интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Цифровые микросхемы. Логический элемент НЕ (INV). Инвертор микросхема


Цифровые микросхемы. Логический элемент НЕ (INV)

Всем доброго времени суток! Как дом строят из кирпичей, так и цифровые устройства состоят из простых элементов – цифровых микросхем. Наиболее простые из них – логические элементы (или вентили, gates). В одной микросхеме может содержаться только строго определённое количество логических элементов, их может быть или 1, или 2, или 3, или 4, или 8 в одной микросхеме. Соответственно каждый логический элемент может иметь от 1 до 12 входов и 1 выход. При этом связь между входами и выходом соответствует таблице истинности. Логические элементы относятся к так называемым комбинационным микросхемам, и у них отсутствует какая-либо внутренняя память.

Достоинством логических вентилей является высокое быстродействие и небольшая потребляемая мощность, но на их основе довольно трудно реализовать сложную функциональность, поэтому чаще всего они используются в качестве дополнения к более сложным цифровым микросхемам или микроконтроллерам.

Логический элемент НЕ (Hex Inverters)

Начнём с наиболее простого из логических элементов – логического элемента НЕ (INV) или как его ещё называют инвертора. Как понятно из названия инвертор применяется для инвертирования, то есть изменения уровня сигнала (например, на вход поступает логическая «1», а на выходе получаем логический «0»). Как самый простой из логических элементов инвертор содержит всего один вход и один выход. Инверторы могут быть с тремя типами выходов: 2С, ОК или с Z – состоянием. Как указывалось в этой статье логический элемент НЕ имеет следующую таблицу истинности:

Таблица истинности логического элемента НЕ
Вход Выход
0 1
1 0

На принципиальных схемах логические элементы НЕ (инверторы) имеют следующее обозначение

Обозначения элемента НЕОбозначения логических элементов НЕ (Hex Inverters): ANSI (слева) и DIN (справа).

Микросхемы инверторов содержат обычно шесть логических элементов НЕ (INV) и обозначаются префиксом ЛН (например, К155ЛН1, К561ЛН2). Как говорилось ранее, для ТТЛ микросхем с выходом ОК необходим выходной нагрузочный резистор (pull-up). Величина которого рассчитывается очень просто: R > U/IOL, где U – напряжение источника питания, к которому подключается резистор.

Применение инверторов

Обычно, элементы НЕ применяются для преобразования уровней сигнала (из высокого в низкий или из низкого в высокий уровень). Второе предназначение – увеличения нагрузочной способности (буферизации) с инвертирование выходов более сложных микросхем. Например, когда сигнал с выхода микросхемы необходимо подать на несколько других, а выходной ток недостаточен.

Но существует и несколько нестандартных применений инверторов: построение генераторов и в случае, когда необходимо создать задержку сигнала.

RC - генераторСхема генератора на логических элементах НЕ

Схемы генераторов представляют собой обыкновенные RC-генераторы, но характеристики можно рассчитать только приблизительно, так как она зависит от напряжения питания и типа применённой микросхемы. Частота генератора будет равна

Генераторы данного типа можно применять там, где не важна стабильность частоты, а важен лишь факт генерации импульсов. Более стабильные по частоте генераторы получаются, если вместо конденсатора применить кварцевый резонатор.

Кварцевый генераторСхема кварцевого генератора на логических элементах НЕ

Довольно часто в цифровых схемах необходимо получит некоторую задержку сигнала, в этом случае инверторы могут пригодиться, на большую задержку рассчитывать не приходится (примерно до 100 нс). Для получения задержки сигнала инверторы соединяют последовательно.

Задержка сигнала на логических элементах НЕСхема для создания задержки сигнала на инверторах

Величину задержки можно рассчитать приблизительно по сумме задержек входного и выходного сигналов (tPLH и tPHL) для данной микросхемы. Например, для четырёх инверторов величину задержки можно оценить по формуле

но необходимо учитывать, что значения реальных задержек сильно отличаются от тех что даны в справочнике (в справочнике даны максимальные величины, а реальные могут обличаться более, чем в 2 раза).

Более значительные величины задержки сигнала можно получить, используя интегрирующие RC-цепи, но и здесь нельзя точно говорить о величине задержки, потому что разные типы цифровых микросхем срабатывают при разном уровне сигнала и разных напряжениях питания.

Задержка сигнала на логических элементах НЕ и интегрирующей цепочкойСхема для создания задержки сигнала c интегрирующей цепью

Ниже приведена таблица некоторых семейств микросхем, которые имеют в своём составе инверторы

Серия Номер микросхемы
ЛН1 ЛН2 ЛН3 ЛН5 ЛН6 ЛН7 ЛН8 ЛН10
К155 6НЕ 6НЕ(ОК) 6НЕ(ОК) 6НЕ(ОК) 6НЕ(Z) 6НЕ(Z)
К555 6НЕ 6НЕ(ОК) 6НЕ(Z)
КР1533 6НЕ 6НЕ(ОК) 6НЕ(Z) 6НЕ 6НЕ(ОК)
К561 6НЕ(Z) 6НЕ 6НЕ(Z)
КР1554 6НЕ
КР1564 6НЕ 6НЕ(Z)

Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками

Скажи спасибо автору нажми на кнопку социальной сети

www.electronicsblog.ru

Схема китайского инвертора на 250 ватт

китайский преобразователь 250 ватт     Преобразователь выполнен на ШИМ контроллере SG3525, к микросхеме напрямую подключены затворы выходных каскадов BUK455, так как драйверы управления затворами уже содержатся в микросхеме. Микросхема SG3525 является у нас специальным ШИМ контроллером. Что это значит? А это у нас означает, что нам повезло, в ней находятся встроенный генератор импульсов, работающий в широком диапазоне частот, встроенный стабилизатор напряжения, от него питаются узлы микросхемы, защита от пониженного напряжения питания, выходной триггер с драйверами управления полевыми транзисторами с током выхода 500 мА, а так же усилитель ошибки, для обратной связи и стабилизации выходного напряжения, что у нас реализовано на схеме. Итак, отличная микросхема в дешёвом преобразователе... Что делать? Радоваться! Ибо нефиг подключать большую нагрузку к маломощному инвертору:). Ну и на всякий случай покажу какие выводы для чего предназначены у микросхемы SG3525, может быть кому то станет интересно и захочет посмотреть что тами к чему, вот:    Далее после выпрямления высокого напряжения идёт конвертация постоянного тока в переменный. Генератор 50 Гц выполнен на NE556, далее через узел управления на микросхеме CD4013 сигнал 50 Гц поступает на высоковольтные полевые транзисторы IRF830, с выхода которых и получается 220 вольт 50 герц, модифицированная синусоида.    Преобразователь напряжения выполнен добросовестно, схема надёжная, но из защиты там только предохранитель на входе 12 вольт, о какой либо защите от перегрузки по выходу тут говорить не приходится. Присутствует только стабилизация выходного напряжения, что уже не так печально :). Для рыбалки сойдёт :). Да и заплатив что то около 10 баксов за этот прибор, желать чего то большего врядли стоит, он честно стоит своих денег, вполне приличный аппарат за свою стоимость. При необходимости можно усилить инвертор, просто заменив силовые ключи на более мощные, и сменив предохранитель на более высокий ампераж.

www.tool-electric.ru

Устройство и ремонт инверторов ЖК мониторов

Инвертор типа PLCD2125207A фирмы EMAX

Этот инвертор используется в ЖК мониторах фирм Proview, Acer, AOC, BENQ и LG с диагональю экрана не более 15 дюймов. Он построен по одноканальной схеме с минимальным количеством элементов. При рабочем напряжении 700 В и токе нагрузки 7мА с помощью двух ламп максимальная яркость экрана составляет около 250кд/м2. Стартовое выходное напряжение инвертора составляет 1650В, время срабатывания защиты— от 1 до 1,3с. На холостом ходу напряжение на выходе составляет 1350В. Наибольшая глубина яркости достигается при изменении управляющего напряжения DIM (конт. 4 соединителя CON1) от 0 (максимальная яркость) до 5 В (минимальная яркость). По такой же схеме выполнен инвертор фирмы SAMPO.

Принципиальная схема инвертора PLCD2125207A

Устройство и ремонт инверторов ЖК мониторовОписание принципиальной схемы

Напряжение +12 В поступает на конт. 1 разъема CОN1 и через предохранитель F1 — на выв. 1-3 сборки Q3 (исток полевого транзистора). Повышающий DC/DC-преобразователь собран на элементах Q3-Q5, D1, D2, Q6. В рабочем режиме сопротивление между истоком и стоком транзистора Q3 не превышает 40 мОм, при этом в нагрузку пропускается ток до 5 А. Преобразователем управляет контроллер яркости и ШИМ, который выполнен на микросхеме U1 типа TL5001 (аналог FP5001) фирмы Feeling Tech. Основным элементом контроллера является компаратор, в котором напряжение генератора пилообразного напряжения (выв. 7) сравнивается с напряжением УО, которое в свою очередь определяется соотношением между опорным напряжением 1 В и суммарным напряжением обратной связи и яркости (выв. 4). Частота пилообразного напряжения внутреннего генератора (около 300 кГц) определяется номиналом резистора R6 (подключен к выв. 7 U1). С выхода компаратора (выв. 1) снимаются импульсы ШИМ, которые поступают на схему DC/DC-преобразователя. Контроллер обеспечивает также защиту от короткого замыкания и перегрузки. При коротком замыкании на выходе инвертора возрастает напряжение на делителе R17 R18, оно выпрямляется и подается на выв. 4 U1. Если напряжение становится равным 1,6 В, запускается схема защиты контроллера. Порог срабатывания защиты определяется номиналом резистора R8. Конденсатор С8 обеспечивает „мягкий» старт при запуске инвертора или после окончания действия короткого замыкания. Если короткое замыкание длится менее 1с (время определяется емкостью конденсатора С7), то нормальная работа инвертора продолжается. В противном случае работа инвертора прекращается. Для надежного запуска преобразователя время срабатывания защиты выбирается таким, чтобы в 10…15 раз превысить время старта и „поджига» ламп. При перегрузке выходного каскада напряжение на правом выводе дросселя L1 возрастает, стабилитрон D2 начинает пропускать ток, открывается транзистор Q6 и понижается порог срабатывания схемы защиты. Преобразователь выполнен по схеме полумостового генератора с самовозбуждением на транзисторах Q7, Q8 и трансформаторе PT1. При поступлении с главной платы монитора напряжения включения питания ON/OFF (3 В) открывается транзистор Q2 и на контроллер U1 подается питание (+12 В на выв. 2). Импульсы ШИМ с выв. 1 U1 через транзисторы Q3, Q4 поступают на затвор Q3, тем самым, запускается DC/DC-преобразователь. В свою очередь, с него питание подается на автогенератор. После этого на вторичной обмотке трансформатора РТ1 появляется высоковольтное переменное напряжение, которое поступает на лампы подсветки. Обмотка 1-2 РТ1 выполняет роль обратной связи автогенератора. Пока лампы не включены, выходное напряжение преобразователя растет до напряжения пуска (1650В), а затем инвертор переходит в рабочий режим. Если лампы не удается поджечь (вследствие обрыва, „истощения»), происходит самопроизвольный срыв генерации.

Неисправности инвертора PLCD2125207А и порядок их устранения

Лампы подсветки не включаются

Проверяют напряжение питания +12 В на выв. 2 U1. Если его нет, проверяют предохранитель F1, транзисторы Q1, Q2. Если неисправен предохранитель F1, перед его заменой проверяют транзисторы Q3, Q4, Q5 на корокое замыкание.

Затем проверяют сигнал ENB или ON/OFF (конт. 3 разъема CON1) — его отсутствие может быть связано с неисправностью главной платы монитора. Проверяют это следующим способом: подают управляющее напряжение 3…5 В на вход ON/OFF от незивисимого источника питания или через делитель от источника 12В. Если при этом лампы включаются, то неисправна главная плата, в противном случае— инвертор.

Если напряжения питания и сигнал включения есть, а лампы не светятся, то проводят внешний осмотр трансформатора РТ1, конденсаторов С10, С11 и разъемов подключения ламп CON2, CON3, потемневшие и оплавленные детали заменяют. Если в момент включения на выв. 11 трансформатора РТ1 на короткое время появляются импульсы напряжения (щуп осциллографа через делитель подключается заранее, до включения монитора), а лампы не светятся, то проверяют состояние контактов ламп и отсутствие на них механических повреждений. Лампы снимают из посадочных мест, предварительно открутив винт крепления их корпуса к корпусу матрицы, и, вместе с металлическим корпусом, в котором они установлены, равномерно и без перекосов вынимают. В некоторых моделях мониторов („Aсer AL1513» и BENQ) лампы имеют Г-образную форму и охватывают панель ЖКИ по периметру, и неосторожные действия при демонтаже могут их повредить. Если лампы повреждены или потемнели (что говорит о потере их свойств), их заменяют. Заменять лампы можно только на аналогичные по мощности и параметрам, в противном случае — либо инвертор не сможет их „поджечь», либо возникнет дуговой разряд, что быстро выведет лампы из строя.

Лампы включаются на короткое время (около 1 секунды) и тут же отключаются

В этом случае вероятнее всего срабатывает защита от короткого замыкания или перегрузки во вторичных цепях инвертора. Устраняют причины срабатывания защиты, проверяют исправность трансформатора РТ1, конденсаторов С10 и С11 и цепи обратной связи R17, R18, D3. Проверяют стабилитрон D2 и транзистор Q6, а также конденсатор С8 и делитель R8 R9. Если напряжение на выв. 5 менее 1 В, то заменяют конденсатор С7 (лучше — на танталовый). Если все перечисленные выше действия не дают результата, заменяют микросхему U1.

Отключение ламп также может быть связано со срывом генерации преобразователя. Для диагностики этой неисправности вместо ламп к разъемам CON2, CON3 подключают эквивалентную нагрузку — резистор номиналом 100 кОм и мощностью не менее 10 Вт. Последовательно с ним включают измерительный резистор номиналом 10 Ом. К нему подключают приборы и измеряют частоту колебаний, которая должна быть в пределах от 54 кГц (при максимальной яркости) до 46кГц (при минимальной яркости) и ток нагрузки от 6,8 до 7,8мА. Для контроля выходного напряжения подключают вольтметр между выв.11 трансформатора PT1 и выводом нагрузочного резистора. Если измеренные параметры не соответствуют номиналу, контролируют величину и стабильность напряжения питания на дросселе L1, а также проверяют транзисторы Q7, Q8, C9. Если при отключении правого (по схеме) диода сборки D3 от резистора R5 экран засвечивается, то неисправна одна из ламп. Даже с одной рабочей лампой яркости изображения бывает достаточно для комфортной работы оператора.

Экран периодически мигает и яркость нестабильна

Проверяют стабильность напряжения яркости (DIM) на конт. 4 разъема CОN1 и после резистора R3, отключив предварительно обратную связь (резистор R5). Если управляющее напряжение на разъеме нестабильно, то неисправна главная плата монитора (проверку проводят на всех доступных режимах работы монитора и по всему диапазону яркости). Если напряжение нестабильно на выв. 4 контроллера U1, то проверяют его режим по постоянному току в соответствии с табл. 1, при этом инвертор должен находиться в рабочем режиме. Неисправную микросхему заменяют.

Таблица 1

Состояние инвертора Напряжения на выводах микросхемы U1, В
1 2 3 4 5 6 7 8
Инвертор включен, но лампы не светятся 12 12 2.2 0 2,32 0,2 1 0
Инвертор включен, лампы светятся 2,6 12 2,1 0,1 0,8 1,2 1 0

Проверяют стабильность и амплитуду колебаний собственного генератора пилообразных импульсов (выв.7), размах сигнала должен составлять от 0,7 до 1,3 В, а частота— около 300 кГц. Если напряжение не-стабильно — заменяют R6 или U1.

Нестабильность работы инвертора может быть связана со старением ламп или их повреждением (периодическое нарушение контакта между подводящими проводами и выводами ламп). Чтобы проверить это, как и в предыдущем случае, подключают эквивалент нагрузки. Если при этом инвертор работает стабильно, то необходимо заменить лампы.

Через некоторое время (от нескольких секунд до нескольких минут) изображение пропадает

Неправильно работает схема защиты. Проверяют и при необходимости заменяют конденсатор C7, подключенный к выв. 5 контроллера, контролируют режим по постоянному току контроллера U1 (см. предыдущую неисправность). Проверяют стабильность работы ламп, измеряя уровень пилообразных импульсов на выходе схемы обратной связи, на правом аноде D3 (размах около 5 В) при установке средней яркости (50 единиц). Если имеют место „выбросы» напряжения, проверяют исправность трансформатора и конденсаторов С9, С11. В заключение проверяют стабильность работы схемы ШИМ контроллера U1.

 

Инвертор типа DIVTL0144-D21 фирмы SAMPO

 

Принципиальная схема этого инвертора приведена на рисунке (ниже). Он применяется для питания ламп подсветки 15-дюймовых матриц фирм SUNGWUN, SAMSUNG, LG-PHILIPS, HITACHI, которые используются в мониторах PROVIEW, AСER, BENQ, SAMSUNG, LG. Рабочее напряжение— 650 В при токе нагрузке 7,5 мА (при максимальной яркости) и 4,5мА — при минимальной. Стартовое напряжение („поджиг») составляет 1900 В, частота питающего напряжения ламп — 55 кГц (при средней яркости). Уровень сигнала регулировки яркости составляет от 0 (максимальная) до 5 В (минимальная). Время срабатывания защиты — 1…4 с.

 

Принципиальная схема инвертора

Устройство и ремонт инверторов ЖК мониторовВ качестве контроллера и ШИМ используется микросхема U201 типа BA9741 фирмы ROHM (ее аналог TL1451). Она является двухканальным контроллером, но в данном случае используется только один канал.

При включении монитора в сеть напряжение +12 В поступает на выв.1-3 транзисторной сборки Q203 (исток полевого транзистора). При включении монитора сигнал запуска инвертора ON/OFF (+3 В) поступает с главной платы и открывает транзисторы Q201, Q202. Тем самым напряжение +12 В подается на выв. 9 контроллера U201. После этого начинает работать внутренний генератор пилообразного напряжения, частота которого определяется номиналами элементов R204 и C208, подключенных к выв. 1 и 2 микросхемы. На выв.10 микросхемы появляются импульсы ШИМ, которые поступают на затвор Q203 через усилитель на транзисторах Q205, Q207. На выв. 5-8 Q203 формируется постоянное напряжение, которое подается на автогенератор (на элементах Q209, Q210, PT201). Синусоидальное напряжение размахом 650 В и частотой 55 кГц (в момент „поджига» ламп оно достигает 1900 В) с выхода преобразователя через разъемы CN201, CN202 подается на лампы подсветки. На элементах D203, R220, R222 выполнена схема формирования сигнала защиты и „мягкого» старта. В момент включения ламп возрастает потребление энергии в первичной цепи инвертора и напряжение на выходе DC/DC преобразователя (Q203, Q205, Q207) растет, стабилитрон D203 начинает проводить ток, и часть напряжения с делителя R220 R222 поступает на выв.11 контроллера, повышая тем самым порог срабатывания схемы защиты на время запуска.

Стабильность и яркость свечения ламп, а также защита от короткого замыкания обеспечивается цепью обратной связи на элементах D209, D205, R234, D207, C221. Напряжение обратной связи поступает на выв. 14 микросхемы (прямой вход усилителя ошибки), а напряжение яркости с главной платы монитора (DIM) — на инверсный вход УО (выв. 13), определяя частоту импульсов ШИМ на выходе контроллера, а значит, и уровень выходного напряжения. При минимальной яркости (напряжение DIM равно 5 В) она составляет 50кГц, а при максимальной (напряжение DIM равно нулю) — 60 кГц.

Если напряжение обратной связи превышает 1,6 В (выв. 14 микросхемы U201), включается схема защиты. Если короткое замыкание в нагрузке длится менее 2 с (это время заряда конденсатора С207 от опорного напряжения +2,5 В — выв. 15 микросхемы), работоспособность инвертора восстанавливается, что обеспечивает надежный запуск ламп. При длительном коротком замыкании инвертор выключается.

Неисправности инвертора DIVTL0144-D21 и методы их устранения

Лампы не светятся

Проверяют наличие напряжения +12 В на выв. 1-3 Q203, исправность предохранителя F1 (установлен на главной плате монитора). Если предохранитель неисправен, то перед установкой нового проверяют на короткое замыкание транзисторы Q201, Q202, а также конденсаторы С201, С202, С225.

Проверяют наличие напряжения ON/OFF: при включении рабочего режима оно должно быть равно 3В, а при выключении или переходе в ждущий режим — нулю. Если управляющее напряжение отсутствует, проверяют главную плату (включением инвертора управляет микроконтроллер LCD-монитора). Если все вышеперечисленные напряжения в норме, а импульсов ШИМ на выв. 10 микросхемы V201 нет, проверяют стабилитроны D203 и D201, трансформатор РТ201 (можно определить визуальным осмотром по потемневшему или оплавленному корпусу), конденсаторы С215, С216 и транзисторы Q209, Q210. Если короткое замыкание отсутствует, то проверяют исправность и номинал конденсаторов С205 и С207. В случае, если перечисленные выше элементы исправны, заменяют контроллер U201. Отметим, что отсутствие свечения ламп подсветки может быть связано с их обрывом или механической поломкой.

Лампы на короткое время включаются и гаснут

Если засветка сохраняется в течение 2 с, то неисправна цепь обратной связи. Если при отключении от схемы элементов L201 и D207 на выв. 7 микросхемы U201 появляются импульсы ШИМ, то неисправна либо одна из ламп подсветки, либо цепь обратной связи. В этом случае проверяют стабилитрон D203, диоды D205, D209, D207, конденсаторы С221, С219, а также дроссель L202. Контролируют напряжение на выв. 13 и 14 U201. В рабочем режиме напряжение на этих выводах должно быть одинаковым (около 1 В — при средней яркости). Если напряжение на выв. 14 значительно ниже, чем на выв. 13, то проверяют диоды D205, D209 и лампы на обрыв. При резком увеличении напряжения на выв. 14 микросхемы U201 (выше уровня 1,6В) проверяют элементы PT1, L202, C215, C216. Если они исправны, заменяют микросхему U201. При ее замене на аналог (TL1451) проверяют пороговое напряжение на выв. 11 (1,6 В) и, при необходимости, подбирают номинал элементов С205, R222. Подбором номиналов элементов R204, С208 устанавливают частоту пилообразных импульсов: на выв. 2 микросхемы должно быть около 200 кГц.

Подсветка выключается через некоторое время (от нескольких секунд до нескольких минут) после включения монитора

Вначале проверяют конденсатор С207 и резистор R207. Затем проверяют исправность контактов инвертора и ламп подсветки, конденсаторов С215, С216 (заменой), трансформатора РТ201, транзисторов Q209, Q210. Контролируют пороговое напряжение на выв. 16 V201 (2,5В), если оно занижено или отсутствует, заменяют микросхему. Если напряжение на выв. 12 выше 1,6В, проверяют конденсатор С208, в противном случае также заменяют U201.

Яркость самопроизвольно меняется (мигает) во всем диапазоне или на отдельных режимах работы монитора

Если неисправность проявляется только в некоторых режимах разрешения и в определенном диапазоне изменения яркости, то неисправность связана с главной платой монитора (память или контроллер LCD). Если яркость самопроизвольно меняется во всех режимах, то неисправен инвертор. Проверяют напряжение регулировки яркости (на выв. 13 U201 — 1,3 В (при средней яркости), но не выше 1,6 В). В случае, если напряжение на контакте DIM стабильно, а на выв. 13 — нет, заменяют микросхему U201. Если напряжение на выв. 14 нестабильно или занижено (менее 0,3 В при минимальной яркости), то вместо ламп подключают эквивалент нагрузки— резистор номиналом 80кОм. При сохранении дефекта заменяют микросхему U201. Если эта замена не помогла, заменяют лампы, а также проверяют исправность их контактов. Измеряют напряжение на выв.12 микросхемы U201, в рабочем режиме оно должно быть порядка 1,5В. Если оно ниже этого предела, проверяют элементы С209, R208.

Примечание. В инверторах других производителей (EMAX, TDK), выполненных по аналогичной схеме, но в которой используются другие компоненты (за исключением контроллера), вместо SI443 ® D9435, 2SС5706 ® 2SD2190, напряжение на выводах микросхемы U201 может изменяться в пределах ±0,3 В.

xn--80ajaba6ad4ce6h.xn--p1ai

Ремонт и обслуживание инверторов питания ламп подсветки ЖК панелей ноутбуков

Компьютерная техника

Главная  Ремонт электроники  Компьютерная техника

Экраны ноутбуков представляют собой ЖК панели, подсветка которых (в основном это касается бюджетных устройств) осуществляется электролюминесцентными лампами холодного свечения (CCFL).

В большинстве ноутбуков используется одна лампа, установленная снизу, либо лампа в форме буквы Г.

"Поджиг" лампы, а также ее питание в рабочем режиме обеспечивает DC/AC-конвертор (далее - инвертор). Инвертор должен выполнить надежный запуск CCFL-лампы напряжением до 1000 В и ее стабильное свечение в течение длительного времени при рабочем напряжении 500...800 В (в зависимости от размера экрана). Подключение ламп к инверторам осуществляется по емкостной схеме. Рабочая точка стабильного свечения располагается на линии пересечения нагрузочной прямой с графиком зависимости тока разряда от напряжения, приложенного к лампам. В лампах создаются условия для управляемого тлеющего разряда, рабочая точка находится на пологой части кривой, что позволяет добиться стабильного свечения ламп в течение длительного времени, а также обеспечить эффективное управление яркостью.

Инвертор выполняет следующие функции:

  • Преобразует постоянное напряжение 5...20 В в высоковольтное переменное напряжение.
  • Регулирует и стабилизирует ток CCFL-лампы.
  • Обеспечивает регулировку яркости.
  • Согласует выходной каскад инвертора со входным сопротивлением CCFL-лампы при запуске и в рабочем режиме.
  • Обеспечивает защиту схемы от короткого замыкания в нагрузке и токовой перегрузки.

Структурная схема инвертора

На рис. 1 показана типичная структурная схема инвертора питания CCFL-ламп в ноутбуках. Инвертор питается постоянным напряжением 5...20 В от источника питания ноутбука. Сигнал включения инвертора от центрального процессора ноутбука поступает на ШИМ контроллер. Сформированные этим узлом импульсы поступают на силовой ключ, коммутирующий ток в первичной обмотки импульсного трансформатора. На вторичной обмотке трансформатора формируется высоковольтное синусоидальное напряжение, которое обеспечивает "поджиг" CCFL-лампы. После поджига лампы ее напряжение питания снижается до рабочего уровня (около 500 В) и стабилизируется с помощью обратной цепи. Цепь контроля обеспечивает стабильность работы ШИМ контроллера, а также защиту от короткого замыкания, перенапряжения и токовой перегрузки.

Типичная структурная схема инвертора питания CCFL-ламп в ноутбуках

Рис. 1. Типичная структурная схема инвертора питания CCFL-ламп в ноутбуках

Представленная блок-схема практически реализуется как в дискретном, так и в интегральном исполнении. Инвертор выполняется на отдельной печатной плате (см. рис. 2) и соединяется с материнской платой ноутбука и CCFL-лампой с помощью гибких кабелей.

Внешний вид инверторов питания CCFL-ламп ноутбуков

Рис. 2. Внешний вид инверторов питания CCFL-ламп ноутбуков

Различные производители ноутбуков используют свои модификации инверторов, некоторые из них представлены в этой статье.

Как правило, сигналы, поступающие на контакты интерфейсного разъема инверторов имеют, следующие обозначения: ENA - включение, VIN - питание, BRT ADJ-регулировка яркости.

Принципиальные электрические схемы инверторов

Рассмотрим принципиальную схему инвертора, применяемого в ноутбуках фирмы SAMSUNG (рис. 3).

Принципиальная электрическая схема инвертора, применяемого в ноутбуках SAMSUNG

Рис. 3. Принципиальная электрическая схема инвертора, применяемого в ноутбуках SAMSUNG

Через разъем CN1, соединяющий инвертор с основной платой компьютера, поступают напряжение питания +12 В (DC_IN), напряжение включения инвертора +1,5 В (BACKLIT_ON), а также напряжение регулировки яркости +0,1...0,5 В (BRT_ADJ).

Основой этого инвертора является двухтактный автогенератор на элементах Q5, Q6, T1. Рабочая частота автогенератора определяется индуктивностью первичных обмоток Т1 и параметрами транзисторов. Автогенератор питается от источника питания ноутбука через понижающий DC/DC-конвертор на элементах Q3, Q4, L1, D2. Схема на элементах U1A и и1В формирует управляющий ШИМ сигнал, которым коммутируется ключевой каскад Q3, Q4, и задает рабочий цикл схемы. Управляющий сигнал на входе компаратора и1В складывается из сигнала обратной связи, формируемого из выходного напряжения инвертора, и сигнала регулировки яркости BRT_ADJ, формируемого процессором ноутбука.

Довольно распространен инвертор (рис. 4), в котором в качестве ШИМ контроллера применяется ИМС MP1101 фирмы MPS. Подобный инвертор используется в ноутбуках HEWLETT PACKARD и COMPAQ.

Принципиальная электрическая схема инвертора, применяемого в ноутбуках HEWLETT PACKARD и COMPAQ

Рис. 4. Принципиальная электрическая схема инвертора, применяемого в ноутбуках HEWLETT PACKARD и COMPAQ

Особенностью схемы на ИМС МР1101 является минимальное число внешних компонентов. В состав микросхемы, помимо собственно ШИМ контроллера, входят силовые МОП транзисторы (N-MOSFET), поэтому отпадает необходимость во внешних транзисторах. Выходной каскад реализован по мостовой схеме. Яркость регулируется импульсным сигналом BURST (контакт 3 JP1), который подается на выв. 3 (ByrST) микросхемы. Аналоговый вход регулировки (выв. 1) не используется и подключен к опорному напряжению 5 В (выв. 17). Напряжение включения ноутбука +4,5 В поступает на выв. 4 ИМС. Инвертор вырабатывает напряжение питания лампы 780 В с частотой 70 кГц. Он обеспечивает напряжение поджига лампы около 1,5 кВ.

На рис. 5 показана схема инвертора Sumida ML1, который используется в ноутбуках Hewlett PACKARD. Основа данного инвертора - микросхема OZ9938(U2) фирмы О2MICRO.

Принципиальная электрическая схема инвертора Sumida ML1, применяемого в ноутбуках НР

Рис. 5. Принципиальная электрическая схема инвертора Sumida ML1, применяемого в ноутбуках НР

Микросхема имеет узлы защиты от короткого замыкания в нагрузке и от разрушения (обрыва) CCFL-ламп. Ток лампы контролируется цепью D1 R28 C2, сигнал с которой поступает на выв. 5 (ISEN) контроллера OZ9938. Напряжение на CCFL-лампе контролируется цепью С2 С5 R3 R5 R6 R11 D2, сигнал поступает на выв. 6 (VSEN).

ИМС OZ9938 вырабатывает разнополярные импульсы, которые поступают на полевые транзисторы в составе сборки U1. Стоки транзисторов нагружены на первичную обмотку трансформатора Т1. В отличие от типовой схемы включения OZ9938, в которой к инвертору подключается от 2-х до 6-ти CCFL-ламп, при использовании в ноутбуках (одна CCFL-лампа) нет необходимости подключать дополнительные узлы, тем самым увеличивается стабильность работы, надежность и долговечность инвертора.

Инвертор ALPS KUBNKM (рис. 6) используется в частности, в ноутбуках DELL, он выполнен на базе контроллера OZ960 фирмы O2MICRO.

Принципиальная электрическая схема инвертора ALPS KUBNKM, применяемого в ноутбуках DELL

Рис. 6. Принципиальная электрическая схема инвертора ALPS KUBNKM, применяемого в ноутбуках DELL

На плате инвертора установлен операционный усилитель типа LM358, схема включения которого приведена на рис. 7.

Схема включения LM358 и расположение выводов в корпусе DIP/SO

Рис. 7. Схема включения LM358 и расположение выводов в корпусе DIP/SO

Эта ИМС используется для питания светодиодов подсветки клавиатуры, расположенных на этой же плате. Этим обеспечивается подсветка экрана и клавиатуры при включении инвертора в рабочий режим.

Отличие этой схемы от предыдущих в том, что микросхема OZ960 имеет два выхода (выв. 11, 12 и 19, 20), каждый из которых рассчитан на подключение двух МОП транзисторов с разной проводимостью каналов (N- и P-MOSFET). Транзисторы в составе сборок U1 и U3 включены по мостовой схеме, нагрузкой служит первичная обмотка Т1. Такая схема включения позволила увеличить надежность схемы. Сигналы обратной связи по току и напряжению со вторичной обмотки по соответствующим цепям подаются на выв. 2 и 9 U2. Рабочая частота ИМС задается элементами С5, R4, подключенными к выв. 18 и 17 U2, и составляет 63 кГ ц.

В режиме поджига частота возрастает до 75 кГц. Яркость регулируется аналоговым сигналом DIM с контакта 3 J1. При этом уровень 0,6 В соответствует минимальной

яркости, а уровень 2,1 В - максимальной. Микросхема U2 питается напряжением 5 В (выв. 5) от источника питания ноутбука. Для питания выходного каскада инвертора от этого же источника подается 12 В. Эта цепь защищена предохранителем F1.

В ноутбуках ACER применяется инвертор AMBIT. Он выполнен на базе ИМС OZ960 и дополнительного контроллера управления светодиодами подсветки клавиатуры OZ9950.

На рис. 8 показана блок-схема микросхемы OZ9950, а на рис. 9 - схема ее включения.

Архитектура ИМС OZ9950

Рис. 8. Архитектура ИМС OZ9950

Схема включения ИМС OZ9950

Рис. 9. Схема включения ИМС OZ9950

Эта часть схемы инвертора (рис. 9) применяется в сверхтонких ноутбуках, мобильных телефонах и карманных компьютерах для обеспечения подсветки матрицы с помощью сверхъярких светодиодов. Схема представляет собой повышающий DC/DC-конвертор на элементах L1, U2, D2, который управляется ШИМ контроллером U1. Микросхема OZ9950 работает на частоте 280 кГц. Сигнал обратной связи по току подается на выв. 2 напряжению - на выв. 4 (VSEN). Напряжение питания 5 В подается на выв. 5 U1 и на вход конвертора - дроссель L1. Напряжение аналоговой регулировки яркости подается на выв.3 U1. Уровень 0,8 В соответствует минимальной яркости, а уровень 1,4 В - максимальной. В режиме импульсной регулировки яркости сигнал частотой 100...300 Гц подается на этот же вывод ИМС в диапазоне уровней 0,4...1,4 В. Яркость регулируется изменением коэффициента заполнения (рабочего цикла) управляющего сигнала.

Автор: Владимир Петров (г. Москва)

Источник: Ремонт и сервис

Дата публикации: 20.03.2015

Рекомендуем к данному материалу ...

Мнения читателей
  • Геннадий / 26.01.2018 - 17:01В пункте:Принципиальные электрические схемы инверторов Ошибки в предложении: абз.3 Основой этого инвертора является двухтактный автогенератор на элементах Q5, Q6, T1. Рабочая частота автогенератора определяется индуктивностью первичных обмоток Т1 и параметрами транзисторов. Правильно так:Основой этого инвертора является двухтактный автогенератор на элементах Q5, Q6, T1. Рабочая частота автогенератора определяется индуктивностью первичных обмоток Т1 и емкостью конденсатора C5. там-же:Схема на элементах U1A и и1В формирует управляющий ШИМ сигнал, которым коммутируется ключевой каскад Q3, Q4, и задает рабочий цикл схемы. Управляющий сигнал на входе компаратора и1В складывается из сигнала обратной связи, формируемого из выходного напряжения инвертора, и сигнала регулировки яркости BRT_ADJ, формируемого процессором ноутбука. Должно быть:Схема на элементах U1A и U1B формирует управляющий ШИМ сигнал, которым коммутируется ключевой каскад Q3, Q4, и задает рабочий цикл схемы. Управляющий сигнал на входе компаратора U1B складывается из сигнала обратной связи, формируемого из выходного напряжения инвертора, и сигнала регулировки яркости BRT_ADJ, формируемого процессором ноутбука. абз.7 Ток лампы контролируется цепью D1 R28 C2, сигнал с которой поступает на выв. 5 (ISEN) контроллера OZ9938. Должно быть:Ток лампы контролируется цепью D1 R28 C22, сигнал с которой поступает на выв. 5 (ISEN) контроллера OZ9938. абз.9 На плате инвертора установлен операционный усилитель типа LM358, схема включения которого приведена на рис. 7. Должно быть: Дополнительно на плате с инвертором установлен операционный усилитель типа LM358, схема включения которого приведена на рис. 7. В абз.13 удолите перенос на следующую строку.Должно быть так:В режиме поджига частота возрастает до 75 кГц. Яркость регулируется аналоговым сигналом DIM с контакта 3 J1. При этом уровень 0,6 В соответствует минимальной яркости, а уровень 2,1 В - максимальной. Микросхема U2 питается напряжением 5 В (выв. 5) от источника питания ноутбука. Для питания выходного каскада инвертора от этого же источника подается 12 В. Эта цепь защищена предохранителем F1. В последнем абзаце: Напряжение питания 5В подается на выв.5 U1 и на вход конвертора дроссель L1. Должно быть:Напряжение питания 5В подается на выв.8 U1 и на вход конвертора дроссель L1. Спасибо за статью.
  • Александр / 15.11.2015 - 23:23Спасибо за отличную статью.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Импульсные преобразователи напряжения

Простые схемы импульсных преобразователей постоянного напряжения для питания радиолюбительских устройств

Доброго дня уважаемые радиолюбители!Сегодня на сайте “Радиолюбитель“ мы рассмотрим несколько схем несложных, даже можно сказать – простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного.Импульсные преобразователи подразделяются на группы: – понижающие, повышающие, инвертирующие; – стабилизированные, нестабилизированные; – гальванически изолированные, неизолированные; – с узким и широким диапазоном входных напряжений.Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.

Первая схема.Нестабилизированный транзисторный преобразователь: Нестабилизированный транзисторный преобразователь напряженияЭтот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Вторая схема.Стабилизированный транзисторный преобразователь напряжения: Стабилизированный транзисторный преобразователь напряженияТрансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.

Третья схема.Нестабилизированный преобразователь напряжения на основе мультивибратора: Нестабилизированный преобразователь напряжения на основе мультивибратораДвухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Четвертая схема.Преобразователь на специализированной микросхеме: Преобразователь на микросхеме MAX631Преобразователь стабилизирующего типа на специализированной микросхеме фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.

Пятая схема.Нестабилизированный двухступенчатый умножитель напряжения: Двухступенчатый умножитель напряженияМожно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Шестая схема.Импульсный повышающий стабилизатор на микросхеме фирмы MAXIM: Импульсный повышающий стабилизатор на микросхемеТиповая схема включения импульсного повышающего стабилизатора на микросхеме фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.

Седьмая схема.Два напряжения от одного источника питания: Преобразователь на два напряженияПозволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.

Восьмая схема.Импульсный повышающий стабилизатор на микросхеме-2 фирмы MAXIM: Импульсный повышающий стабилизатор на микросхеме-2Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.

Девятая схема.Импульсный понижающий стабилизатор на микросхеме фирмы TEXAS: Понижающий преобразователь напряжения на микросхеме фирмы TEXASТиповая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Десятая схема.Интегральный инвертор напряжения на микросхеме фирмы MAXIM: Интегральный инвертор напряженияИнтегральный инвертор напряжения, КПД – 98%.

Одиннадцатая схема.Два изолированных преобразователя на микросхемах фирмы YCL Elektronics: Два изолированных преобразователя напряженияДва изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Двенадцатая схема.Двухполярный стабилизированный преобразователь напряжения на микросхеме фирмы National Semiconductor: Двух полярный стабилизированный преобразователь напряжения на микросхеме фирмы National SemiconductorИндуктивность первичной обмотки трансформатора Т1 – 22 мкГн, отношение витков первичной обмотки к каждой вторичной – 1:2.5.

Тринадцатая схема.Стабилизированный повышающий преобразователь на микросхеме фирмы MAXIM: Стабилизированный повышающий преобразователь на микросхеме фирмы MAXIMТиповая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

Четырнадцатая схемаНестандартное применение микросхемы фирмы MAXIM:

Преобразователь на нестандартной микросхеме фирмы MAXIMЭта микросхема обычно служит драйвером RS-232. Умножение напряжения получается с коэффициентом 1,6…1,8.

radio-stv.ru

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОРЫ

   Продолжаем наш проект Black Andel-2. Сборку деталей печатных плат к нашему домашнему усилителю мы начнём с источника питания, точнее двух источников, так как требуется два БП. Конечно мы используем не силовые трансформаторы на железе, а импульсные блоки питания.

ИНВЕРТОР 1

   Этот инвертор предназначен только для питания сабвуферного усилителя по схеме ланзара. Выходное напряжение +/-65 Вольт. Инвертор не имеет стабилизацию выходного напряжения, но не смотря на это серьезные скачки напряжения не наблюдал. Построен инвертор по классической двухтактной схеме с применением ШИМ контроллера на микросхеме TL494.

Трансформатор был намотан ан двух кольцах марки 3000НМ

   Трансформатор был намотан ан двух кольцах марки 3000НМ (Евгений, спасибо, что выручил и с другого конца света выслал кольца), размеры колец 45*28*8. Если есть возможность, то используйте феррит марки 2000НМ, с ним меньше потерь в трансформаторе. Кольца не склеивал, просто обмотал прозрачным скотчем. Грани кольца не закруглял, просто перед намоткой сердечник обмотал полоской стекловолокна в два слоя. Стекловолокно не боится перегрева и обеспечивает довольно неплохую изоляцию обмоток, хотя в таких инверторах промышленного образца никогда не изолируют обмотки друг от друга, поскольку напряжение не столь высокое. 

сердечник обмотал полоской стекловолокна

   Намотка делалась двумя полностью идентичными шинами, каждая из шин состоит из 12 жил провода с диаметром 0,7 мм. Перед намоткой берем контрольный провод, им будем выяснять, какой длины нужна шина. Контрольный провод может быть любым, любого сечения (для удобства диаметр подобрать 0,3-1 мм), Итак, берем контрольный провод и мотаем 5 витков по на кольце, витки равномерно растягивая по всему кольцу. Теперь отматываем обмотку измеряя длину, допустим длина провода составила 20 см, следовательно для намотки основной обмотки провод нужно брать с запасом 5-7 см, т.е. 25-27 см, разумеется, длина не точная и привел только для примера.    Теперь переходим дальше. Поскольку первичная (силовая) обмотка у нас состоит из двух полностью аналогичных плеч, то нам нужны 24 жилы провода 0,7 мм одинаковой длины. Дальше нужно собрать шины из 12 жил, концы жил скручиваем и переходим к процессу намотки. 

Намотка делалась двумя полностью идентичными шинами

   В разных источниках приводятся отличающиеся друг от друга технологии намотки, этот метод отличается тем, что позволяет получить максимально равноценные обмотки. Намотку делаем сразу двумя шинами, желательно использовать жгут для удобства, но я мотал без него. Максимально аккуратно мотаем 5 витков по всему кольцу, в итоге у нас получается 4 отвода. Для стойкости витков обмотку изолируем, пробная изоляция может быть любой - скотч, изолента, нитки и т.п, лишь бы обмотка держалась, если уверены в правильности намотки, то можно ставить конечную изоляцию (в моем случае опять стекловолокно). Теперь нужно сфазировать обмотки, подключая начало первой полуобмотки (плеча) к концу второй или наоборот начало второй, к концу первой. Мест стыковки обмоток есть отвод от середины, на него подается силовой плюс 12 Вольт по схеме. Вторичная обмотка мотается и фазируется по тому же принципу, что и первичная. Обмотка состоит из 2х24 витков, мотается двумя шинами. Каждая шина состоит из 5 жил провода 0,7 мм. 

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОРЫ

   Диодный выпрямитель собран из 4-х диодов серии КД213А. Это импульсные диоды с обратным напряжением до 200 Вольт, отлично себя чувствуют на частотах 50-80 кГц (хотя могут работать на частотах до 100 кГц), а максимально допустимый ток 10 Ампер - то, что нужно. В дополнительном охлаждении диоды не нуждаются, хотя в ходе работы может наблюдаться тепловыделение. 

Диодный выпрямитель собран из 4-х диодов серии КД213А

   Дросселя в выходной цепи использовал готовые, от компьютерных блоков питания. Намотаны дросселя на ферритовом стержне (длина 1,5-2 см, диаметр 6 мм). Обмотка содержит 5-6 витков, намотана проводом 2-2,5 мм, для удобства можно мотать несколькими жилами более тонкого провода. Сглаживающие электролиты брал с напряжением 100 Вольт 1000 мкФ, работают с большим запасом. В итоге на плате инвертора 4 таких конденсатора в плече, еще два аналогичных стоят на плате усилителя Ланзар, т.е общая емкость фильтров в плече 5000 мкФ. 

Дросселя в выходной цепи использовал от компьютерных блоков питания

   Перед и после дросселей стоят пленочные конденсаторы с напряжением 100 Вольт, их емкость не особа критична и может быть в районе 0,1-1 мкФ.

ЗАПУСК ПЕРВОГО ИНВЕРТОРА БП

   Перед запуском инвертора тщательно проверяем правильность монтажа. Маломощные транзисторы BC556/557 можно заменить на отечественный аналог КТ3107, ВС546 на КТ3102 или любые другие с близкими параметрами.

ЗАПУСК ПЕРВОГО ИНВЕРТОРА БП

   Полевые ключи в ходе работы без выходной нагрузки не должны нагреваться, а с нагрузкой нагрев плеч должен быть равномерным. Последний этап - теплоотвод. Полевые транзисторы в моем случае укреплены на теплоотвод от компьютерного блока питания, через слюдяные прокладки и изолирующие шайбы. 

теплоотвод от компьютерного блока питания

   В схеме реализован ремоут контроль (REM), т.е. основной, силовой плюс и минус всегда подключены к усилителю, а для того, чтобы схема завелась, подается плюс на точку REM, открывается транзистор BC546 и подается питание на генератор и начинается рабочий цикл инвертора. Плюс на ремоут можно подавать от автомагнитолы, или же можно приспособить в машине маленький тумблер, которым можно включить и выключить усилитель. 

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОР 1

   Если возникли проблемы...

   Проблема. Бывает так, что при первом же включении выходят из строя полевики.

   Причина и устранение. Неправильно сфазирована первичная обмотка или бракованные транзисторы. Если уверены в правильности монтажа и в исправности всех компонентов, то скорее всего первичная обмотка трансформатора неправильно сфазирована. Для этого отключаем вторичную цепь, то есть нагрузку, которая подключена ко вторичной обмотке и снова запускаем трансформатор (часто, проблемы могут возникнуть на вторичных цепях), если все также, то проверяем транзисторы на исправность, они скорее всего будут "убитыми", заменяем и фазируем трансформатор правильно. 

   Проблема. При включении одна из пар транзисторов перегревается, вторая пара холодная.

   Причина и устранение. Вначале проверяем наличие прямоугольных импульсов на 9 и 10 выводах микросхемы, если все ок, то проверяем посключение диодов и маломощных транзисторов, такая проблема возникает по двум причинам - неправильное подключение маломощных транзисторов драйвера или же неравноценные плечи первичной обмотки.

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОР БП

ИНВЕРТОР 2

   Схема и печатная плата второго инвертора полностью схожа с первым. Выходное напряжение для питания каналов ОМ составляет 2х55 Вольт (+/-55В). Вторичная обмотка на сей раз намотана 6-ю жилами провода 0,8 мм и состоит из 2х28 Витков, мотается по той же технологии, что и в случае первого инвертора.

ИНВЕРТОР 2 ТСФ

ИНВЕРТОР 2 - трансформатор

   Обратите внимание на то, чтобы первичные и вторичные обмотки были обязательно намотаны В ОДИНАКОВОМ НАПРАВЛЕНИИ!

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОР 2

   Другая вторичка предназначена для запитки блока усилителей на микросхемах LM1875. Обмотка состоит из 2х8 Витков, намотана 4-мя жилами провода 0,8 мм. 

Трансформатор на ИНВЕРТОРЫ

   После сборки инвертора тщательно проверяем монтаж на ошибки, если таковых нет, то беремся за мультиметр и проверяем вторичные цепи на замыкания.

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОР 22

ПЕРВОЕ ВКЛЮЧЕНИЕ

   Первый запуск инвертора стоит сделать от лабораторного БП с защитой от КЗ, при этом в момент запуска защита может ошибочно сработать, если блок маломощный, в моем случае использовался переделанный БП с током 3,5 А. Холостой ток инвертора 170-280 мА, зависит от правильного расчета трансформатора, рабочей частоты генератора и типа полевых ключей, немалую роль играет резистор снаббера, в моем случае с ним пришлось чуток поиграться, чтобы снизить потребление схемы. 

Первый запуск инвертора стоит сделать от лабораторного БП

   Во время холостого хода, на ключах не должно наблюдаться тепловыделения, если оно есть, то имеется проблема с монтажом или нерабочий компонент. Перед запуском промойте плату от флюсов, для этого можно использовать ацетон или растворитель. А теперь приступаем собственно к самому блоку УМЗЧ... С уважением - АКА КАСЬЯН.   Форум по созданию домашнего УМЗЧ

   Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОРЫ

radioskot.ru


Каталог товаров
    .