интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Португалец собрал ионный двигатель в домашних условиях. Ионный двигатель своими руками схема


Португалец собрал ионный двигатель в домашних условиях

Плазма между анодом и катодом ионного двигателя.

Фотография: Joao Duarte / eLab hackerspace

Португалец Жуан Дуарте собрал в домашних условиях простую рабочую модель ионного двигателя. Рассказ о своем проекте разработчик опубликовал на портале eLab hackerspace. В его двигателе используются несколько держателей, подставка, корпус и сопло, напечатанные из пластика на 3D-принтере, семь гвоздей, семь медных трубок и высоковольтный трансформатор.

При строительстве ионного двигателя важна высокая электрическая проводимость всех элементов. Для ее увеличения Дуарте покрыл гвозди тонким слоем меди. Он зачистил гвозди от ржавчины, а затем опустил их вместе с окислившимися медными монетами в раствор соли и уксуса. Благодаря меднению электрическая проводимость на поверхности гвоздей увеличилась.

Затем португалец взял медную трубу диаметром два сантиметра и нарезал ее на пять частей длиной пять сантиметров каждая. После этого Дуарте распечатал на принтере держатели для трубок и гвоздей, подставку, кожух двигателя и сопло. Для эффективной работы ионного двигателя кончики медненных гвоздей должны находиться точно в центре окружности медных трубок.

На каком расстоянии от трубок следует разместить гвозди от трубок Дуарте не уточнил, но отметил, что оно должно быть одинаковым для всех гвоздей. Для регулирования тяги португалец сделал держатель с гвоздям подвижным в горизонтальной плоскости. К трубкам и гвоздям Дуарте подключил трансформатор, способный выдавать напряжение в девять киловольт и силу тока в 50 миллиампер.

В конструкции двигателя гвозди выступают в качестве катода, а медные трубки — анода. При включении напряжения воздух вокруг гвоздей ионизируется и притягивается анодом, возникает воздушный поток, который и формирует незначительную тягу за соплом двигателя. Сдвинутся с места такая силовая установка не может, но способна колыхать обрезки бумаги.

Концепцию ионного двигателя впервые предложил американский ученый Роберт Годдард. В 1954 году технологию детально описал ученый Эрнст Штулингер, а первый функционирующий двигатель был собран в 1959 году в NASA. Он смог проработать на протяжении 31 минуты. В качестве маршевого двигателя ионная силовая установка была впервые использована на космическом аппарате Deep Space в 1998 году.

Современные ионные двигатели способны непрерывно работать на протяжении трех лет. В них для создания реактивной тяги используются как правило аргон или ксенон. Эти инертные газы разгоняются в электрическом поле. Положительными качествами ионного двигателя является малое энергопотребление и расход топлива, а серьезным недостатком — микроскопическая тяга, составляющая до 250 миллиньютонов.

nplus1.ru

На ионной тяге: cамодельный ионолет

Хватит размениваться на мелочи! «Популярная механика» решила построить летательный аппарат с электрореактивным двигателем — ионным. Это дальний родственник ионных двигателей, которые ставят на некоторые современные космические аппараты.

Включаю высоковольтный генератор, и легкий серебристый аппарат под тихое шуршание коронного разряда поднимается над столом. Выглядит это совершенно фантастически, и я начинаю понимать, почему в интернете встречаются самые удивительные объяснения этому явлению. Каких только версий здесь не встретишь — от привлечения эфирной физики до попыток объединить электромагнитное и гравитационное взаимодействия. «Популярная механика» попыталась внести ясность в этот вопрос.

Конструкция ионолета

В качестве ионолета мы решили построить простейшую конструкцию. Наш аппарат — асимметричный конденсатор, верхний электрод которого представляет собой тонкий медный провод, а нижний — пластинку из фольги, которая натянута на рамку, склеенную из тонких деревянных (бальсовых) планок. Расстояние между верхним проводом и фольгой составляет порядка 30 мм. Очень важно, чтобы фольга огибала планки и не имела острых «ребер» (иначе может возникнуть электрический пробой).

К полученному конденсатору мы подключили высоковольтный генератор, изготовленный из модифицированного блока питания бытового ионизатора воздуха с напряжением 30кВ. Положительный вывод — к верхнему тонкому проводу, отрицательный — к пластинке из фольги. Поскольку аппарат лишен системы управления и стабилизации, мы привязали его тремя капроновыми нитями к столу. После включения напряжения он оторвался от поверхности и завис над столом, насколько позволяла привязь.

Раму ионолета мы построили из тонких планок бальсы, склеив их цианакрилатным клеем. Для «обшивки» стенок (второго электрода) использовали тонкую алюминиевую фольгу, натянутую на раму (треугольную в плане, со стороной около 200 мм) шириной 30 мм. Обратите внимание, чтобы фольга не имела острых граней и плавно огибала планки, иначе напряженность электрического поля у поверхности будет очень высоким, что может привести к пробою. Верхний электрод мы выполнили из тонкой медной проволоки сечением 0,1 мм2 (использовалась намоточная проволока со снятой изоляцией) — на ней при подаче высокого напряжения возникает коронный разряд. Верхний электрод (положительный) отстоит от нижнего (отрицательного) на расстояние около 3 см. Ионолет мы прикрепили к столу капроновыми нитями, чтобы он не летал бесконтрольно по всему помещению.

История вопроса

В 1920-х годах американский физик Томас Таунсенд Браун в процессе экспериментов с рентгеновскими трубками Кулиджа наткнулся на любопытный эффект. Он обнаружил, что на асимметричный конденсатор, заряженный до высокого напряжения, действует некая сила, которая даже способна поднять такой конденсатор ввоздух. На свой аппарат Браун 15 ноября 1928 года получил британский патент №300311 «Метод получения силы или движения». Эффект возникновения такой силы назвали эффектом Бифельда-Брауна, поскольку Пол Альфред Бифельд, профессор физики в Университете Денисона в Гранвилле (Огайо), помогал Брауну в его экспериментах. Сам изобретатель верил в то, что он открыл способ с помощью электричества влиять на гравитацию. Позднее Браун получил еще несколько патентов, но в них какое-либо влияние на гравитацию уже не упоминалось.

В таком виде эта история встречается в интернете почти повсеместно — в статьях многочисленных непризнанных изобретателей «антигравитационных аппаратов» и «космических кораблей будущего». Но ведь наш ионолет действительно летает!

Силовая установка

В качестве силовой установки (высоковольтного генератора) мы использовали блок питания (БП) от бытового ионизатора воздуха с напряжением около 30 кВ. Поскольку у нашего ионизатора был выведен на высоковольтный электрод только один контакт, нам пришлось разобрать корпус, извлечь сам блок питания и подсоединить оба вывода. После этого мы аккуратно поместили БП в подходящую по размерам коробку и для безопасности залили парафином. Вместо БП можно использовать блок питания старого монитора (ЭЛТ).

Почему он летает

На самом деле для объяснения принципа не требуется привлечения механизмов неизвестной современной физике «электрогравитации». Как пояснил «Популярной механике» доцент кафедры общей физики Московского физико-технического института (МФТИ) Юрий Маношкин, все дело в ионизации воздуха: «В данном случае напряженность поля у одного из электродов — верхнего тонкого провода — выше, там возникает коронный разряд, ионизующий воздух. Ионы разгоняются в электрическом поле конденсатора по направлению ко второму электроду, создавая реактивную тягу, — образуется так называемый ионный ветер». Это, разумеется, лишь качественное объяснение эффекта, поскольку, по словам Юрия Маношкина, «теория этого процесса, включающего множество аспектов — физику газового разряда, плазмы и газодинамику, — очень сложна и пока еще недостаточно разработана. Но этот вопрос изучается, поскольку в перспективе имеет множество вполне серьезных применений. Речь идет не о таких вот летающих игрушках, а, например, о возможностях с помощью ионизации влиять на характер аэродинамического обтекания летательных аппаратов».

Статья опубликована в журнале «Популярная механика» (№4, Апрель 2010).

www.popmech.ru

Ионный двигатель для дальнего космоса принцип работы в россии своими руками

Ионный двигатель для космических аппаратов.

Технология находится в процессе разработки!

 

Ознакомиться с концепцией

 

Ионный двигатель создает возможность разогнать космический аппарат в условиях невесомости до скоростей, недоступных сейчас никаким другим из существующих типов космических двигателей.

 

Сущность, строение и принцип работы ионного двигателя

Схема ионного двигателя

Преимущества

Перспективы применения ионных двигателей

Достигнутые технические характеристики ионного двигателя

Применение

 

Сущность, строение и принцип работы ионного двигателя:

Ионный двигатель — тип электрического ракетного двигателя, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

Впервые устройство ионного двигателя было предложено русским ученым К.Э. Циолковским в 1906 г. В дальнейшем осуществлялось теоретическая проработка данного вопроса. В настоящее время происходит его практическое воплощение.

Ионный двигатель работает, используя ионизированный газ и электричество.

Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть.

Инертный газ подается в ионизатор (газоразрядную, ионизирующую камеру) ионного двигателя.  Сам по себе газ нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Зажигание двигателя инициируется кратковременной подачей электронов, эмитируемых в газоразрядную (ионизирующую) камеру.  В ионизаторе высокоэнергетические электроны производят ионизацию рабочего тела — газа. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов.

Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток (положительно-заряженной и отрицательно-заряженной). Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против -225 на внешней).  В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя космический аппарат, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку (нейтрализатор), выбрасываются из двигателя под небольшим углом к соплу и потоку ионов.

Для выработки электричества используются солнечные батареи. Но в дальнейшем планируется использовать ядерные установки.

Использование внешнего магнитного поля в ионном двигателе позволяет повысить энергоэффективность системы.

Ионные двигатели характеризуются высоким импульсом. Они расходуют малое количество газа для совершения маневра.

 

Схема ионного двигателя:

Ионный двигатель

 

Преимущества:

— создает возможность разогнать космический аппарат в условиях невесомости до скоростей, недоступных сейчас никаким другим из существующих типов космических двигателей,

— расходует меньше топлива, чем обычные реактивные двигатели,

— в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах,

— для функционирования ионного двигателя достаточно небольшой электрической мощности — от 150 до 500 Ватт. Двигатели мощностью от 150 до 500 Ватт могут быть установлены на малые космические аппараты,

— низкая рабочая температура в отличии от обычных реактивных двигателей, 

— рабочее тело не обязательно должно быть высокой степени чистоты в отличии от обычного топлива в химических ракетах,

— простота сборки и эксплуатации конструкции,

— ионный двигатель позволит увеличить срок эксплуатации космических аппаратов в 2-3 и более раза,

— для путешествия на Марс (и обратно) достаточно ионного двигателя мощностью порядка 50 кВт.

 

Перспективы применения ионных двигателей:

Применение ионных двигателей в космических аппаратах открывает новые перспективы развития космонавтики, в частности, запускаемых космических аппаратов.

Современные тенденции таковы, что доля запускаемых тяжелых космических аппаратов (свыше 1000 кг) неуклонно снижается и составляет порядка не более 30% от всех запусков.

Все более востребованными становятся малые космические аппараты, имеющие вес от 100 кг до 500 кг, находящиеся на низкой орбите до 1000 км. и функционирующие продолжительное время – в течение 5-10 лет.

К малым космическим аппаратам относятся спутники и системы мобильной связи и радионавигации, мониторинга Земли, атмосферы и околоземного космического пространства.

Ионные двигатели в ближайшем будущем позволят заменить двигатели орбитального движения малых космических аппаратов, что увеличит срок их активной работы (эксплуатации) в 2-3 раза и продлит срок их жизни с 2-3 лет до 5-10 лет.

В отдаленной перспективе планируется оснащать все, в т.ч. тяжелые, космические аппараты ионными двигателями, что позволит совершать путешествия к далеким планетам и звездам, пилотируемые экспедиции к планетам Солнечной системы, тяжелые транспортные перелеты.

 

 Достигнутые технические характеристики ионного двигателя:

Характеристики: Значение:
Потребляемая мощность, кВт 1—7
Скорость истечения ионов, км/с 20—50
Тяга, мН  20—250
КПД, %  60—80
Время непрерывной работы, лет более 3

 

Применение:

— управление ориентацией и положением на орбите искусственных спутников Земли (в настоящее время),

— главный тяговый двигатель небольшой автоматической космической станции (в настоящее время),

— главный тяговый двигатель тяжелых космических аппаратов (в будущем).

 

Источник: http://cyclowiki.org/wiki/Ионный_двигатель, http://go2starss.narod.ru/pub/E025_ID.html.

 

отдел технологий

г. Екатеринбург и Уральский федеральный округ

Звони: +7-908-918-03-57

или пиши нам здесь...

карта сайта

Войти    Регистрация

Виктор Потехин

Поступила просьба разместить технологию обработки торфа электрогидравлическим эффектом.

Мы ее выполнили!

2018-04-06 19:21:11Виктор Потехин

Поступил вопрос о лазерной очистке металла. Дан ответ. В частности, указана более дешевая и эффективная технология.

2018-04-11 23:18:19Виктор Потехин

Поступил вопрос по термостабилизаторам грунтов в условиях вечной мерзлоты. Дан ответ.

2018-04-29 09:51:54Виктор Потехин

Поступил вопрос по стеклопластиковым емкостям. Дан ответ.

2018-05-04 06:47:56Виктор Потехин

Поступил вопрос по гидропонным многоярусным установкам. Дан ответ. В частности указаны более прорывные технологии в сельском хозяйстве.

2018-05-16 20:22:35Виктор Потехин

Поступил вопрос по выращиванию сапфиров касательно технологии и оборудования. Дан ответ.

2018-05-16 20:23:28Виктор Потехин

Поступил вопрос касательно мотор-колеса Дуюнова и мотор-колеса Шкондина, что лучше. Дан ответ.

2018-05-16 20:30:50Виктор Потехин

Поступил вопрос об организациях, которые осуществляют очистку металла от ржавчины. Дан ответ: оставляйте свои заявки внизу в комментариях. Производители сами найдут вас и свяжутся.

2018-05-17 10:35:28Виктор Потехин

Поступил вопрос касательно санации трубопровода. Дан ответ. В частности указана более инновационная технология.

2018-05-17 18:10:26Виктор Потехин

Поступил вопрос касательно сотрудничества, а именно: определения направлений развития предприятия и составления планов будущего развития. В настоящее время ведутся переговоры. Будет проанализирована исходная информация, совместно выберем инновационные направления и составим планы.

2018-05-18 10:34:05Виктор Потехин

Поступил вопрос касательно электрохимических станков. Дан ответ.

2018-05-18 10:35:57Виктор Потехин

Поступил вопрос относительно пиролизных установок для сжигания ТБО. Дан ответ. В частности, разъяснено, что существуют разные пиролизные установки: для сжигания 1-4 класса опасности и остальные. Соответственно разные технологии и цены.

2018-05-18 11:06:55Виктор Потехин

К нам поступают много заявок на покупку различных товаров. Мы их не продаем и не производим. Но мы поддерживаем отношения с производителями и можем порекомендовать, посоветовать.

2018-05-18 11:08:11Виктор Потехин

Поступил вопрос по гидропонному зеленому корму. Дан ответ: мы не продаем его. Предложено оставить заявку в комментариях для того, чтобы его производители выполнили данную заявку.

2018-05-18 17:44:35Виктор Потехин

Поступает очень много вопросов по технологиям. Просьба задавать эти вопросы внизу в комментариях к записям.

2018-05-23 07:24:36Andrey-245

Не совсем понятно. Эту батарейку можно вообще не заряжать что ли? Сколько вольт она выдает? И где ее купить? И можно ли такие соединить последовательно-параллельно, собрав нормальный аккумулятор, например, для электромобиля?

2018-08-23 10:09:48Виктор Потехин

Андрей, какую батарейку?

2018-08-24 08:33:25

Для публикации сообщений в чате необходимо авторизоваться

российский новый ионный реактивный космический двигатель принцип работы своими руками для космических аппаратов в россии x3 википедия холла видео ksp купить перспективы тяга схема принцип действия устройство работа ионного двигателя на эффекте холла ионно плазменный двигатель на катушке тесла в домашних условиях кпд импульс как сделать работает самый мощный высокочастотный ионный двигатель для дальнего космоса наса леонова китай создал новый ионный двигатель 2759

 

Похожие записи

Количество просмотров с 26 марта 2018 г.: 202

comments powered by HyperComments

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Ионный двигатель - Мастерок.жж.рф

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на  Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя состоит в том, что рабочим телом выступает не сгорающее топливо, как в реактивных двигателях, а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.

Принцип его действия таков:

 

В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней).  В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

 

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

 

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи – газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо – ионные двигатели имеют очень небольшую тягу, порядка 50–100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

 

Тест ионного двигателя для корабля Deep Space

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200может дать тягу уже в 5 ньютонов.

Второй вопрос – электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути – заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Еще в 2006 году Европейское космическое агентство (European Space Agency) и Австралийский национальный университет (Australian National University) успешно провели испытания нового поколения космических ионных двигателей, достигнув рекордных показателей.

Двигатели, в которых заряженные частицы ускоряются в электрическом поле — давно известны. Они применяются для ориентации, коррекции орбиты на некоторых спутниках и межпланетных аппаратах, а в ряде космических проектов (как уже осуществившихся, так и только задуманных — читайте тут,тут и тут) — даже в качестве маршевых.

С ними специалисты связывают дальнейшее освоение Солнечной системы. И хотя все разновидности так называемых электроракетных двигателей сильно уступают химическим в максимальной тяге (граммы против килограммов и тонн), зато кардинально превосходят их в экономичности (расходе топлива на каждый грамм тяги за секунду). А эта экономичность (удельный импульс) прямо пропорционально зависит от скорости выбрасываемой реактивной струи.

Так вот, в опытном двигателе, названном «Двухступенчатый с четырьмя решётками» (Dual-Stage 4-Grid — DS4G), построенном по контракту ESA в Австралии, скорость эта достигла рекордных 210 километров в секунду.

Это, к примеру, раз в 60 выше, чем скорость выхлопа у хороших химических двигателей, и в 4-10 раз больше, чем у прежних «ионников».

Как ясно из названия разработки, такая скорость достигнута двухступенчатым процессом разгона ионов при помощи четырёх последовательных решёток (вместо традиционных одной стадии и трёх решёток), а также высоким напряжением — 30 киловольт. Кроме того, расхождение выходного реактивного пучка составило всего 3 градуса, против примерно 15 градусов — у прежних систем.

А вот информация последних дней.

 

 

Ионный двигатель (ИД) работает просто: газ из бака (ксенон, аргон и пр.) ионизируется и разгоняется электростатическим полем. Поскольку масса иона мала, а заряд он может получить значительный, ионы вылетают из двигателя со скоростями до 210 км/с. Химические двигатели могут достичь… нет, ни чего-то подобного, а всего лишь в двадцать раз меньшей скорости истечения продуктов сгорания лишь в исключительных случаях. Соответственно, расход газа в сравнении с расходом химического топлива крайне мал.

Именно поэтому на ИД полностью или частично работали и работают такие «дальнобойные» зонды, как Hayabusa, Deep Space One и Dawn. И если вы собираетесь не просто по инерции лететь до далёких небесных тел, но и активно маневрировать близ них, то без таких двигателей не обойтись.

 

В 2014 году ионные двигатели справляют полувековой юбилей в космосе. Всё это время проблему эрозии не удавалось решить даже в первом приближении. (Здесь и ниже илл. NASA, Wikimedia Commons.)

 

Как и всё хорошее, ИД любит, чтобы его питали: на один ньютон тяги нужно до 25 кВт энергии. Представим, что нам поручили запустить 100-тонный космический корабль к Плутону (вы уж простите нас за мечтательность!). В идеале даже для Юпитера нам потребуется 1 000 ньютонов тяги и 10 месяцев, а до Нептуна на той же тяге — полтора года. В общем, давайте про Плутоны всё-таки не будем, а то грустно как-то…

 

Ну а чтобы получить эти пока умозрительные 1 000 ньютонов, нам потребуется 25 мегаватт. В принципе, ничего технически невозможного — 100-тонный корабль мог бы принять атомный реактор. Кстати, в настоящее время НАСА и Министерство энергетики США работают над проектом Fission Surface Power. Правда, речь идёт о базах на Луне и Марсе, а не о кораблях. Но масса реактора не так уж высока — всего пять тонн, при размерах в 3×3×7 м…

Ну ладно, помечтали и хватит, скажете вы, и тут же вспомните частушку, якобы придуманную Львом Толстым во время Крымской войны. В конце концов, такой большой поток ионов, проходящий через двигатель (а это ключевое препятствие), вызовет его эрозию, и значительно быстрее, чем за десять месяцев или полтора года. Причём это не проблема выбора конструкционного материала — благо разрушаться в таких условиях будут и титан, и алмаз, — а неотъемлемая часть конструкции ионного двигателя per se.

Так вот, исследователи из Лаборатории реактивного движения НАСА считают, что как минимум частично покончили с этой проблемой.

При большой тяге ионы в двигателе врезаются в анод, что ведёт к анодному разбрызгиванию. Чем выше тяга двигателя и скорость ионов, тем быстрее, следовательно, будет эродировать анод.

 

Стенки из нитрида бора — самое уязвимое место ионного двигателя, однако магнитное поле смогло повысить их предельный ресурс в 500–1 000 раз.

Они попробовали изолировать стенки анода (на базе нитрида бора) от положительных ионов магнитным полем. А линии такого магнитного поля были параллельны поверхности стенок, и по ним заряженные частицы уносились прочь, не трогая стенок. Решение, при всей его очевидности, оказалось довольно эффективным: скорость эрозии упала в 500–1 000 раз. Испытания проводились на ИД, основанном на эффекте Холла и потребляет значительное количество электроэнергии — около 25КВатт на создание силы тяги в 1 ньютон…

 

Разумеется, это не конец всех проблем. При дальнейшем масштабировании ИД энергия ионов может оказаться такой, что на защитное магнитное поле либо не хватит располагаемой электрической мощности, либо даже при её наличии обеспечить защиту от ионов полностью не получится. И всё же это решительный шаг вперёд — такое замедление эрозии делает принципиально возможной отправку даже весьма тяжёлого корабля к относительно удалённым объектам Солнечной системы.

Отчёт об исследовании опубликован в журнале Applied Physics Letters .

Подготовлено по материалам Gizmag. и http://lab-37.com

 

 

А вы в курсе что в России активно работает над ядерным двигателем для ракет или например о том, что скоро может появится Первый автомобиль с ядерным двигателем Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия - http://infoglaz.ru/?p=14217

masterok.livejournal.com

Ионный двигатель<title><h2>Принцип работы ионного двигателя | how-make<h2> <p>Данный опыт посвящен созданию демонстрационной модели ионного двигателя. <p> <p> <p> <p>Возьмём два электрода, подадим на них огромное напряжение.Расстояние между электродами много больше расстояния пробоя. Если одиниз электродов имеет острые углы или поверхности, то вокруг них мы будемвидеть сине-фиолетовое свечение. <p> <p> <p> <p>Такое свечение называется коронным и является одним из видовэлектрического разряда. Вызвано оно тем, что с острых краёв разностьюпотенциалов срывает электроны, и они, ионизируя воздух, вызываютсвечение. <p> <p> <p> <p>На фото как раз видно, что с острия иголки разностью потенциалов срывает электроны, что и вызывает такое свечение. <p> <p>Раз с поверхности металла срывает носители заряда, то создаётсянекоторая реактивная тяга, так нельзя ли ее использовать? Можно. Дляэтого был изготовлен и отбалансирован электрод особой формы (см. рис.1) формы, с 2 остриями, направленными в разные стороны. Этот электродбыл поставлен на острие иглы, на которую было подано напряжение. Кактолько мы подаём высокое напряжение (20 КВ 20 КГц, один электрод –земля, второй – опорная игла), с остриёв электрода срываются электроны,придавая небольшую реактивную силу, в результате чего электрод начинаетвращаться. <p> <p><p> <p>Из за своей низкой мощности он не нашел применения в земной технике,но нашел применение в космосе. Подробнее прочитать можно здесь http:slovari.yandex.rusearch.xml?text=%C8%EE%ED%ED%FB%E9%20%E4%E2%E8%E3%E0%F2%E5%EB%FC <p> <p>Работа такого двигателя видна на рисунке. <p> <p>Также можно скачать видео:(один электрод – игла, второй – обмотка на бумажном цилиндре):http:licrym.orgimageswikiIon_cyl.avi ( 2,5 Мб, очень эффектно выглядит!)Один электрод – игла, второй заземлен:http:licrym.orgimageswikiIon_gr.avi 700К <p> <p>Источник<p> <p><h3> Похожие статьи <h3><p> <p><h3> Популярные статьи <h3><p> <p><span class="mylink" data-url="http://how-make.ru/elektrichestvo/ionnyj-dvigatel/">how-make.ru</span></p><h2>Ионный двигатель - принцип работы, история и перспективы :: SYL.ru</h2><p>Основная проблема в освоении космических просторов - крайне низкие скорости у разработанных человечеством летательных аппаратов. Современные разработки имеют также и огромный расход топлива. Таким образом, если построить ракету и запустить ее, например, на Марс и обратно, то корабль будет просто огромный. И большую его часть будет занимать именно топливо. Приблизительно для высадки на Марс нужно более миллиарда тонн высококачественного ракетного топлива. К счастью, такая современная разработка ученых, как ионный двигатель, сможет в недалеком будущем решить эту проблему. Теоретически с его помощью можно разгоняться до двухсот километров за секунду. Основными плюсами можно назвать именно огромные развиваемые скорости и маленький запас горючего. Для работы такого агрегата, как ионный двигатель, нужны лишь электричество и инертный газ. Однако есть у него и некоторые недостатки, например, слабая разгонная скорость. Это заставляет задуматься о многих проблемах применения двигателя в условиях присутствия гравитационных полей.</p><p></p><p>Ионный двигатель: принцип действия</p><p>Благодаря высокому напряжению ионизируется газ в специальной камере. Вследствие этого ионы газа начинают выбрасываться прочь из камеры и создавать тягу. Однако, так как это цепная реакция, и сила тяги увеличивается очень медленно и постепенно, понадобится приблизительно полгода, чтобы разогнаться до двухсот километров в секунду. Примерно такое же количество времени уйдет и на торможение. С другой стороны, объективно эти цифры очень малы в сравнении с показателями у современных космических двигателей, которым на достижение подобных по качеству результатов необходимо было бы затратить в двадцать раз больше времени. Более того, инертный газ занимает в сотни раз меньше места, чем топливо у ракет. Единственная проблема, которую сложно решить – это наличие электричества. Солнечных батарей просто не хватит для работы таких приборов, как ионные двигатели, поэтому вероятно применение ядерного реактора. Еще одним недостатком можно считать низкую маневренность. Также основным вопросом стоит проблема с гравитацией. Находясь в пределах поля Земли, двигатель просто не будет работать. С другой стороны, в условиях открытого космоса аналогов такого устройства, как ионный двигатель, пока нет.</p><p>Немного истории и перспективы</p><p>В фантастической литературе подобные приборы встречались довольно часто. Однако только в 1960 году был создан ионный двигатель своими руками (а точнее, руками научных сотрудников НАСА). Он назывался широко-лучевым электростатическим устройством. Уже в начале семидесятых прошли испытание ртутные электростатические двигатели в условиях открытого космоса. К концу семидесятых генераторы на основе эффекта Холла использовали в Советском Союзе. В качестве именно основного двигателя ионный был применен на американском космическом аппарате в 1998 году. За ним последовали европейский зонд, японский космический корабль в 2003 году. На сегодняшний день НАСА разрабатывает знаменитый проект под названием «Прометей». Для него конструируют супермощный ионный двигатель, который питается от ядерного реактора.</p><p><span class="mylink" data-url="https://www.syl.ru/article/99114/ionnyiy-dvigatel---printsip-rabotyi-istoriya-i-perspektivyi">www.syl.ru</span></p><h2>Плазменные двигатели: миф и реальность</h2> <p>     Экстремально сложная проблема создания космического аппарата, способного за разумное время (сравнимое с человеческой жизнью) преодолеть межзвездные расстояния, обусловлена парадигмой традиционной ракеты. Которая несет на борту запас топлива и, как следствие, расходует на его разгон почти всю извлекаемую из топлива энергию! Математическим выражением этого проклятия является т.н. формула Циолковского, вытекающая из закона сохранения импульса:</p> <p></p> <p>     Здесь не учитываются затраты топлива на подъем с Земли и выход на орбиту, где начинается разгон до крейсерской скорости. Однако очевидно, что прежде чем отправиться в далекое путешествие, корабль будет собран из модулей на околоземной или окололунной орбите.   </p> <p> <img src="/800/600/http/4.bp.blogspot.com/-VyAtXtNpVjs/UDCZtPibuuI/AAAAAAAAAng/N9B0boVpJ4U/s400/plazma_engine11_1.jpg" alt=""/></p> <p> Ионный двигатель</p> <p>На сегодняшний день отсутствует ясное представление о том, как именно космические аппараты когда-нибудь преодолеют рубеж скорости в 10 000 км/cек. Это — примерно 130 лет полета до ближайшей звездной системы Альфы Центавра. Нет смысла рассматривать бесплодные фантазии вроде фотонного звездолета. Нелепа сама идея использовать для создания тяги фотоны с их ничтожным по сравнению с энергией импульсом ! В качестве реальной возможности рассматривается двигатель, использующий энергию термоядерного синтеза. Однако предлагаемые методы  синтеза в малом масштабе, сводящиеся к поджиганию таблеток из дейтерия + гелия-3 лучами лазеров или пучками ионов/электронов, едва ли когда-нибудь будут реализованы на борту космического судна http://extremal-mechanics.org/?p=423#more-423. Надежды на солнечные паруса безнадежны, т.к. по мере удаления от Солнца их тяга стремится к нулю. При площади паруса в 1000 кв. км и фантастической массе аппарата с парусом в 1 тонну, через год будет пройдено 107.7 млрд. км, а скорость парусника достигнет 1714 км/сек. И это практический предел, поскольку даже через 700 лет полета, когда аппарат достигнет системы Альфа-Центавра, скорость не превысит 1715 км/сек. Полубезумные проекты парусов размером с Европу, которые приводятся в движение миллионами лазеров с Луны, наглядно демонстрируют бессилие идеи космического парусника. Хотя для полетов в Солнечной системе, не слишком далеко от Солнца, она имеет определенную перспективу. </p> <p>   Среди испытанных конструкций, способных дать существенную тягу, вне конкуренции ядерные двигатели с теплоносителем (ЯРД). В СССР был разработан и испытан превосходный образец такой установки — РД0410 http://www.kbkha.ru/?p=8&cat=11&prod=66 . Скорость истечения рабочего тела из сопла, т.е. удельный импульс ЯРД может составлять 9 — 10 км/сек. Это более, чем вдвое превышает показатели любых химических ракетных двигателей. При разумном ограничении стартовой массы в 10 000 тонн и скромной нетто-массе 100 т (без учета топлива и рабочего тела), предельная скорость корабля</p> <p>  км/сек.</p> <p>Отлично для полетов в Солнечной системе, но не годится для путешествия в систему Альфа Центавра, которое продлилось бы около 29 000 лет ! Двухступенчатая схема даст вдвое большую скорость, но стартовая масса вырастет на порядок. Для нашего корабля с ЯРД и нетто-массой 100 т, который разогнался до скорости 200 км/сек, стартовая масса приблизилась бы к  50 миллиардам тонн !  Скорости  км/сек отвечает не столь кошмарный, но тоже впечатляющий запас рабочего тела, который превышает 2 миллиона тонн. Таким образом 100 км/сек — это трудно достижимый, практический предел для ракет с ЯРД, по мере приближения к которому начинается гигантомания. Из формулы Циолковского вытекает, на первый взгляд, простое решение проблемы. Нужно на порядки увеличить удельный импульс , и тогда не придется экспоненциально наращивать расход рабочего тела. Для этого принципиально не годится ЯРД —  в связи с тем, что рабочее тело нагревается в ядерном реакторе. Необходимую скорость истечения струи может обеспечить т.н. плазменный двигатель. Данный термин можно отнести к большому семейству устройств, различным образом оперирующих с плазмой, включая ионные двигатели.</p> <p>Классические плазма-моторы</p> <p>       Любой ракетный двигатель выбрасывает из сопла слабоионизированную плазму, но плазменным, ионным, электрореактивным обычно называется лишь тот, который ускоряет плазму за счет электромагнитных сил, действующих на заряженные частицы. Однако сделать это очень сложно, поскольку любое электрическое поле, ускоряющее заряды в плазме, придаст равные по модулю суммарные импульсы ионам и электронам. В самом деле, изменение импульса заряда за время равно , где – сила, действующая на заряд (в поле с напряженностью ). Поскольку плазма в целом электрически нейтральна, сумма всех положительных зарядов равна по модулю сумме отрицательных . За бесконечно малое время вся масса положительных ионов получит импульс . Такой же по величине импульс, направленный в обратную сторону, получит вся масса отрицательных зарядов.  Поэтому суммарный импульс равен нулю и, следовательно, тяги не возникнет. </p> <p>    Таким образом, для электрического разгона плазмы необходимо как-то разделить разноименные заряды, чтобы разогнать заряды одного знака, в то время как заряды другого знака выведены из зоны действия ускоряющего поля. Однако эффективно разделить заряды крайне сложно! Этому препятствуют мощные кулоновские силы притяжения, возникающие между разноименно заряженными сгустками плазмы и немедленно восстанавливающие электрическое равновесие. Применяемые в существующих плазменных двигателях методы разделения положительных ионов с электронами используют электростатическое или магнитное поле. В первом случае двигатель традиционно называется ионным, а во втором — плазменным.</p> <table cellspacing="0" cellpadding="0" align="center"><tbody><tr><td></td> </tr><tr><td> <p>Схема электростатического ионного двигателя.  </p> </td> </tr></tbody></table> <p>Функциональная схема «классического» ионного двигателя»:</p> <p align="justify">1 — подвод рабочего тела; 2 — ионизатор; 3 — пучок ионов; 4 — фокусирующий электрод; 5 — ускоряющий электрод; 6 — блокирующий электрод; 7 — нейтрализатор; 8 — основной источник энергии; 9 — вспомогательный источник энергии.В сравнительно узком интервале между сетчатыми анодом 4 и катодом 5 происходит разгон положительных ионов газа (ксенон, аргон, водород и т.д.), являющегося рабочим телом двигателя. При этом свободные электроны, образующиеся в процессе ионизации, притягиваются к аноду, после чего выводятся в истекающую наружу струю положительно заряженного газа, для его нейтрализации. Катод 6 блокирует притягивание к аноду электронов, покидающих нейтрализатор 7. Анодом является не только электрод 4, но и вся внешняя оболочка камеры, в которой происходит ионизация газа. Анод имеет наибольший потенциал ~1 000 В, в то время как потенциал катода 5 составляет ~100 В, а у катода 6 он еще ниже.  </p> <p align="justify">       Скорость струи газа, ускорившейся в промежутке между сетками 4 и 5, может доходить до 200 км/cек. Однако тяга ионного двигателя ничтожно мала, в лучшем случая достигая ~ 0.1 ньютона. Это прямо связано с проблемой разделения ионов и электронов. Которая в этом, как и во всех других плазменных двигателях решается крайне неэффективно. Оптимистически предположим, что тягу ионного двигателя с удельным импульсом 200 км/cек удалось довести до 1 ньютона (100 грамм). Тогда корабль со стартовой массой около 15 000 тонн, из которых 14 900 т приходится на рабочее тело (газ), сумеет разогнаться до 1 000 км/сек  (по формуле Циолковского   . Время разгона выражается формулой   ,  где — полученный кораблем импульс и <img src="&bg=ffffff&fg=000&s=0" alt="F" title="F"/> — сила тяги. В данном случае имеем   = 100 000 кг ⋅ 1 000 000 м/сек / 1 Н = 100 млрд. секунд, что составляет примерно 3 200 лет ! И это — только нижняя оценка, а фактическое время разгона будет значительно больше вследствие того, что в числитель дроби  нужно добавить также импульс, который получило рабочее тело до того, как прошло через двигатель и вылетело из сопла.</p> <p align="justify">    Мощность такого двигателя равна = 200 000 Ватт. Реально работающие образцы имеют на порядок меньше. Чтобы сократить время разгона до крейсерской скорости <img src="&bg=ffffff&fg=000&s=0" alt="V" title="V"/>, т.е., увеличить тягу, следует повысить потребляемую электрическую мощность и, соответственно, габариты двигателя. Предположим, что таким образом мы увеличили тягу в 1 000 раз и сократили время разгона до разумных 3.2 года. Неплохо для скорости <img src="+%3D+1+000&bg=ffffff&fg=000&s=0" alt="V = 1 000" title="V = 1 000"/> км/cек, хотя до Альфы Центавра пришлось бы лететь еще 1 300 лет. Однако потребляемая мощность составит сотни мегаватт, что соответствует мощности энергоблока средней АЭС. Это означает, что не существует разумных источников энергии для космических ионных двигателей с тягой хотя бы в десятки килограмм.</p> <p align="left">           Еще в 60-х годах А.И. Морозов предложил свой концепт плазменного двигателя, который был успешно испытан в 70-х. Здесь заряды разделяются радиальным магнитным полем, которое прикладывается в зоне разгона положительных ионов продольным электрическим полем. Значительно более легкие электроны, под действием сил Лоренца, спирально навиваются на силовые линии магнитного поля и как бы «выдергиваются» магнитным полем из плазмы. При этом массивные ионы по инерции проскакивают магнитное поле,  ускоряясь электрическим в продольном направлении. Механизм нейтрализации  работает также, как в ионном двигателе. Данная схема, имея перед ним определенные преимущества, не позволяет добиться существенно большей тяги при сравнимой мощности. Магнитный метод разделения зарядов далек от эффективного решения проблемы и не позволяет создавать плазменные двигатели, которые могли бы быть использованы для межзвездных путешествий.</p> <p align="left">      Чтобы убедиться в этом предположим, что 1 грамм ионов удалось разделить с электронами и последние скопились на выходе из сопла, навиваясь на силовые линии поперечного магнитного поля с индукцией Тс. Тогда этот избыточный отрицательный заряд составит примерно -95 000 Кл. Легко проверить, что соответствующие «избыточные» ионы с общей массой 1 г за несколько фемтосекунд разгонятся до ~10 000 км/сек. При этом электроны избыточного заряда не приобретут равного импульса навстречу ионам, что нивелировало бы реактивный эффект, т.к. за магнитное поле завернет эти электроны на круговые траектории с радиусами порядка 1 метр.  Таким образом,  для придачи аппарату тягового импульса  10 000 кг ⋅ м / сек = 0.001 кг ⋅ 10 000 000 м/cек придется  в объеме нескольких кубометров создать сверхмощное магнитное поле порядка 10 000 Тесла. Такие экстремальные  поля создаются только взрывомагнитными генераторами А.Д. Сахарова и их современными вариациями, причем они существуют лишь микросекунды и в объемах, измеряемых кубическими дециметрами. При этом энергия магнитного поля будет иметь порядок 10 ТераДжоулей. С учетом того, что кумулятивные генераторы способны преобразовать до 20 – 30 % энергии химического взрыва, для придания космическому аппарату тягового импульса ~10 000 кг⋅м/сек пришлось бы эффективно утилизировать энергию ядерного взрыва мощностью ~10 Кт.  </p> <p>    При массе корабля в 100 т потребуется миллион таких импульсов, чтобы увеличить его скорость всего на 100 км/cек. И то лишь при условии, что ядерные заряды не пришлось везти на борту и они были заблаговременно размещены в космосе на участке разгона. Но миллион ядерных бомб — это несколько тысяч тонн плутония, которого за весь период существования ядерного оружия было произведено немногим более 300 тонн.  Таким образом, имея лишь плазменным мотор с магнитным разделением зарядов, о полете к звездам лучше забыть.</p> <p> Что делать с плазмой ?</p> <p align="left">  По-видимому, проблема эффективного разделения зарядов в плазменных двигателях принципиально неразрешима. Существуют передовые проекты плазменных двигателей с мощностью 5 МВт и удельным импульсом 1 000 км/cек, но их тяга была бы равна 5 000 000 Вт / 1 000 000 м/сек = 5 Н, поэтому проблема сокращения времени разгона остается непреодолимой. Не говоря уже о том, что в космосе трудно добыть мегаватты потребляемой электрической мощности.</p> <p align="justify">       Понимая эти проблемы, разработчики плазменных моторов ищут другие подходы. Заметный энтузиазм вызывает новый концепт VASIMR, который в лаборатории показывает лучшие среди плазменных движков результаты: удельный импульс 50 км/cек, тяга 6 ньютонов и КПД 60 — 70 % (тест VX-200). Строго говоря VASIMR даже не является плазменным двигателем, потому что он генерирует высокотемпературную плазму, которая разгоняется в сопле Лаваля — за счет газодинамических эффектов и без электричества. </p> <p align="justify">    Через трубку 1 под давлением подается газ, который сначала разогревается и слегка ионизируется микроволновым излучением от 3. Затем поток плазмы, изолированный от стенок магнитным полем катушек 4, дополнительно разогревается антенной 5, которая излучает радиоволны на циклотронной частоте (это частота винтового вращения электрона вокруг силовой линии продольного магнитного поля) . Такой резонансный нагрев повышает температуру плазмы до миллионов градусов, после чего она истекает в магнитное сопло Лаваля 6. Последнее предохраняет стенки от контакта с горячей плазмой и преобразовывает энергию теплового движения ионов в энергию поступательного движения газовой струи. В сущности VASIMR позволяет получить очень горячую, высоко ионизированную плазму посредством микроволнового нагрева. Ускорение плазмы происходит вполне аналогично тому, как ускоряется газовая струя на выходе из обычного ракетного двигателя.  Сжиганием химического топлива такую температуру плазмы получить нельзя, но за счет ядерного взрыва это сделать можно. Результаты VASIMR демонстрируют некоторый прогресс, но они по-прежнему бесконечно далеки от потребностей межзвездных экспедиций и явно не имеют перспектив развития в этом направлении. Что касается удельного импульса, то VASIMR является шагом назад.</p> <p align="justify"><img src="/800/600/http/1.bp.blogspot.com/-fQt0CoJ5jJU/T1S0aFQAeuI/AAAAAAAAAhU/ziTEAYJhKIw/s640/vasimr.png" alt="" border="0"/></p> <p align="justify">Источник:   http://spaceflight.nasa.gov/shuttle/support/researching/aspl/images/vasimr.jpg</p> <p>      Есть еще один, сравнительно новый концепт плазменного двигателя — MPD thruster, с которым связывают большие надежды. Идея заключается в следующем. Создается такой плазменный разряд между анодом и катодом, чтобы соответствующий  электрический  ток индуцировал кольцевое магнитное поле  . Силой Лоренца  поле действует на движущиеся заряды тока  , отклоняя часть из них в продольном направлении. Так возникает истекающий «вправо» сгусток плазмы, который создает тяговый толчок. Двигатель работает в импульсном режиме, т.к. необходимы короткие паузы между разрядам для скапливания зарядов на электродах.      </p> <p>      MPD — thruster не нуждается в разделении разноименных зарядов, потому что в разрядном токе они движутся во встречных направлениях и, соответственно, силы Лоренца имеют одинаковые направления. Теоретически этот концепт имеет выдающиеся показатели на фоне других плазменных моторов, потому что может развивать килограммы тяги. Однако магнитное поле в принципе не способно разгонять электрические заряды, потому что сила Лоренца действует перпендикулярно скорости заряда и, стало быть,  не меняет его кинетическую энергию.  MPD — thruster лишь отклоняет направление движения зарядов так, что плазма вылетает наружу в продольном направлении.  Но для того, чтобы ток между анодом и катодом был достаточно плотным для создания тяги,  придется затратить много электрической энергии. Во всяком случае, потребляемая  электрическая мощность не уступает мощности плазменной струи. При удельном импульсе ~1 000 км/сек и тяге в 100 кг потребляемая мощность составит сотни мегаватт, что практически невозможно генерировать в космосе. Но даже при таких,  возможных пока лишь теоретически показателях  MPD — thruster-а, оснащенный им корабль с нетто-массой 100 т разгонится до 10 000 км/сек за 317 лет (!)  при нереальной стартовой массе 2 200 000 тонн.  Кроме того, невозможно вообразить себе  расход миллионов тонн  газа в двигателе, пропускающем через него мощные электрические разряды.  Очевидно, что никакие электроды не выдержат таких тепловых и химических нагрузок.</p> <p><img src="/800/600/http/1.bp.blogspot.com/-qmaf87xPzAk/T1TKdOtwz9I/AAAAAAAAAhc/gLq0RarFtYs/s400/MPD+thruster.png" alt=""/></p> <p>Принципиальная Схема MPD — thruster,  Источник:  http://www.emeraldinsight.com/journals.htm?articleid=877310&show=html</p> <p>   Таким образом ясно, что ни один из экспериментально проверенных или  теоретически просчитанных плазменных двигателей не способен доставить космический корабль к ближайшим звездам хотя бы за время человеческой жизни.  И этот разрыв, по-видимому, является фатально непреодолимым, так что плазменные двигатели звездолетов навсегда останутся в сфере научной фантастики. Однако плазменные моторы имеют важные применения  в качестве маневровых, корректирующих орбиты и т.п.  вспомогательных двигателей космических аппаратов, поэтому усилия по их разработке вполне оправданы.  Что касается  ядерных ракетных двигателей, то они также не годятся для межзвездных полетов, но прекрасно подходят для межпланетных путешествий в Солнечной системе. При этом ядерный импульсный двигатель, утилизирующий энергию ядерных взрывов, возможно имеет потенциал развития в контексте отправки автоматического зонда  в одну из ближайших звездных систем.</p> <p>Дополнение к статье, сделанное 5 января 2018</p> <p>   Если согласиться со временем ожидания прибытия зонда к Альфе-Центавра в 1 000 — 1 500 лет, то ионный двигатель может оказаться подходящим. Хотя такой проект технически крайне сложен, он выглядит осуществимым при сегодняшнем уровне науки и технологий.</p> <p>   Предположим, что удалось добиться тяги ионного двигателя в Н при удельном импульсе <img src="u%3D1+000&bg=ffffff&fg=000&s=0" alt="u=1 000" title="u=1 000"/> км/сек. Такой мотор был бы очень хорош! Их может быть и несколько, объединенных в двигательную установку с общей тягой 10 Н (1 кгс приблизительно).</p> <p>   Согласно формуле Циолковского, автоматический зонд с разумной нетто-массой 1 000 тонн, израсходовав 1 750 тонн рабочего тела (пусть это будет газ — неон с атомной массой 20), разгонится до почти 1 100 км/сек. Тогда время полета до Альфы-Центавра составит 1 200 — 1 250 лет с учетом разгона. Впрочем, нужно учесть еще скорость покидания Солнечной системы около 42 км/сек под углом углом 61 градус к плоскости эклиптики http://extremal-mechanics.org/wp-content/uploads/2012/11/LongShot.pdf (приблизительно 15 км/сек из этой скорости даст Земля — эффект пращи). Затем включится маршевый ионный двигатель, которому предстоит непрерывно проработать около 100 лет. Таким образом, крейсерская скорость составит около 1 150 км/сек, но время в пути сократится меньше, чем на 50 лет.</p> <p>   Время разгона примем <img src="T%3D100&bg=ffffff&fg=000&s=0" alt="T=100" title="T=100"/> лет. Это — реалистичное время, в течение которого должна проработать энергосистема корабля в режиме полной тяги. Для сравнения, радиоизотопные термо-электрогенераторы Вояджеров работают на <img src="Pu-238&bg=ffffff&fg=000&s=0" alt="Pu-238" title="Pu-238"/> уже почти 40 лет и их мощность выше 70% от начальной. При этом период полураспада плутония-238 равен 87.7 года.</p> <p>   Однако, радиоизотопные источники не способны обеспечить нужную электрическую мощность (ниже мы увидим, что она имеет порядок 350 МВт). Для сравнения, на Вояджерах мощность энергоустановки около 500 Вт. Для выработки 350 МВт потребуются тысячи тонн плутония! И это — без общей массы огромного числа термопар. По-видимому, такой способ получения энергии нельзя считать реалистичным.</p> <p>   Ядерный реактор подходит больше, хотя крайне сложно добиться его непрерывной работы в замкнутом цикле в течение века. Здесь ведь нужно решать проблему периодической замены ТВЭЛов, а также постепенного «отравления» активной зоны реактора. Но можно предположить, что 100 лет безотказной работы реактора с турбоустановкой технически достижимы.</p> <p>   Тогда импульс струи, выбрасываемой из сопла за 1 сек, грубо оценим, как </p> <p><img src="_0%3D%28p_s%2Bp_f%2F2%29%2FT%3D654&bg=ffffff&fg=000&s=0" alt="p_0=(p_s+p_f/2)/T=654" title="p_0=(p_s+p_f/2)/T=654"/> кг*м/сек, </p> <p>где <img src="_s%3D1.1%5Ccdot+10%5E%7B12%7D&bg=ffffff&fg=000&s=0" alt="p_s=1.1\cdot 10^{12}" title="p_s=1.1\cdot 10^{12}"/> — конечный импульс зонда и <img src="_f%3D1.93%5Ccdot+10%5E%7B12%7D&bg=ffffff&fg=000&s=0" alt="p_f=1.93\cdot 10^{12}" title="p_f=1.93\cdot 10^{12}"/> — импульс 1 750 тонн рабочего тела при скорости 1 100 км/сек (так мы учитываем импульс рабочего тела, приобретаемый им до вылета из двигателя в виде плазмы).</p> <p>   Отсюда массовый расход рабочего тела (ионизированный неон) грамма/сек. Умножая это число на <img src="T%3D3.154%5Ccdot+10%5E9&bg=ffffff&fg=000&s=0" alt="T=3.154\cdot 10^9" title="T=3.154\cdot 10^9"/> сек (= 1 век, считая все годы по 365 дней), получим 2 060 тонн, что несколько больше предполагаемых 1 750 тонн, поскольку оценка времени разгона была довольно грубой. Одновременно мы видим, что эта погрешность незначительна, поэтому реальное время разгона будет несущественно отличаться от 100 лет (может быть 110 или 90 лет, к примеру).</p> <p>   Считая неоновую плазму однократно ионизированной (однозарядные ионы), получим силу тока в струе ионов до их нейтрализации на выходе из «сопла»:</p> <p><img src="I%3D%5Cfrac%7B%5Cmu+e%7D%7B20%5Ccdot+m_0%7D%3D3130&bg=ffffff&fg=000&s=0" alt="I=\frac{\mu e}{20\cdot m_0}=3130" title="I=\frac{\mu e}{20\cdot m_0}=3130"/> Aмпер,</p> <p>где <img src="m_0&bg=ffffff&fg=000&s=0" alt="m_0" title="m_0"/> — масса и <img src="e&bg=ffffff&fg=000&s=0" alt="e" title="e"/> — заряд протона. Поскольку для разгона ионов до 1 000 км/сек потребуется поле с напряжением <img src="U%5Capprox+100&bg=ffffff&fg=000&s=0" alt="U\approx 100" title="U\approx 100"/> килоВольт, мощность системы разгона плазменной струи <img src="N%3DIU%3D313&bg=ffffff&fg=000&s=0" alt="N=IU=313" title="N=IU=313"/> MBт.</p> <p>Здесь не учитываются тепловые потери в цепи ионного двигателя, по которой будет протекать ток в 3 килоАмпер, а также затраты энергии на ионизацию рабочего тела (хотя последние, наверное, будут сравнительно малы).</p> <p>   Таким образом, можно оценить снизу электрическую мощность энергоустановки в 350 МВт. Потребуется весьма мощный турбоагрегат, сравнимый с энергоблоком АЭС! Удастся ли поддерживать его непрерывную работу около века при массе зонда в 1 000 тонн? — это большой вопрос. Но выглядит все это, тем не менее, не фантастически.</p> <p>   Никакой возможности затормозить у такого зонда не будет. А без этого нет смысла  ждать его прибытия 1 250 лет! Чтобы иметь возможность торможения для выхода на орбиту в системе Альфа-Центавра, нужно увеличить стартовую массу до порядка 10 000 тонн как минимум. Такой корабль с тягой ионных двигателей в несколько кгс должен быть собран на околоземной орбите и разогнан до скорости покидания Солнечной системы в направлении Альфа-Центавра ( км/сек) с помощью, например, ядерного импульсного двигателя типа Ориона. </p> <p><span class="mylink" data-url="http://extremal-mechanics.org/archives/390">extremal-mechanics.org</span></p><table><hr> <ul class="relpost"> <li><a href="/shema/skamejki-shema.html" title="Скамейки схема"><div class="relimg"><img src="/800/600/http/stroysvoimirukami.ru/uploads/12.2014/shema-derevynnoj-skamejki-s-razmerami.jpg" /></div>Скамейки схема</a></li> <li><a href="/shema/stiralnaya-mashina-indezit-wiun-100-shema.html" title="Стиральная машина индезит wiun 100 схема"><div class="relimg"><img src="/800/600/http/shopixi.ru/d.png" /></div>Стиральная машина индезит wiun 100 схема</a></li> <li><a href="/shema/shema-fundamenta-dlya-otkatnyh-vorot.html" title="Схема фундамента для откатных ворот"><div class="relimg"><img src="/800/600/http/moigarazh.ru/wp-content/uploads/2016/02/fundament-pod-otkatnye-vorota.jpg" /></div>Схема фундамента для откатных ворот</a></li> <li><a href="/shema/elektrocshitok-na-dache-svoimi-rukami-shema.html" title="Электрощиток на даче своими руками схема"><div class="relimg"><img src="/800/600/http/fb.ru/misc/i/gallery/41611/2111217.jpg" /></div>Электрощиток на даче своими руками схема</a></li> <li><a href="/shema/shema-tri-fazy-iz-odnoj.html" title="Схема три фазы из одной"><div class="relimg"><img src="/800/600/http/meandr.org/wp-content/uploads/2015/09/137.jpg" /></div>Схема три фазы из одной</a></li> <li><a href="/shema/shema-fonarya-na-solnechnoj-bataree.html" title="Схема фонаря на солнечной батарее"><div class="relimg"><img src="/800/600/http/xn--80aaahigxablbgird0a1biet2a4q.xn--p1ai/wp-content/uploads/2016/04/a68cebe7c598237a76916bd0b721de1d.jpg" /></div>Схема фонаря на солнечной батарее</a></li> <li><a href="/shema/shema-pryamogo-puska-asinhronnogo-dvigatelya.html" title="Схема прямого пуска асинхронного двигателя"><div class="relimg"><img src="/800/600/http/eprivod.com/p1/22032012/tir.png" /></div>Схема прямого пуска асинхронного двигателя</a></li> <li><a href="/shema/shema-podklyucheniya-datchik-dvizheniya-legrand.html" title="Схема подключения датчик движения легранд"><div class="relimg"><img src="/800/600/http/www-legrand.ru/wa-data/public/blog/img/506.750x0.jpg" /></div>Схема подключения датчик движения легранд</a></li> <li><a href="/shema/shema-podklyucheniya-telefonnoj-rozetki-rj11.html" title="Схема подключения телефонной розетки rj11"><div class="relimg"><img src="/800/600/http/obrawa.ru/wp-content/uploads/images/Podklyuchenie_telefonnoj_rozetki_rj11-_shema.png" /></div>Схема подключения телефонной розетки rj11</a></li> <li><a href="/shema/shema-odnoetazhnyh-domov-s-garazhom.html" title="Схема одноэтажных домов с гаражом"><div class="relimg"><img src="/800/600/https/1.bp.blogspot.com/-vldyQQVw7S8/VowajxIL3lI/AAAAAAAAMMc/hHxRvve7xKw/s320/Proekt-doma_132-02_Catalog.jpg" /></div>Схема одноэтажных домов с гаражом</a></li> <li><a href="/shema/shema-otmotka-schetchika-elektroenergii-transformatorom.html" title="Схема отмотка счетчика электроэнергии трансформатором"><div class="relimg"><img src="/800/600/http/alnia.ru/images/Landing/all_land/block1-bg2.png" /></div>Схема отмотка счетчика электроэнергии трансформатором</a></li> </ul></table></span></p> </div></div> <div class="right_block"><div class="search_wrapper"><form action="/search/search_do/" method="get" class="search_form search2"><fieldset><input title="Поиск" class="form_placeholder search_form_string" autocomplete="off" type="text" size="20" value="" name="search_string" /><input class="submit_button " type="submit" value="" /></fieldset></form></div><div class="left_wrapper"><div class="left_menu"><div class="catalog_title h1">Каталог товаров</div><div class="main_catalog_list"><ul class="level-0"><li data-id="4910" class="first "><a href="/katalog/inter_ernoe_osvewenie/">Интерьерное освещение</a><ul class="level-1"><li data-id="4911" class="first "><a href="/katalog/inter_ernoe_osvewenie/potolochnye_lyustry_s_pul_tom_upravleniya/">Потолочные люстры с пультом управления</a></li><li data-id="4949" class="even "><a href="/katalog/inter_ernoe_osvewenie/lyustry/">Люстры</a></li><li data-id="4916" class=""><a href="/katalog/inter_ernoe_osvewenie/nastol_nye_lampy/">Настольные лампы</a></li><li data-id="4921" class="even "><a href="/katalog/inter_ernoe_osvewenie/svetil_niki_nastennye_bra/">Светильники настенные (бра)</a></li><li data-id="4923" class=""><a href="/katalog/inter_ernoe_osvewenie/linejnye_svetil_niki/">Линейные светильники</a></li><li data-id="4925" class="even "><a href="/katalog/inter_ernoe_osvewenie/mebel_nye_svetil_niki/">Мебельные светильники</a></li><li data-id="4926" class=""><a href="/katalog/inter_ernoe_osvewenie/svetil_niki_vstraivaemye/">Светильники встраиваемые </a></li><li data-id="4922" class="last even "><a href="/katalog/inter_ernoe_osvewenie/nochniki/">Ночники</a></li></ul></li><li data-id="4992" class="even "><a href="/katalog/ulichnoe_osvewenie/">Уличное освещение</a><ul class="level-1"><li data-id="4993" class="first "><a href="/katalog/ulichnoe_osvewenie/fasadnye_svetil_niki/">Фасадные светильники</a></li><li data-id="4994" class="even "><a href="/katalog/ulichnoe_osvewenie/trotuarnye_svetil_niki/">Тротуарные светильники</a></li><li data-id="4995" class=""><a href="/katalog/ulichnoe_osvewenie/ulichnye_stolby/">Уличные столбы</a></li><li data-id="4996" class="even "><a href="/katalog/ulichnoe_osvewenie/sadovo-parkovye_svetil_niki/">Садово-парковые светильники</a></li><li data-id="5000" class=""><a href="/katalog/ulichnoe_osvewenie/prozhektory/">Прожекторы</a></li><li data-id="6714" class="last even "><a href="/katalog/ulichnoe_osvewenie/podvodnye_svetil_niki_i_aksessuary/">Подводные светильники и аксессуары</a></li></ul></li><li data-id="4901" class=""><a href="/katalog/tehnicheskoe_osvewenie/">Техническое освещение</a><ul class="level-1"><li data-id="4902" class="first "><a href="/katalog/tehnicheskoe_osvewenie/fito_svetil_niki/">Фито светильники</a></li><li data-id="4903" class="even "><a href="/katalog/tehnicheskoe_osvewenie/vnutrennee_osvewenie/">Внутреннее освещение</a></li><li data-id="4908" class=""><a href="/katalog/tehnicheskoe_osvewenie/svetil_niki_ip65/">Светильники пыле-влагозащищенные</a></li><li data-id="4909" class="last even "><a href="/katalog/tehnicheskoe_osvewenie/ofisnoe_osvewenie/">Офисное освещение</a></li></ul></li><li data-id="4955" class="even "><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/">Светодиодные ленты и комплектующие</a><ul class="level-1"><li data-id="4961" class="first "><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/lenty_12v/">Ленты 12В</a></li><li data-id="4963" class="even "><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/lenty_24v/">Ленты 24В</a></li><li data-id="4966" class=""><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/vlagozawiwennaya_svetodiodnaya_lenta/">Влагозащищенная светодиодная лента </a></li><li data-id="4964" class="even "><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/lenty_220v/">Ленты и гибкий Неон 220В</a></li><li data-id="4956" class=""><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/profil/">Профиль</a></li><li data-id="4965" class="even "><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/kontrollery/">Контроллеры</a></li><li data-id="4957" class=""><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/komplektuyuwie/">Комплектующие</a></li><li data-id="4962" class="even "><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/gotovye_resheniya/">Готовые решения</a></li><li data-id="4968" class=""><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/bloki_pitaniya/">Блоки питания</a></li><li data-id="4967" class="even "><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/umnaya_podsvedka/">Умная подсведка</a></li><li data-id="7313" class="last "><a href="/katalog/svetodiodnye_lenty_i_komplektuyuwie/termostojka_lenta_dlya_bani_i_sauny/">Термостойка лента для бани и сауны</a></li></ul></li><li data-id="4863" class=""><a href="/katalog/upravlenie_svetom/">Управление светом</a><ul class="level-1"><li data-id="4864" class="first "><a href="/katalog/upravlenie_svetom/datchiki/">Датчики</a></li><li data-id="4865" class="even "><a href="/katalog/upravlenie_svetom/dimmery/">Диммеры</a></li><li data-id="4866" class="last "><a href="/katalog/upravlenie_svetom/pul_ty_upravleniya_svetom/">Пульты управления светом</a></li></ul></li><li data-id="4875" class="even "><a href="/katalog/lampochki/">Лампочки</a><ul class="level-1"><li data-id="4876" class="first "><a href="/katalog/lampochki/cokol_e27/">Цоколь Е27</a></li><li data-id="4891" class="even "><a href="/katalog/lampochki/cokol_e14/">Цоколь Е14</a></li><li data-id="4879" class=""><a href="/katalog/lampochki/lampy_dlya_prozhektora_bra_i_torsherov/">Цоколь R7s (прожектора, бра и торшера)</a></li><li data-id="4880" class="even "><a href="/katalog/lampochki/cokol_g_13/">Цоколь G13</a></li><li data-id="4877" class=""><a href="/katalog/lampochki/cokol_gu5_3/">Цоколь GU5.3</a></li><li data-id="4886" class="even "><a href="/katalog/lampochki/cokol_gu10/">Цоколь GU10</a></li><li data-id="4881" class=""><a href="/katalog/lampochki/lampy_dlya_rastenij/">Лампы для растений</a></li><li data-id="4882" class="even "><a href="/katalog/lampochki/lyuminescentnye_lampy_bra_i_nastol_nye_svetil_niki/">Люминесцентные лампы (бра и настольные светильники)</a></li><li data-id="4878" class=""><a href="/katalog/lampochki/cokol_gx_53/">Цоколь GX53</a></li><li data-id="4884" class="even "><a href="/katalog/lampochki/dimmiruemye_lampy/">Диммируемые лампы</a></li><li data-id="4885" class=""><a href="/katalog/lampochki/ul_trafioletovye_lampy/">Ультрафиолетовые лампы</a></li><li data-id="4890" class="even "><a href="/katalog/lampochki/lampy-sky_special_naya_linejka_dlya_lyustr_osvewenie_360/">Лампы-sky. Специальная линейка для люстр (освещение 360°)</a></li><li data-id="4883" class=""><a href="/katalog/lampochki/cokol_g9_zamena_galogennoj_lampy/">Цоколь G9( замена галогенной лампы)</a></li><li data-id="4889" class="even "><a href="/katalog/lampochki/lampy_dlya_holodil_nikov_shvejnyh_mashin_i_t_d/">Лампы для холодильников, швейных машин и т.д.</a></li><li data-id="4888" class=""><a href="/katalog/lampochki/cokol_gy6_35/">Цоколь GY6.35</a></li><li data-id="4895" class="even "><a href="/katalog/lampochki/cokol_g4_zamena_galogennoj_lampy/">Цоколь G4( замена галогенной лампы)</a></li><li data-id="4898" class=""><a href="/katalog/lampochki/vintazhnye_lampy_i_aksessuary/">Винтажные лампы и аксессуары</a></li><li data-id="6712" class="last even "><a href="/katalog/lampochki/lampy_tipa_kukuruza/">Лампы типа Кукуруза</a></li></ul></li><li data-id="4867" class=""><a href="/katalog/fonari/">Фонари</a><ul class="level-1"><li data-id="6723" class="first "><a href="/katalog/fonari/s-ld012-c_silver_fonar_uniel_alyuminievyj_korpus_1w_3xaaa/">S-LD012-C Silver Фонарь uniel алюминиевый корпус 1W 3xAAA </a></li><li data-id="6722" class="even "><a href="/katalog/fonari/s-ld023-c_silver_fonar_uniel_alyuminievyj_korpus_1w_3xaaa/">S-LD023-C Silver фонарь Uniel алюминиевый корпус 1W 3xAAA</a></li><li data-id="6721" class=""><a href="/katalog/fonari/s-lld026-c_silver_fonar_uniel_alyuminievyj_korpus_3xaaa_0_5w/">s-lld026-c silver фонарь uniel алюминиевый корпус 3xAAA 0.5W</a></li><li data-id="5008" class="even "><a href="/katalog/fonari/fonar_navigator_94_964_npt-b01-3aaa_velo_2_krepl_cree_1ledh5vt_fokus_blist/">Фонарь Navigator 94 964 NPT-B01-3AAA Вело. 2 крепл. CREE 1LEDх5Вт, фокус, блист.</a></li><li data-id="5009" class=""><a href="/katalog/fonari/s-tl018-s_orange_fonar_uniel_serii_standart_camper_-_bright_light/">S-TL018-С Orange Фонарь Uniel серии Стандарт «Camper - Bright Light»</a></li><li data-id="5010" class="even "><a href="/katalog/fonari/ruchnoj_svetodiodnyj_fonar_uniel_03481_ot_batareek_180_lm_s-ld017-c_black/">Ручной светодиодный фонарь Uniel (03481) от батареек 180 лм S-LD017-C Black</a></li><li data-id="5011" class=""><a href="/katalog/fonari/s-ld029-c_black_fonar_uniel_serii_standart_in_focus_triplex/">S-LD029-C Black Фонарь Uniel серии Стандарт «In focus — Triplex»</a></li><li data-id="5012" class="even "><a href="/katalog/fonari/fonar_navigator_94_999_npt-w04-accu_dlya_raboty_1led_8led_0_5vt_akk_4v_2_2ach/">Фонарь Navigator 94 999 NPT-W04-ACCU для работы. 1LED+8LED [0.5Вт) акк. 4В 2.2Ач</a></li><li data-id="5013" class=""><a href="/katalog/fonari/s-cl016-c_black_fonar_uniel_serii_standart_work_light_general/">S-CL016-C Black Фонарь Uniel серии Стандарт «Work light – General+»</a></li><li data-id="5014" class="even "><a href="/katalog/fonari/p-ml072-bb_black_fonar_uniel_serii_premium_iron_domination_185/">P-ML072-BB Black Фонарь Uniel серии Премиум «Iron domination — 185 +»</a></li><li data-id="5015" class=""><a href="/katalog/fonari/fonar_navigator_71_596_npt-sp14-accu_prozhekt_3vt_led_200lm_akb_3ach/">Фонарь Navigator 71 596 NPT-SP14-ACCU Прожект. 3Вт LED, 200лм, АКБ 3Ач.</a></li><li data-id="5016" class="even "><a href="/katalog/fonari/fonar_navigator_94_944_npt-sp11-3aa_prozh_kemp_15_12led_3_rezhima/">Фонарь Navigator 94 944 NPT-SP11-3AA Прож/кемп. 15+12LED, 3 режима</a></li><li data-id="5017" class=""><a href="/katalog/fonari/fonar_navigator_94_961_npt-sp07-3d_prozhekt_kemp_23_18led_3d/">Фонарь Navigator 94 961 NPT-SP07-3D Прожект/кемп, 23+18LED, 3D</a></li><li data-id="5018" class="even "><a href="/katalog/fonari/fonar_navigator_94_966_npt-sp10-accu_prozhekt_37led_akkum_4v_4ach/">Фонарь Navigator 94 966 NPT-SP10-ACCU Прожект. 37LED, аккум.4В, 4Ач.</a></li><li data-id="5019" class=""><a href="/katalog/fonari/fonar_navigator_94_978_npt-cp12-4aaa_plast_1ledh0_5vt_kemping_6ledh0_5vt/">Фонарь Navigator 94 978 NPT-CP12-4AAA Пласт. 1LEDх0.5Вт + Кемпинг 6LEDх0.5Вт</a></li><li data-id="5020" class="even "><a href="/katalog/fonari/s-cl013-c_black_fonar_uniel_serii_standart_faithful_multifunctional_assistant_plastikovyj_korpus/">S-CL013-C Black Фонарь Uniel серии Стандарт «Faithful Multifunctional Assistant», пластиковый корпус</a></li><li data-id="5036" class=""><a href="/katalog/fonari/fonar_navigator_94_774_npt-ca14-accu_kemp_prozh_1vt_16_led_190lm_li-ion/">Фонарь Navigator 94 774 NPT-CA14-ACCU Кемп/прож. 1Вт/16 LED,190лм,Li-ion</a></li><li data-id="5037" class="even "><a href="/katalog/fonari/fonar_navigator_94_982_npt-ca10-accu_kemping_45_led_500lm_dimmer_akb_1_8a_ch/">Фонарь Navigator 94 982 NPT-CA10-ACCU Кемпинг, 45 LED 500лм, диммер, АКБ 1.8А/ч</a></li><li data-id="5040" class=""><a href="/katalog/fonari/dinamo_fonar_proconnect/">Динамо фонарь Proconnect</a></li><li data-id="5041" class="even "><a href="/katalog/fonari/fonar_detskij_proekcionnyj_uniel_fonar_r-pl702-b_rio1-53_orange_2xr6_1_led_plastik_oranzhevyj/">Фонарь детский проекционный Uniel фонарь R-PL702-B RIO1-53 ORANGE (2xR6) 1 LED, пластик, оранжевый</a></li><li data-id="5042" class=""><a href="/katalog/fonari/fonar_navigator_94_948_npt-ca06-3aa_kemping_krug_48led_blist/">Фонарь Navigator 94 948 NPT-CA06-3AA Кемпинг "круг".48LED, блист.</a></li><li data-id="5043" class="even "><a href="/katalog/fonari/fonar_navigator_94_950_npt-h03-3aaa_nalobn_3_rezh_fokus_1ledx1vt_blist/">Фонарь Navigator 94 950 NPT-H03-3AAA налобн. 3 реж.,фокус, 1LEDx1Вт, блист.</a></li><li data-id="5044" class=""><a href="/katalog/fonari/fonarik_nalobnyj_uniel_s-hl016-c_grey_garantiya_1_god/">Фонарик налобный Uniel S-HL016-C Grey Гарантия 1 год</a></li><li data-id="5045" class="even "><a href="/katalog/fonari/fonar_navigator_94_949_npt-h02-3aaa_nalobn_3_rezh_1ledx1vt_blist/">Фонарь Navigator 94 949 NPT-H02-3AAA налобн. 3 реж. 1LEDx1Вт, блист.</a></li><li data-id="5046" class=""><a href="/katalog/fonari/fonar_navigator_94_946_npt-h01-3aaa_nalobn_4_rezh_25led_blist/">Фонарь Navigator 94 946 NPT-H01-3AAA налобн. 4 реж. 25LED, блист.</a></li><li data-id="5047" class="even "><a href="/katalog/fonari/fonar_navigator_94_943_npt-r02-2d_plast_rez_1ledh1vt_fokus_blist/">Фонарь Navigator 94 943 NPT-R02-2D Пласт.+рез.1LEDх1Вт, фокус, блист.</a></li><li data-id="5048" class=""><a href="/katalog/fonari/fonar_navigator_71_588_npt-r07-2d_plastik_rezina_1led_1vt/">Фонарь Navigator 71 588 NPT-R07-2D Пластик + резина. 1LED 1Вт</a></li><li data-id="5050" class="even "><a href="/katalog/fonari/p-gl011-bb_black/">P-GL011-BB Black</a></li><li data-id="5052" class=""><a href="/katalog/fonari/p-ml075-pb_black1/">P-ML075-PB Black</a></li><li data-id="7315" class="last even "><a href="/katalog/fonari/fonar_navigator_94_988_npt-w03-4aaa_dlya_raboty_2lledx1vt_14ledx0_5vt/">Фонарь Navigator 94 988 NPT-W03-4AAA для работы. 2lLEDx1Вт +14LEDx0.5Вт </a></li></ul></li><li data-id="4973" class="even "><a href="/katalog/elektromontazh/">Электромонтаж</a><ul class="level-1"><li data-id="4974" class="first "><a href="/katalog/elektromontazh/patrony/">Патроны и переходники</a></li><li data-id="4976" class="even "><a href="/katalog/elektromontazh/vse_dlya_pajki/">Все для пайки</a></li><li data-id="4978" class=""><a href="/katalog/elektromontazh/instrument/">Инструмент</a></li><li data-id="4979" class="even "><a href="/katalog/elektromontazh/dlya_montazha/">Для монтажа</a></li><li data-id="4986" class=""><a href="/katalog/elektromontazh/rozetki_i_vyklyuchateli/">Розетки и выключатели</a></li><li data-id="4987" class="even "><a href="/katalog/elektromontazh/kabel/">Кабель</a></li><li data-id="4989" class=""><a href="/katalog/elektromontazh/krepyozh/">Крепёж</a></li><li data-id="6713" class="last even "><a href="/katalog/elektromontazh/vilki/">Вилки</a></li></ul></li><li data-id="4868" class=""><a href="/katalog/soputstvuyuwie_tovary/">Сопутствующие товары</a><ul class="level-1"><li data-id="4869" class="first "><a href="/katalog/soputstvuyuwie_tovary/foton/">Foton</a></li><li data-id="4870" class="even "><a href="/katalog/soputstvuyuwie_tovary/navigator/">NAVIGATOR</a></li><li data-id="4871" class=""><a href="/katalog/soputstvuyuwie_tovary/elementy_pitaniya/">Элементы питания</a></li><li data-id="4873" class="even "><a href="/katalog/soputstvuyuwie_tovary/tdm_electric/">TDM electric</a></li><li data-id="6715" class=""><a href="/katalog/soputstvuyuwie_tovary/raz_yom_shteker_tv_bez_pajki_belyj_uglovoj_rexant/">Разъём штекер TV без пайки белый угловой REXANT</a></li><li data-id="6716" class="even "><a href="/katalog/soputstvuyuwie_tovary/raz_yom_f-raz_yom_rg-6_3003-2_proconnect/">Разъём F-разъём RG-6 (3003-2) Proconnect</a></li><li data-id="6717" class=""><a href="/katalog/soputstvuyuwie_tovary/raz_yom_shteker_tv_nikel_bez_pajki_rexant/">Разъём штекер TV никель без пайки REXANT</a></li><li data-id="6718" class="even "><a href="/katalog/soputstvuyuwie_tovary/vyklyuchatel_dlya_bra_s_provodom_silver_i_derevyannym_nakonechnikom/">Выключатель для бра с проводом (silver) и деревянным наконечником</a></li><li data-id="6719" class=""><a href="/katalog/soputstvuyuwie_tovary/vyklyuchatel_dlya_bra_s_provodom_gold_i_derevyannym_nakonechnikom/">Выключатель для бра с проводом (gold) и деревянным наконечником</a></li><li data-id="7314" class="last even "><a href="/katalog/soputstvuyuwie_tovary/ud-20_kal_kulyator_nastol_nyj/">UD-20 Калькулятор настольный</a></li></ul></li><li data-id="7271" class="even "><a href="/katalog/stabilizatory/">Стабилизаторы</a><ul class="level-1"><li data-id="7280" class="first "><a href="/katalog/stabilizatory/stabilizator_napryazheniya_rs-1_500/">Стабилизатор напряжения RS-1/500</a></li><li data-id="7272" class="even "><a href="/katalog/stabilizatory/stabilizator_napryazheniya_rs-1_1000/">Стабилизатор напряжения RS-1/1000</a></li><li data-id="7274" class=""><a href="/katalog/stabilizatory/stabilizator_napryazheniya_rs-1_3000/">Стабилизатор напряжения RS-1/3000</a></li><li data-id="7275" class="even "><a href="/katalog/stabilizatory/stabilizator_napryazheniya_rs-1_2000/">Стабилизатор напряжения RS-1/2000</a></li><li data-id="7278" class=""><a href="/katalog/stabilizatory/stabilizator_napryazheniya_u-ars-1500_1/">Стабилизатор напряжения U-ARS-1500/1</a></li><li data-id="7273" class="even "><a href="/katalog/stabilizatory/stabilizator_napryazheniya_rs-1_5000/">Стабилизатор напряжения RS-1/5000</a></li><li data-id="7276" class="last "><a href="/katalog/stabilizatory/stabilizator_napryazheniya_rs-1_12000/">Стабилизатор напряжения RS-1/12000</a></li></ul></li><li data-id="4874" class="last "><a href="/katalog/novogodnie_ukrasheniya/">Новогодние украшения</a><ul class="level-1"><li data-id="5021" class="first "><a href="/katalog/novogodnie_ukrasheniya/svetovaya_figura_lt042_derevo_s_yagodami/">Световая фигура LT042 "Дерево с ягодами"</a></li><li data-id="5022" class="even "><a href="/katalog/novogodnie_ukrasheniya/svetovaya_figura_ld206b-indoor_2_5w_50_belyh_led_2700k_230v/">Световая фигура LD206B-indoor 2,5W 50 белых LED 2700K 230v</a></li><li data-id="5023" class=""><a href="/katalog/novogodnie_ukrasheniya/svetovaya_figura_lt046_venok_iz_yolki_20_led_48_sm/">Световая фигура LT046 "Венок из ёлки" 20 LED, 48 см</a></li><li data-id="5024" class="even "><a href="/katalog/novogodnie_ukrasheniya/svetovaya_figura_lt056_santa_15_led/">Световая фигура LT056 "Санта" 15 LED</a></li><li data-id="5025" class=""><a href="/katalog/novogodnie_ukrasheniya/svetovaya_figura_lt101_zvezda_zolotaya_5led_rgb/">Световая фигура LT101 "Звезда" золотая 5LED, RGB </a></li><li data-id="5026" class="even "><a href="/katalog/novogodnie_ukrasheniya/svetovaya_figura_lt101_zvezda_krasnaya_5led_rgb/">Световая фигура LT101 "Звезда" красная 5LED, RGB </a></li><li data-id="5027" class=""><a href="/katalog/novogodnie_ukrasheniya/svetovaya_figura_lt101_zvezda_serebro_5led_rgb/">Световая фигура LT101 "Звезда" серебро 5LED, RGB </a></li><li data-id="5028" class="even "><a href="/katalog/novogodnie_ukrasheniya/girlyanda_cl124_na_batarejkah_yolochki_10_led/">Гирлянда CL124 на батарейках "Ёлочки", 10 LED</a></li><li data-id="5029" class=""><a href="/katalog/novogodnie_ukrasheniya/girlyanda_mishura_krasnaya_20_led/">Гирлянда "Мишура красная" 20 LED</a></li><li data-id="5030" class="even "><a href="/katalog/novogodnie_ukrasheniya/girlyanda_dozhd_70_led_mul_ti_1_6_m/">Гирлянда "Дождь" 70 LED мульти 1,6 м</a></li><li data-id="5031" class=""><a href="/katalog/novogodnie_ukrasheniya/girlyanda_dozhd_70_led_belyj_1_6_m/">Гирлянда "Дождь" 70 LED белый 1,6 м</a></li><li data-id="5032" class="even "><a href="/katalog/novogodnie_ukrasheniya/girlyanda_dozhd_70_led_teplyj_belyj_1_6_m/">Гирлянда "Дождь" 70 LED теплый белый 1,6 м</a></li><li data-id="5033" class=""><a href="/katalog/novogodnie_ukrasheniya/girlyanda_linejnaya_cl02_20_led_mul_ti_1_9_m/">Гирлянда линейная CL02 20 LED мульти 1,9 м</a></li><li data-id="5034" class="even "><a href="/katalog/novogodnie_ukrasheniya/girlyanda_linejnaya_cl02_20_led_belaya_5000k_1_9_m/">Гирлянда линейная CL02 20 LED белая 5000К 1,9 м</a></li><li data-id="5038" class=""><a href="/katalog/novogodnie_ukrasheniya/cl11_girlyanda_-_zanaves_169_led_3300k_effekt_strobov_1_95_1_8m_5m/">CL11 Гирлянда - занавес, 169 LED 3300K, эффект стробов, 1,95*1,8м + 5м</a></li><li data-id="5039" class="even "><a href="/katalog/novogodnie_ukrasheniya/cl11_girlyanda_-_zanaves_169_led_5000k_effekt_strobov_1_95_1_8m_5m/">CL11 Гирлянда - занавес, 169 LED 5000K, эффект стробов, 1,95*1,8м + 5м</a></li><li data-id="6725" class=""><a href="/katalog/novogodnie_ukrasheniya/uld-s0280-020_dta_white_ip20_snowflakes_girlyanda_svetodiodnaya_snezhinki_20_led_2_8_m_belaya/">ULD-S0280-020/DTA WHITE IP20 SNOWFLAKES Гирлянда светодиодная ''Снежинки'' 20 led 2,8 м белая</a></li><li data-id="6727" class="even "><a href="/katalog/novogodnie_ukrasheniya/uld-d3010-200_dta_white_ip20_bahroma_svetodiodnaya_s_kontrollerom_200_led_3m/">ULD-D3010-200/DTA WHITE IP20 бахрома светодиодная с контроллером 200 led 3м</a></li><li data-id="6728" class=""><a href="/katalog/novogodnie_ukrasheniya/uld--s1000-120_dwa_multi_girlyadna_svetodiodnaya_s_kontrollerom_120_led_10m_raznocvetnaya_ip67/">ULD--S1000-120/DWA MULTI ГИРЛЯДНА светодиодная с контроллером 120 led 10м разноцветная IP67</a></li><li data-id="6729" class="last even "><a href="/katalog/novogodnie_ukrasheniya/derevo_uld-t3550-054_swa_white-blue_ip20_frost/">Дерево ULD-T3550-054/SWA WHITE-BLUE IP20 FROST</a></li></ul></li></ul></div></div></div><div id="custom_block_2_29_idp0" class="text custom_block_2"></div></div><div class="cleaner"></div><div class="row-fluid umi-recent-offers"><div class="span12 pos-rel"><ul class="special_offers_list items_catalog" id="recent-goods"></ul></div></div><div id="seo_text_598_idp0" class="seo_text text"></div></div></div><div class="footer_outter"><div class="footer_inner"><div class="footer_menu"><ul class="level-0"><li data-id="598" class="first current "><a href="/">Главная</a></li><li data-id="4862" class="even "><a href="/katalog/">Каталог</a></li><li data-id="641" class=""><a href="/dostavka_i_oplata/">Доставка и оплата</a></li><li data-id="642" class="even "><a href="/contacts/">Контакты</a></li><li data-id="3191" class=""><a href="/optovikam/">Оптовикам</a></li><li data-id="1160" class="even "><a href="/polezno_znat/"> Полезно знать</a></li><li data-id="6710" class="last "><a href="/sitemap.htm">услуги</a></li></ul></div><div class="copyright"><div id="copyright_29_idp0" class="text copyright">Сайт создан партнерами 1С на сервисе 1C-UMI</div><div class="text" id="site-rss"><p><a href="/files/rss/rss.xml" title="Подписаться на RSS" id="site_rss_link"><img src="/base-img/siterss.png" title="Подписаться на RSS" id="site_rss_icon" /><span>Подписаться на RSS</span></a></p></div></div><div class="addthis_toolbox social_gray text" id="social_block"><div id="addthis_toolbox_share" class="text"><p>Поделиться с друзьями:</p></div><a class="social_button social_vk" rel="nofollow" href="https://vkontakte.ru" title="Поделиться ВКонтакте" onclick="return application.socialButtons.open('vk');"></a><a class="social_button social_odnoklassniki" rel="nofollow" href="https://odnoklassniki.ru" title="Поделиться в Одноклассниках" onclick="return application.socialButtons.open('odnoklassniki');"></a><a class="social_button social_mir" rel="nofollow" href="https://my.mail.ru" title="Поделиться в Моём мире" onclick="return application.socialButtons.open('moimir');"></a><a class="social_button social_facebook" rel="nofollow" href="https://facebook.com" title="Поделиться в Facebook" onclick="return application.socialButtons.open('facebook');"></a><a class="social_button social_twitter" rel="nofollow" href="https://twitter.com" title="Поделиться в Twitter" onclick="return application.socialButtons.open('twitter');"></a><a class="social_button social_livejournal" rel="nofollow" href="https://livejournal.com" title="Поделиться в LiveJournal" onclick="return application.socialButtons.open('livejournal');"></a><a class="social_button social_liveinternet" rel="nofollow" href="https://liveinternet.ru" title="Поделиться в LiveInternet" onclick="return application.socialButtons.open('liveinternet');"></a><div class="cleaner"></div></div><div class="text code_pre code_footer"></div></div></div><a id="main_big_order_button" class="callback" href="#ajax#ajax-order-form.598.ajax" title="Обратная связь"><div class="thumbnail_holder" style="max-width:60px;width:31px;height:130px;background-image:url(/images/cms/thumbs/134b8921993b656883563f7e08a8df9cce80e63c/feedback_button_60_auto.jpg)" rel="/images/cms/thumbs/134b8921993b656883563f7e08a8df9cce80e63c/feedback_button_60_auto.jpg"></div></a><div id="main_big_user_block"><a class="ajax_login_toggle ajax_login_toggle_icon" href="/users/login/" title="Авторизация"><span> </span></a></div></div> <script type="text/javascript"> jQuery(document).ready(function($) { $('.mylink').replaceWith(function(){ return '<a href="' + $(this).attr('data-url') + '" title="' + $(this).attr('title') + '">' + $(this).html() + '</a>'; }); }); </script> <!--LiveInternet counter--><script type="text/javascript"><!-- document.write("<a href='http://www.liveinternet.ru/click'; "+ "target=_blank><img src='//counter.yadro.ru/hit?t22.1;r"+ escape(document.referrer)+((typeof(screen)=="undefined")?"": ";s"+screen.width+"*"+screen.height+"*"+(screen.colorDepth? screen.colorDepth:screen.pixelDepth))+";u"+escape(document.URL)+ ";"+Math.random()+ "' alt='' title='LiveInternet: показано число просмотров за 24"+ " часа, посетителей за 24 часа и за сегодня' "+ "border='0' width='0' height='0'><\/a>") //--></script><!--/LiveInternet--> <a href="/sitemap.xml">.</a></body></html>