный источник света ЕL1 и электронный пуско-регулирую­щий аппарат (ЭПРА). В его состав вхо­дят выпрямитель на диодах D1—D4 со сглаживающим конденсатором С1, высокочастотный генератор на транзи­сторах Q1, Q2 и цепь запуска и огра­ничения тока: ЯС-генератор на динисторе DB3, дроссель L3, конденсатор С6, терморезистор РТС. Дроссель L3 служит токоограничивающим элемен­том. Генератор питается постоянным напряжением около 300 В, поскольку до него заряжается сглаживающий конденсатор С1. Формы (условно) на­пряжения на выходе выпрямителя КЛЛ и потребляемого ею от сети тока пока­заны на рис. 2.

Рис. 2

Большинство регуляторов мощности (яркости) — фазоимпульсные. Ключе­вым элементом в них является тринистор (симистор), на управляющий вход которого в определённый момент по­ступает открывающий импульс. Дли­тельность этого импульса из соображе­ний экономичности, как правило, неве­лика. Чтобы тринистор оставался в открытом состоянии, через него дол­жен протекать определённый ток, назы­ваемый током удержания. В случае с лампой накаливания, паяльником или другим нагревательным прибором ток через них протекает всё время, пока тринистор включен. Когда ток становится малым при приближении сетевого напряжения к нулю, тринистор закрыва­ется. Для его открывания в следующий полулериод сетевого напряжения по­требуется очередной импульс от узла управления. Изменяя время появления импульса относительно начала каждого полупериода сетевого напряжения, можно изменять среднее напряжение на нагрузке. В результате регулируется яркость лампы накаливания (или тем­пература паяльника).

Если нагрузка такого регулятор« — КЛЛ, ситуация изменяется. Дело в том, что КЛЛ потребляет ток, когда напряжение сети превышает напряжение на сглаживающем конденсаторе ЭПРА. Если в регуляторе открывающий им­пульс поступит на тринистор в момент, когда это условие не выполняется, он не откроется, поскольку нет условий для протекания тока. Именно поэтому фазоимпульсные регуляторы яркости работают с КЛЛ неустойчиво или не работают вообще.

Хотя КЛЛ существенно экономичнее лампы накаливания, но всё же иногда требуется уменьшить яркость её свече­ния. Как отмечено выше, широко рас­пространённые тринисторные регулято­ры яркости, как автономные, так и встро­енные в светильники, не рекомендуется применять совместно с КЛЛ. Поэтому для последних потребуется специализи­рованный регулятор, кроме того, суще­ствуют КЛЛ, работающие с подобным регулятором. Но возникают сомнения, а можно ли регулировать яркость обычной КЛЛ? На этот вопрос ответ утвердитель­ный. Только регулировать яркость можно изменением тока через газоразрядную трубку или длительностью импульсов тока. После возникновения разряда КЛЛ начинает светить, её яркость зависит от тока, протекающего через лампу, при этом напряжение на ней изменяется в относительно небольших пределах. По­скольку часть напряжения падает на эле­ментах ЭПРА, изменяя напряжение питания КЛЛ, можно изменять ток через газоразрядную трубку, т. е. яркость ее свечения. Существует противоречивая информация о том, как влияет на срок службы КЛЛ уменьшение напряжения питания.

В статье В. В Черепанова, А. В. Коротаева (Энергосовет, 2011, №3(16), С. 65—68) "Исследование характеристик компактных люминесцентных ламп" приведено иссле­дование зависимости освещённости рабочего места от напряжения питания для КЛП различной мощнос­ти и разных производителей. Эти зависимости показаны на рис. 3. Из них следует, что интервал регулировки яркости у КЛЛ гораздо мень­ше, чем у лампы накалива­ния, поскольку снизу он ограничен напряжением, при котором КЛЛ уже не работа­ет. Но всё же регулировка вполне возможна, хотя и в меньших пределах, чем у ламп накаливания. При этом интервал регулировки боль­ше у более мощных КЛЛ.

Рис. 3

Поскольку для КЛЛ тиристорные ре­гуляторы не совсем подходят, предла­гается сделать регулятор с коммути­рующим элементом на полевом транзи­сторе, который закрывается, когда се­тевое напряжение превысит некоторое пороговое значение. Принцип работы такого регулятора поясняет рис. 4. В начале каждого полупериода сетевое напряжение поступает на нагрузку. Когда напряжение превысит Uпор, тран­зистор закроется и нагрузка окажется обесточена. Он откроется вновь, когда сетевое напряжение станет меньше Uпор. В данном случае при уменьшении напряжения на нагрузке максимум по­требляемого тока не совпадает с мак­симумом напряжения. При изменении сетевого напряжения от U1, до U2 изме­нится только время выключения и вклю­чения полевого транзистора, а макси­мальное напряжение на нагрузке оста­нется неизменным Для нагрузки, в состав которой входит выпрямитель со сглаживающим фильтром (как КЛЛ), это означает, что питающее напряжение окажется стабилизированным, а это может быть важным фактором.

Рис. 4

Схема одного из вариантов такого регулятора показана на рис. 5. Чтобы его упростить, сетевое напряжение предварительно выпрямляется. Для КЛЛ, ламп накаливания или нагрева­тельных приборов это не имеет принципиального значения. Сетевое напряжение выпрямляет диодный мост VD1—VD4, На элементах R1, С2 и VD5 собран параметрический ста­билизатор напряжения для питания ОУ DA1, на котором собран компара­тор напряжения. Положительную об­ратную связь обеспечивает резистор R8, а гистерезис задаёт резистор R5. На неинвертирующий вход ОУ посту­пает постоянное напряжение с ре­зистивного делителя R2R3. Конден­сатор С3 дополнительно сглаживает пульсации. На инвертирующий вход ОУ поступает пульсирующее напря­жение с выхода резистивного дели­теля R4R6R7, подключённого к выпрямителю. Переменным ре­зистором R6 устанавливают пороговое напряжение. Диод VD6 защищает этот вход от недопустимо большого на­пряжения, превышающего на­пряженно питания ОУ. Элект­ронный ключ собран на поле­вом транзисторе VT1. Стаби­литрон VD7 защищает его зат­вор от бросков напряжения. На элементах С1 и L1 собран по­мехоподавляющий LC-фильтр. Диод VD8 устраняет влияние КЛЛ на регулятор, если в ней перед выпрямителем установлен помехопо­давляющий LC-фильтр.

Рис. 5

Когда напряжение сети меньше по­рогового, на инвертирующем входе ОУ DА1 напряжение меньше, чем на неин­вертирующем, поэтому на выходе ОУ напряжение близко к его напряжению питания. Полевой транзистор открыт, напряжение поступает на нагрузку Если к регулятору подключена КЛЛ, сглажи­вающий конденсатор на выходе её выпрямителя (С1 на рис. 1) заряжается до напряжения Uпор. Работу регулятора для этого случая поясняет рис. 6. Если пороговое напряжение Uп1 будет больше амплитуды сетевого напряжения, полевой транзистор ока­жется всё время открытым и КЛЛ работает с максимальной яркостью. Формы напряжения на сглаживающем конденсаторе ЭПРА КЛЛ и по­требляемого ею тока для этого случая показаны красным цветом. Если уста­новить пороговое напряжение Uпор меньше сетевого, регулятор начинает работать. Поэтому сглаживающий конденсатор в ЭПРА КЛЛ будет заря­жаться только до этого напряжения, а значит, яркость её свечения умень­шится. Формы напряжения и тока для этого случая показаны синим цветом. Переменным резистором R6 можно изменять напряжение питания КЛЛ и ее яркость свечения.

Рис. 6

Следует ещё раз отметить, что в этом случае, даже если напряжение сети изменится, на КЛЛ будет посту­пать пульсирующее напряжение с тем же максимальным значением, т. е. регу­лятор обеспечит стабилизацию напря­жения на нагрузке и яркость свечения лампы.

Если сравнить формы напряжения и тока для разных пороговых напряже­ний, видно, что когда регулятор начнёт уменьшать напряжение на нагрузке, частота импульсов тока становится в два раза больше, а их длительность уменьшается, поскольку в течение од­ного полупериода ток через КЛЛ проте­кает дважды. Поэтому частота пульса­ций на выходе выпрямителя ЭПРА КЛЛ увеличится, а их амплитуда уменьшит­ся. Это приведёт к тому, что пульсации яркости КЛЛ уменьшатся и станут ме­нее заметными.

Здесь следует немного пояснить, о чём идёт речь. Поскольку автогенератор в ЭПРА КЛЛ работает на частоте не­сколько десятков килогерц, многие по­требители думают, а производители утверждают, что у КЛЛ пульсации яркос­ти практически отсутствуют. Но ведь на выходе выпрямителя КЛЛ есть пульса­ции выпрямленного напряжения, амп­литуда которых зависит от ёмкости сглаживающего конденсатора (С1 на рис. 1) и напрямую влияет на пульсацию яркости. Не совсем добросовестные производители "экономят" на ёмкости этих конденсаторов, именно поэтому пуль­сации яркости свече­ния КЛЛ могут быть сравнимы и даже превосходить пуль­сации яркости лампы накаливания.

Поскольку дли­тельность импульсов тока уменьшается, увеличиваются соз­даваемые помехи. Именно для их по­давления предна­значен фильтр C1L1. Конечно, такой регу­лятор подойдет и для регулировки яркости ламп наливания или нагревательных при­боров.

Большинство эле­ментов собранного макета размещены на односторонней пе­чатной плате из стек­лотекстолита толщи­ной 1,5...2 мм, её чертёж показан на рис. 7. Применены постоянные резисто­ры С2-23, МЛТ. Р1-4 и импортные, перемен­ный — СП4-1, оксид­ные конденсаторы — импортные, осталь­ные — пленочные, дроссель — серии RLB0608 или анало­гичный индуктивно­стью 47...220 мкГн, рассчитанный на ток, потребляемый на­грузкой. Светодиод — маломощный любого цвета свечения с диаметром корпуса 3...5 мм. Стабилитро­ны можно применить любые маломощные на напряжение ста­билизации 12...14 В. Замена транзистора IRFBC40 — IRF840. Разъём Х1 — клеммник винтовой с шагом выводов 7,5 мм, рассчитанный для ус­тановки в отверстия печатной платы.

Рис. 7

Внешний вид смонтированной пла­ты показан на рис. 8 (вместо свето­диода установлена перемычка). Её по­мещают в пластмассовый корпус, руч­ка переменного резистора должна быть из изоляционного материала. Налаживание сводится к подборке ре­зисторов R4 и R7 для получения тре­буемого интервала регулировки выход­ного напряжения.

Рис. 8

Схему регулятора можно упростить, если в качестве порогового элемента применить логический элемент на ос­нове триггера Шмитта, например, мик­росхему К561ТЛ1. Такой элемент обес­печит быстрое включение—выключе­ние ключевого элемента, но имеет гис­терезис Схема такого регулятора по­казана на рис. 9. Помехоподавляющий фильтр собран на элементах С1, С2 и L1. напряжение питания микросхемы стабилизирует параметрический ста­билизатор напряжения на стабилитро­не VD5 и гасящем резисторе R6, Све­тодиод HL1 индицирует наличие сете­вого напряжения. Защитного диода на входе (вывод 2) элемента DD1.1 нет, поскольку цепи защиты встроены в микросхему, а входной ток ограничен резисторами R2 и R3 Резистор ог­раничивает бросок тока при включении регулятора. Выходное напряжение ре­гулируют переменным резистором R4.

Рис. 9

Работает этот регулятор аналогично, но имеет одну особенность. Дело в том, что из-за большого гистерезиса тригге­ра Шмитта включение и выключение транзистора VТ1 происходит при раз­личных значениях сетевого напряжения. Это означает, что в первой половине каждого полупериода сетевого напря­жения амплитуда поступающего на нагрузку напряжения будет больше, чем во второй. Это не имеет значения для нагревательных приборов, но не для КЛЛ. Если сглаживающий конденсатор в ЭПРА КЛЛ не успеет разрядиться, импульса тока во второй половине полу­волны сетевого напряжения может и не быть. В этом случае амплитуда тока в первой половине возрастёт, поскольку сглаживающий конденсатор в КЛЛ успе­ет разрядиться сильнее. На работу КЛЛ это не повлияет, но уменьшит помехи, создаваемые регулятором.

Рис. 10

Плата упрощённого варианта, чертёж которой показан на рис. 10, рассчитана для установки в корпус от трансформа­торного блока питания (адаптера) раз­мерами 50x55x80 мм (без выступающих элементов) с сетевой вилкой. Плата ус­тановлена на крышке корпуса, а ось пе­ременного резистора выходит с другой стороны. Применены в основном ана­логичные детали, для повышения безо­пасности применен переменный резис­тор серии PC-16S с пластмассовыми корпусом и осью Транзистор IRF840 можно заменить транзистором IRF710, IRFBC40. Выключатель питания — движ­ковый KBB70-2P2W, но можно приме­нить переменный резистор, совмещен­ный с выключателем, рассчитанным для работы при напряжении сети. Налажи­вание сводится к установке интервала регулировки выходного напряжения подборкой резисторов R2, R3. R5.

На свободной стороне корпуса ус­тановлены гнёзда XS1. Выключатель смонтирован на корпусе регулятора, резистор установлен между вилкой и платой. Внешний вид смонтирован­ной платы показан на рис. 11.

Рис. 11

Ещё больше упростить регулятор можно, если исключить стабилизатор напряжения питания порогового элемен­та. Схема такого варианта регулятора показана на рис. 12. На элементах С1. L1. L2 и С2 собран помехоподавляющий фильтр, на диодах VD1 —VD4 — мостовой выпрямитель. На диоде VD5, резисторах R2, R3 и конденсаторе С3 собран источ­ник питания затворной цепи полевого транзистора VT1. Диод VD5 исключает разрядку конденсатора С3 через цепи регулятора и КЛЛ, стабилитрон VD6 ограничивает напряже­ние на затворе поле­вого транзистора. Диод VD7 устраняет влияние КЛЛ на ра­боту регулятора, ес­ли у неё на входе (до выпрямителя) уста­новлен помехоподав­ляющий LC-фильтр.

Рис. 12

В качестве порого­вого устройства при­менена микросхема параллельного стаби­лизатора напряжения серии TL431 (DA1). Её особенность состоит в том, что при напря­жении на управляю­щем входе (вывод 1) менее 2,5 В ток через неё не превышает 0.3-0.4 мА, Когда напряжение превысит указанное значение, ток через микросхе­му резко возрастёт.

В начале каждого полупериода сете­вого напряжения на управляющем входе микросхемы DA1 напряжение — ме­нее 2,5 В, ток через микросхему DA1 мал, поэтому напряжение с конденсато­ра С3 поступает на затвор открытого транзистора VT1. В этом случае сетевое напряжение поступает на КЛЛ. Если на­пряжение на движке резистора не пре­высит 2,5 В (что соответствует, напри­мер, напряжению Uп1 на рис 6), полевой транзистор будет всегда открыт (напря­жение затвор—исток - 13 В) и на нагрузку поступает всё сетевое напряже­ние. Когда напряжение на движке резис­тора R7 превысит 2,5 В (например, если установлено Uп2), ток через микросхему возрастёт, а напряжение на затворе транзистора уменьшится до 2 В. В ре­зультате полевой транзистор закроется и на нагрузку поступит напряжение Uп2 в течение только части сетевого полупериода Поскольку напряжение на затворе полевого транзистора ограничено стабилитроном VD6, а ток через резис­тор R4 ограничен резисторами R2 и R3, напряжение на конденсаторе С3 не пре­высит 25…30 В.

Рис. 13

По сравнению с предыдущей кон­струкцией весь регулятор удалось раз­местить в корпусе меньшего размера (40x42x57 мм). Поэтому элементы раз­мещены на двух платах Чертёж основ­ной показан на рис. 13, а дополнитель­ной, на которой установлен фильтр, — на рис. 14.

Рис. 14

Платы приклеены внутри корпуса (рис. 15), на его стенках уста­новлены выключатель SA1, переменный резистор R7 и гнездо ХS1. Резистор R1 установлен на выводах выключателя и вилки ХS1 и на рис. 15 не виден. Все со­единения проведены проводом МГТФ.

Рис. 15

В устройстве применены в основном такие же элементы, что и в предыдущей конструкции. Поскольку регулятор пла­нировалось использовать совместно с КЛЛ, были применены менее мощные дроссели (от ЭПРА КЛЛ). Внешний вид регулятора показан на рис. 16.

Рис. 16

Предлагаемый регулятор можно применить для регулировки напряже­ния ламп накаливания и нагреватель­ных приборов, например паяльников. Их мощность ограничена параметрами применённых выпрямительных дио­дов, дросселей и допустимого тока транзистора. Для предложенных регу­ляторов мощность нагрузки не должна превышать 100…150 Вт. Для увеличе­ния мощности потребуется применить более сильноточные диоды, более мощный дроссель, а транзистор необ­ходимо установить на теплоотвод.

По сравнению с тринисторными регуляторами яркости, где частота им­пульсов тока через нагрузку — 100 Гц. В предлагаемых она может быть вдвое больше. Поэтому и пульсации яркости меньше. Кроме того, если с помощью регулятора напряжение на нагрузке уменьшено, максимум тока не совпада­ет с максимумом напряжения. В этом случае "верхушка синусиоды" не будет "срезана" и её форма в сети должна улучшиться.

Такой регулятор можно применить и с любой маломощной активной нагруз­кой. Нижний предел регулируемой мощности на ней зависит от тока утечки закрытого полевого транзистора.

Автор: И. НЕЧАЕВ, г. МоскваИсточник: Радио №4/2017

Возможно, Вам это будет интересно:

meandr.org

Схемы энергосберегающих ламп

 

  Здесь представлены схемы популярных энергосберегающих ламп дневного света. Даже если вы не нашли нужную лампу, ищите аналог, принцип у схем один.

------------------------------------------------------

 

 

------------------------------------------------------
 
------------------------------------------------------
 

 
------------------------------------------------------
------------------------------------------------------
 
------------------------------------------------------
 
------------------------------------------------------
 
------------------------------------------------------
 

------------------------------------------------------

-------------------------------------------------------  

------------------------------------------------------
 
------------------------------------------------------
 
 
------------------------------------------------------
 
------------------------------------------------------
 
 

------------------------------------------------------
Адрес этой статьи: http://radio-hobby.org/modules/news/article.php?storyid=453Оригинал: http://www.pavouk.org/hw/lamp/en_index.html
Энергосберегающие лампыПринцип действия

Ремонт энергосберегающих ламп

Схемы энергосберегающих ламп

Питание ламп дневного света (ЛДС)

Термисторы PTC для энергосберегающих ламп

1). Электрическое поле Земли - источник энергии.

2). Ветродвигатель для ветряка - 1

3). Ветродвигатель для ветряка - 2

4). Получение электрической энергии - 1

luna1509.narod.ru

Эксплуатация и ремонт компактных люминесцентных ламп

Принцип действия КЛЛ заключается в подаче на 2-а электрода покрытых барием или окисью бария, напряжения, в результате чего происходит возбуждение(ионизация) паров смеси аргона и ртути. В результате ионизации возникает низкотемпературная плазма внутри лампы. Пары ртути излучают ультрафиолетовое излучение, которое преобразуется в видимый свет посредством люминесцентного материала которым покрыта внутренняя часть лампы. Спект свечения КЛЛ зависит от состава люминофора. Цветовая температура колбы разная, при Т=2700К лампа имеет теплый свет, при Т=4000К дневной, а при Т=6400К холодный дневной свет.

Питание КЛЛ производится от преобразователя который работает на ВЧ вплоть до нескольких десятков кГц. Поэтому Мы не видим мерцания лампы в отличии от ТЛЛ. Главное в КЛЛ пускорегулирующий аппарат (ЭПРА). В недорогих КЛЛ ЭПРА простой, в нем простой выходной фильтр, нет коррекции коэффициента мощности, упрощенная защита. В таких КЛЛ устанавливается автогенераторные схемы с трансформатором или полу мостовым каскадом на биполярных транзисторах. Генератором обычно служат 2-а транзистора. Правильный подбор этих транзисторов определяет срок службы лампы, так например для выходной мощности 1...9Вт применяют транзисторы серии 13001 ТО-92, 11Вт - 13002 ТО-92, 15...20Вт 13003ТО-126, для 25...40Вт - 13005 ТО-220, 40...65Вт серия 13007 ТО-220, для 85Вт серия 13009 ТО-220.

Постоянное напряжение поступает на вход генератора с двух полупериодного выпрямителя(4-е диода), далее следует емкостной фильтр (электролитический конденсатор), при чрезмерно большой емкости конденсатора появится мерцание при работе с выключателем с подсветкой.  Так например при КЛЛ 20Вт достаточно 4,7мкФ.

В некоторых лампах прогрев спирали не регулируется что уменьшает их срок службы.

В основу КЛЛ входят - колебательный контур который состоит из дросселя L, импульсного трансформатора TR и друх конденсаторов.  Оба конденсатора, дроссель и одна из обмоток трансформатора последовательно соединены со спиралью лампы. Кол-во витков трансформатора мало, его обмотки содержат по 5-10 витков.

Резонансная частота контура определена значением емкости конденсатора С, включенного между спиралями КЛЛ.

При работе КЛЛ при ионизации газа происходит короткое замыкание конденсатора, соединенного последовательно со спиралью.  В следствии чего часто выходит из строя этот конденсатор (частая поломка).

В начале при ремонте необходимо проверить спираль лампы, целостность колбы, а далее предохранитель (если он в обще установлен). Далее проверяем оба конденсатора колебательного контура, далее проверяем резисторы и переходы транзисторов.

Все эти действия производим если вы уверены в целостности колбы КЛЛ.

Принципиальные схемы КЛЛ показаны на рисунках 1-16.

rcl-radio.blogspot.com

КЛЛ лампы – устройство, принцип работы и рекомендации при выборе

Ни для кого не секрет, что люминесцентные лампы давно и прочно вошли в нашу жизнь, и это естественно, ведь экономия их, по сравнению с лампами накаливания, составляет до 85%. Единственное, что мешало их внедрению в квартиры повсеместно – это их габариты. Ведь не всегда удобно размещать светильники таких размеров, хотя в домах они и раньше присутствовали, правда, реже, чем в офисных зданиях и производственных цехах.

И вот в конце 80-х годов прошлого столетия на прилавках стали появляться энергосберегающие лампы, которые очень быстро завоевали популярность. И даже несмотря на более высокую цену, чем у ламп накаливания, спрос на них и сейчас довольно высок. Так что же это за энергосберегающие лампы?

Как известно, их настоящее название – КЛЛ, т. е. компактные люминесцентные лампы, а значит, и потребление ими электроэнергии должно быть на уровне ЛДС. Действительно, так и есть. При намного более низких энергозатратах сила светового потока их не теряется, а цветовая гамма температур довольно обширна.

Различные формы трубок КЛЛ

Различные формы трубок КЛЛ

Так что же представляет собой подобная энергосберегающая лампа? Попробуем разобраться.

Устройство КЛЛ

Колба этих световых приборов устроена точно так же, как и у обычных люминесцентных. При прохождении высокого напряжения между электродами происходит воспламенение паров ртути, в результате чего возникает ультрафиолетовое свечение. Т. к. трубка изнутри покрыта специальным веществом – люминофором, то ультрафиолетовые лучи не достигают глаз человека, а преобразовываются в видимое нами свечение. В результате изменения производителем состава люминофора КЛЛ приобретает различную цветовую температуру.

Единственное отличие ЛДС от энергосберегающей – это как раз состав этого вещества, за счет чего и появилась возможность компактного исполнения лампы.

Устройство КЛЛ

Устройство КЛЛ

Вместо привычного ПРА люминесцентной лампы энергосберегающая получила очень компактный электронный пускорегулирующий аппарат (ЭПРА), который и позволил вырабатывать более ровное свечение. По этой же причине у КЛЛ отсутствует и гудение, которое исходило от работающей ЛДС.

Часто возникающие проблемы в работе компактной люминесцентной лампы?

Конечно, хотя энергосберегающие лампы и более высокотехнологичны, но ряд проблем при их использовании все же присутствует:

  • Подобные осветительные приборы не очень хорошо себя показали при установке выключателя с встроенной подсветкой. Возможны произвольные включения, что, естественно, сокращает срок службы лампы. Но решается такая проблема очень просто. Достаточно просто выключить подсветку из схемы прерывателя.
  • Такие приборы нежелательно подключать через всевозможные датчики и реле, реагирующие на движение, шум или свет, равно как и включающие подобную лампу по времени. Это тоже приведет к сокращению долговечности. Также нельзя с ними использовать и обычные диммеры. Все дело в том, что после выключения ей необходимо не менее 2–3 минут до следующего включения. В противном случае неминуем быстрый выход прибора из строя.
  • Не переносят такие лампы и высокую влажность, потому что электронный пускорегулирующий аппарат не имеет никакой защиты от сырости.
  • При понижении температуры менее -25 градусов Цельсия ЭПРА просто перестает работать, его мощности не хватает на пробой переохлажденных паров ртути или амальгамы.
  • Хотя теплоотдача компактных люминесцентных ламп значительно ниже, чем тот же параметр у ламп накаливания, все-таки необходима хорошая вентиляция в светильнике. Если же плафон «глухой», то неминуем перегрев и выход из строя.
  • К тому же проблему составляет и ртуть, находящаяся в колбе подобных приборов. При повреждении трубки она, естественно, попадает в воздух, а далее и в организм человека. Конечно, концентрация ее значительно меньше, чем в обычных люминесцентных лампах, однако вред такое количество также нанесет.
  • У более восприимчивых людей возможно развитие различных заболеваний при очень длительном нахождении под излучением подобных ламп.
  • Имеется, пусть и небольшая, пульсация свечения КЛЛ. Хотя электронный пускорегулирующий аппарат и снизил ее, полностью эта проблема так и не решилась.

В общем, для окупаемости подобных осветительных приборов подобные негативные факторы по возможности необходимо исключить.

Различия между КЛЛ

Между собой компактные энергосберегающие лампы могут различаться по многим параметрам, таким как:

  • цоколь;
  • мощность;
  • цветовая температура;
  • индекс цветопередачи;
  • наличие встроенного или внешнего ЭПРА (а иногда и ПРА).

Все эти данные можно найти в маркировке таких световых приборов, и на них стоит остановиться поподробнее.

Различия цоколей компактных люминесцентных ламп

Различия цоколей компактных люминесцентных ламп

Цоколь

По этому параметру различают очень много подобных световых приборов. Самыми распространенными, конечно же, являются резьбовые. Они маркируются как «E» с цифровым дополнением 14, 27 или 40.

Е40 применяют в основном в промышленном освещении, диаметр резьбы подобного цоколя составляет 40 мм. Такая же резьба применена в лампах ДРЛ и ДНАТ.

Е27 – самый распространенный среди резьбовых. Это лампа под обычный патрон на 27 мм, который установлен в большинстве люстр и светильников.

Ну и самый маленький цоколь Е14 – «миньон». Такие осветительные приборы устанавливаются в небольшие люстры и бра, которые встречаются гораздо реже Е27.

Существуют также и штырьковые цоколи, лампы с которыми чаще всего работают с внешним ЭПРА (либо ПРА). Область применения их в основном в настольных светильниках или потолочных осветительных приборах.

Мощность

По этому параметру различия такие же, как и у ламп накаливания, с той лишь разницей, что показатели его у КЛЛ значительно ниже. Различия по мощности ЛН и энергосберегающих можно увидеть в таблице ниже.

Различия по мощности между КЛЛ и лампой накаливания

Различия по мощности между КЛЛ и лампой накаливания

Как можно убедиться, потребление электроэнергии компактными люминесцентными лампами значительно ниже, чем лампами накаливания при той же силе светового потока.

Цветовая температура

КЛЛ, в отличие от своего предшественника с нитью накала, может иметь различную температуру цвета, что также является большим преимуществом. Ведь разным людям нравятся различные оттенки освещения.

Температура цвета компактных люминесцентных ламп измеряется в кельвинах и обозначается буквой «К». У КЛЛ она может быть:

  • От 2 700 К до 3 300 К – оттенок теплого, мягкого желтого цвета, который наиболее приближен к свечению ЛН. Обычно применяется в кухнях и спальнях.
  • От 4 200 К до 5 400 К – обычный белый. Область применения обширна, но наиболее подходит для прихожей.
  • От 6 000 К до 6 500 К – холодный белый, с синеватым оттенком. Наиболее подходит для офиса или рабочего кабинета.
  •  25 000 К – сиреневый цвет, который подойдет для рекламных вывесок.

Существуют и другие цвета, такие как зеленый или красный, но подобные компактные люминесцентные лампы в быту практически не применяются. Цвет создается путем изменения состава люминофора.

Цветовая температура КЛЛ

Цветовая температура КЛЛ

Индекс цветопередачи

По этому параметру характеризуется соответствие естественности цвета энергосберегающей лампы с эталоном, максимально приближенным к солнечному. Наибольшее значение – 100 Rа. За наименьшее же принято значение в 0 Rа, что соответствует абсолютно черному. Чем выше данный параметр, тем меньше искажаются цвета предметов, на которые падает свет от лампочки.

У компактных люминесцентных ламп данный показатель в диапазоне 60–98 Ra.

Как можно понять, выбор КЛЛ – дело непростое, и делать его нужно в зависимости от предпочтений, а потому советы здесь не слишком помогут.

Ну а теперь, суммируя всю информацию, необходимо подвести итог по всем достоинствам и недостаткам подобных приборов освещения.

Достоинства и недостатки

Достоинства:

  • Высокая сила светового потока. При одинаковом потреблении мощности яркость КЛЛ в 5 раз выше ЛН.
  • Экономичность до 80–85%. Это обусловлено более высоким коэффициентом полезного действия компактной люминесцентной лампы. В то время как у приборов с нитью накала до 95% уходит на нагрев, КЛЛ теряет всего 15%.
  • Значительно большая долговечность, которая составляет от 6 до 12 тыс. часов при условии соблюдения определенных правил использования.
  • Меньшая теплоотдача, а следовательно, возможность монтажа в светильники с ограниченной номинальной температурой.
  • Излучение освещения по всей поверхности трубки. Свет, излучаемый компактной люминесцентной лампой, идет более равномерно и мягко.

Недостатки:

  • Подобные приборы освещения не переносят кратковременных циклов «включение-выключение». Требуется интервал в 2–3 мин.
  • Для розжига нужно около секунды. В энергосберегающих лампах с содержанием амальгамы полное свечение достигается по прошествии 9–14 мин.
  • У ламп, люминофор которых содержит редкоземельные составляющие, очень глубокая пульсация, что плохо отражается на самочувствии.
  • Заметное мерцание и шум при работе в лампах с внешним ПРА.
  • При отсутствии подачи напряжения возможны резкие вспышки, особенно если подключение выключателя неправильное, и он разрывает не фазный, а нулевой провод, либо имеет подсветку.

Несколько советов

  1. При приобретении необходимо выбирать проверенный бренд и покупать компактные люминесцентные лампы только в специализированных магазинах электротехники. Не стоит экономить при этом, иначе лампы быстро выйдут из строя, и из этого ничего, кроме убытка, не получится.
  2. В разных комнатах должны быть разные световые приборы, т. к. и сила светового потока в отдельных помещениях должна быть различной.
  3. При приобретении важно учесть размер, подойдет ли лампа под требуемый светильник.
  4. Не нужно разом покупать лампочки на всю квартиру. Лучше взять 2–3 с разной цветовой температурой, а уже после определиться, что наиболее подходит.
  5. Во всех комнатах и помещениях энергосберегающие лампы не нужны. К примеру, в кладовой, где освещение зажигается на 10 минут в сутки, никакой экономии от установки подобного светового прибора не получится.
  6. Необходимо соблюдать правила эксплуатации, и тогда КЛЛ прослужит свой положенный срок, сэкономив семейный бюджет.

lampagid.ru

Импульсный источник питания из лампочки КЛЛ своими руками

Как за час сделать импульсный блок питания из сгоревшей лампочки?

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. https://oldoctober.com/

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.

Самые интересные ролики на Youtube

Близкие темы.

Как намотать импульсный трансформатор для сетевого блока питания?

Самодельный импульсный преобразователь напряжения из 1,5 в 9 Вольт для мультиметра.

Как разобрать энергосберегающую лампу (КЛЛ)?

Энергосберегающие лампы “Vitoone” - технические данные и схема.

Схема и техническая информация по энергосберегающим лампам Osram.

Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.
  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.https://oldoctober.com/

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Вернуться наверх к меню

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Вернуться наверх к меню

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню

Импульсный трансформатор для блока питания.

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. :) Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. :)

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню

Ёмкость входного фильтра и пульсации напряжения.

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Вернуться наверх к меню

Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

Вернуться наверх к меню

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.

2. Схема со средней (нулевой) точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема со средней (нулевой) точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы со средней (нулевой) точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. :)

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Вернуться наверх к меню

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню

15 Март, 2011 (18:25) в Источники питания, Сделай сам

oldoctober.com

Ремонт импульсного блока питания энергосберегающей лампочки

Техническая информация: → Из сгоревшей энергосберегающей лампы изготовить блок питания 

В этой публикации размещен материал для ремонта или изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить за короткое. На изготовление 100-ваттного блока питания может понадобится до нескольких часов.

Построить блок питания будет несложно, умеющим паять. И несомненно, это сделать несложно, чем найти низкочастотный подходящий для изготовления трансформатор нужной мощности и перемотать его вторичные обмотки под нужное напряжение.

Оглавление

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностью 20 Ватт.
  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

Вступление.

В последнее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку приходится выбрасывать.

Однако электронный балласт такой лампочки, это практически готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В последнее же время, радиолюбители порой испытывают трудности при поиске силовых трансформаторов для питания своих самодельных конструкций. Если даже трансформатор найден, то его перемотка требует использования необходимый по диаметру медные провода, да и массо - габаритные параметры изделий, собранных на основе силовых трансформаторов не особо радует. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит определенную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Наверх

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания необходимо установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно будет удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, при его использовании.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя из состава блока лампы.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания.

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения.

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

 

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико. Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

 

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

 

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

 

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

 

На картинке действующая модель БП. Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

 

Наверх

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

Мощность, выделяемая на нагрузке – 100 Ватт.Частота автоколебаний при максимальной нагрузке – 90 кГц.Частота автоколебаний без нагрузки – 28,5 кГц.Температура транзисторов – 75ºC.Площадь радиаторов каждого транзистора – 27см².Температура дросселя TV1 – 45ºC.TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Наверх

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.100 / 5 * 0,4 = 8(Ватт)Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.100 / 5 * 0,8 * 2 = 32(Ватт).Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

 

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Наверх

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

 

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.Наверх

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.Если сильно греются транзисторы, то нужно установить их на радиаторы.Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.Наверх

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.VD1… VD4 – мостовой выпрямитель.L0, C0 – фильтр питания.R1, C1, VD2, VD8 – цепь запуска преобразователя.Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.R2, C11, C8 – облегчают запуск преобразователя.R7, R8 – улучшают запирание транзисторов.R5, R6 – ограничивают ток баз транзисторов.R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.VD7, VD6 – защищают транзисторы от обратного напряжения.TV1 – трансформатор обратной связи.L5 – балластный дроссель.C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.TV2 – импульсный трансформатор.VD14, VD15 – импульсные диоды.C9, C10 – конденсаторы фильтра.Наверх

Материал с сайта oldoctober.com/ru/

www.110volt.ru


Каталог товаров
    .