интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Схема самого простого блока АВР (ЩАП). Авр схема


Схема самого простого блока АВР (ЩАП)

Дата 29 марта 2014 Автор k-igor Схема самого простого блока АВР (ЩАП)

Эту статью можно было бы назвать: «АВР за 5 копеек». Сегодня расскажу, как можно сделать АВР своими руками, применив минимум аппаратов. Для некоторых случаев данная схема может оказаться очень актуальной. Как вы думаете, сколько элементов нужно для самого простого блока АВР?

Совершенно верно, 3 =) А если не считать автоматические выключатели на каждой линии, то достаточно одного моего любимого промежуточного реле типа РЭК либо его аналога. Схема самого простого блока автоматического ввода резерва или автоматического переключения выглядит так:

Схема самого простого блока АВР (ЩАП)

Схема самого простого блока АВР (ЩАП)

Основной элемент здесь – промежуточное реле РЭК 77/3. Можно использовать любое другое реле, у которого имеются перекидные контакты (тройники). В данном реле имеется 3 перекидных контакта, как раз для реализации трехфазного АВР.

Схема работы АВР очень простая. Катушка запитывается от основного ввода (в нашем случае от QF1). При исчезновении напряжения либо срабатывании автоматического выключателя, контакты реле переключают нагрузку на резервный ввод.

У данного АВР есть очень большой минус: коммутируемая нагрузка должна быть очень маленькой. Мощность нагрузки ограничивается номинальным током контактов. Для РЭК77/3 это примерно 3 кВт трехфазной нагрузки либо 1кВт однофазной.

В каких случаях можно было бы применить данную схему?

Например, мини-котельная, в которой требуется аварийная вентиляция. Аварийная вентиляция должно подключаться по первой категории. Как правило, в таких объектах устанавливают один небольшой вентилятор. Считаю в подобных случаях можно было бы применить данную схему.

Чем меньше элементов в схеме – тем надежнее схема!

Думаю эта схема имеет право на жизнь.

Советую почитать:

220blog.ru

Схема АВР Википедия

Автоматическое включение резервного питания и оборудования (АВР) (англ. Transfer switch) — устройство для восстановления питания потребителей путем автоматического присоединения резервного источника питания при отключении рабочего источника питания, приводящем к обесточению электроустановок потребителя, либо для автоматического включения резервного оборудования при отключении рабочего оборудования, приводящем к нарушению нормального технологического процесса.[1] АВР обеспечивает гарантированное электропитание, когда допускается перерыв на время ввода в действие резервного источника. Бесперебойное электропитание с "мгновенным" вводом в действие резервного источника обеспечивает источник бесперебойного электропитания.[2]

Применение

Схема секционированной системы сборных шин. Секции имеют связь посредством секционного выключателя QS

Автоматическое восстановление питания должно обеспечиваться для:

  • электроприемников первой категории — обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания;
  • особая группа электроприемников первой категории — обеспечиваются электроэнергией от трех независимых взаимно резервирующих источников питания.[3]

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Гарантированное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при параллельной работе источников питания гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определённого режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет сся с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.

АВР разделяют на:

  • АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
  • АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
  • АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
  • АВР без восстановления.

АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.

АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.

Время переключения

Возможно использование АВР не только во время длительных отключений рабочего источника питания, но и при кратковременных провалах напряжения. Если допустимое время перерыва питания меньше 0,2 с возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать АВР.[4]:с. 61

Медленно действующее

Быстродействующее

Быстродействующее опережающее

Принцип действия

Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.

В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения (реле контроля фаз), подключённые к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле даёт сигнал в схему АВР. Однако, условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворён ещё ряд условий:

  • На защищаемом участке нет неустранённого короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
  • Вводной выключатель включён. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключён намеренно.
  • На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.

После проверки выполнения всех этих условий логическая часть АВР даёт сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причём, межлинейный выключатель включается только после того, как вводной выключатель отключился. АВР подразделяется также на системы с восстановлением и без восстановления: при работе с восстановлением при возникновении напряжения на вводе с установленной выдержкой схема восстанавливает исходную конфигурацию. Обычно данный режим выбирается установкой накладок вторичных цепей в соответствующее положение. При восстановлении АВР допускается кратковременная работа питающих трансформаторов «в параллель» для бесперебойности электроснабжения.

В низковольтных сетях одновременно в качестве измерительного и пускового органа могут служить магнитные пускатели или модуль АВР-3/3. Либо предназначенный для управления схемами АВР микропроцессорный контроллер АВР.

См. также

Источники

  • «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. Энергоатомиздат 1998 ISBN 5-283-010031-7 (ошибоч.)
  • «Автоматическое включение резерва» М. Т. Левченко, М. Н. Хомяков «Энергия» 1971

Примечания

  1. ↑ Правила устройства электроустановок (ПУЭ). Глава 3.3. Автоматика и телемеханика (Издание шестое) п. 3.3.30
  2. ↑ Бушуев В.М. Электропитание устройств связи —М.: Радио и связь, 1986. С. 122
  3. ↑ Правила устройства электроустановок (ПУЭ). Глава 1.2 Электроснабжение и электрические сети (Издание седьмое) п.1.2.19
  4. ↑ Гуревич Ю.Е., Кабиков К.В. Особенности электроснабжения, ориентированного на бесперебойную работу промышленного потребителя —М.: Элекс-КМ, 2005.

Ссылки

wikiredia.ru

АВР-3/3, АВР-3/3-22 (автоматический ввод резерва). Схема включения АВР, порядок (алгоритм) работы АВР, конструкция

АВР-3/3, АВР-3/3-22 (автоматический ввод резерва).

 

Надежная работа электрооборудования различного назначения, требующего дополнительного источника электропитания, зависит от стабильного электрического ввода и возможности быстрого переключения на резервную линию (источник бесперебойного питания ИБП (UPS) и/или дизельный генератор ДГУ, стабилизатор напряжения, инверторный преобразователь (инвертор) с аккумуляторными батареями АКБ, система преобразования солнечной энергии и др.). Длительный перерыв в электропитании может привести к материальному ущербу и/или другим, не менее серьезным последствиям. Электроснабжение систем, чувствительных к электропитанию, включает в себя один и/или более резервных вводов и, как правило, содержит щит автоматического ввода резерва АВР. В настоящее время существует множество вариантов схем для изготовления щитов автоматического ввода резервного электропитания. В этом материале предлагаем рассмотреть некоторые решения по реализации устройства автоматического ввода резерва АВР, построенного на модульном блоке АВР-3/3 и АВР-3/-22, производства «Полигон».

 

  Схема подключения модуля автоматического   ввода резерва АВР-3/3. Схема принципиальная АВР-3/3.

Электрическая схема автоматического выключателя резерва АВР-3/3 приведена на рисунке. Рекомендуется включать искрогасящую цепочку RC параллельно катушке контактора. Номиналы элементов искрогасящей цепи следующие: R=51Ом, 1Вт; C=0,1мкФх630В. В основе модульного устройства АВР-3/3 лежит 10 разрядный микроконтроллер PIC18F2520, с встроенной оперативной памятью и памятью программ. Типовое значение времени хранения данных не менее 100 лет. Контроллер потребляет малую мощность и имеет достаточное быстродействие для обеспечения надежной работы устройства АВР. Микроконтроллер PIC18F2520 работает в диапазоне температур -40С…+85С. Автоматический выключатель резерва АВР-3/3 предназначен для контроля напряжения по двум независимым трехфазным вводам. Переключение трехфазной нагрузки с основного ввода на резервный (аварийный режим), осуществляется с помощью внешнего исполнительного устройства (контактора). Ввод 1 (Линия 1) – основной трехфазный ввод электропитания. Ввод 2 (Линия 2) – резервный трехфазный ввод электропитания. Оба трехфазных ввода имеют общий нулевой провод «N» (общая нейтраль). Сечение подключаемых проводов должно быть не менее 1,0 мм кв.

 

  Модуль автоматического ввода резерва АВР-3/3. Блок-схема, принцип работы (алгоритм) АВР-3/3.

Принцип работы модуля автоматического ввода резерва АВР-3/3 можно описать блок-схемой, показанной на рисунке. В блок схеме показан алгоритм работы модуля автоматического выключателя резерва АВР-3/3. Электропитание din-модуля АВР-3/3 осуществляется от фазы L1 «Ввод1» - основной ввод, от фазы L2 «Ввод2» - резервный ввод. Автоматический выключатель резерва АВР-3/3 выпускается в корпусе из пластика, не поддерживающего горение, имеет установочные размеры 5 модулей и предусматривает установку прибора на DIN-рейку 35мм. Подробно работа устройства описана в паспорте АВР-3/3, который входит в комплект поставки.

Общие технические характеристики модульного устройства автоматики и защиты АВР-3/3 можно посмотреть здесь.

Сделать заказ можно через раздел «Обратная связь», отправить запрос на электронную почту (см. раздел «Контакты») или позвонить по телефону: +7 (967)097-51-65.

В раздел Модульные устройства автоматики и защиты для установки на DIN-рейку

В раздел Контакты

На Главную страницу

Для контроля двух независимых трехфазных вводов и резервирования электропитания двух трехфазных нагрузок с помощью внешнего исполнительного устройства содержащего секционный переключатель применяется модульное устройство автоматики и защиты АВР-3/3-22. Электропитание блока осуществляется от контролируемой сети. Электрическая схема автоматического выключателя резерва АВР-3/3-22 приведена на рисунке. Рекомендуется включать искрогасящую цепочку RC параллельно катушке контактора. Номиналы элементов искрогасящей цепи следующие: R=51Ом, 1Вт; C=0,1мкФх630В. В основе модульного устройства АВР-3/3-22, также как и АВР-3/3, лежит 10 разрядный микроконтроллер PIC18F2520, с встроенной оперативной памятью и памятью программ. Время хранения данных, не менее 100 лет.

Автоматический выключатель резерва АВР-3/3-22. Схема включения. Принципиальная схема. www.ka-electro.ru

 

 

 

  Схема включения модуля автоматического ввода резерва АВР-3/3-22. Схема принципиальная АВР-3/3-22.

 

Контроллер потребляет малую мощность и имеет достаточное быстродействие для обеспечения надежной работы устройства АВР. Микроконтроллер PIC18F2520 работает в диапазоне температур -40С…+85С. Ввод 1 (Линия 1) – первый основной трехфазный ввод электропитания. Ввод 2 (Линия 2) – второй основной трехфазный ввод электропитания. Оба трехфазных ввода имеют общий нулевой провод «N» (общая нейтраль). Сечение подключаемых проводов должно быть не менее 1,0 мм кв. Реле Р1 – внутреннее реле включения/отключения первого основного ввода, реле Р2 – внутреннее реле включения/отключения второго основного ввода, реле Р3 – внутреннее реле включения/отключения внешнего секционного переключателя (контактора).

Автоматический выключатель резерва АВР-3/3-22. Блок-схема, принцип работы (алгоритм). www.ka-electro.ru

 

  Модуль автоматического ввода резерва АВР-3/3-22. Блок-схема, принцип работы (алгоритм) АВР-3/3-22.

Принцип работы модуля автоматического ввода резерва АВР-3/3-22 можно описать блок-схемой, показанной на рисунке. В блок схеме представлен алгоритм работы модуля автоматического включения резерва АВР-3/3-22. Электропитание din-модуля АВР-3/3-22 осуществляется от контролируемой электросети. Автоматический выключатель резерва АВР-3/3-22 выпускается в корпусе из пластика, не поддерживающего горение, имеет установочные размеры 5 модулей и предусматривает установку прибора на стандартную DIN-рейку 35мм.

Подробно работа устройства описана в паспорте АВР-3/3-22, который входит в комплект поставки. Общие технические характеристики модульного устройства автоматики и защиты АВР-3/3-22 можно посмотреть здесь.

 

Сделать заказ можно через раздел «Обратная связь», отправить запрос на электронную почту (см. раздел «Контакты») или позвонить по телефону: +7 (967) 097-51-65.

В раздел Модульные устройства автоматики и защиты для установки на DIN-рейку

В раздел Контакты

На Главную страницу

ka-electro.ru

просто о сложном. Часть IV

В предыдущих частях (1, 2, 3) были рассмотрены основные базовые схемы АВР. Теперь мы решили поделиться с вами схемой АВР с большой «заумью». Что это такое? – это «супер-навороченная» схема, которую пришлось разработать в силу «требований» заказчика. Они решили «сэкономить»,… а получили это решение. Причем, которое надо тщательно обслуживать, а то не будет работать или будет работать только в ручном режиме (В комплекте с увеличенным штатом электриков и их нелицеприятными комментариями)

Итак, схема приведена ниже. Идея, в общем, интересная и достаточно простая (на первый взгляд). Предложил мне это решение мой коллега.

 

Щит АВР имеет в своем составе два рубильника с мотор-приводом (S1,S2), секционный автоматический выключатель с мотор-приводом (QF) и две секции нагрузок. В общем, почти штатная схема «восьмерки», но… для трех вводов. 3-й ввод – это ДГУ большой мощности. (Вообще, номинальный ток по вводам – 1250 А). 1-й и 2-й вводы запитаны от разных секций ТП (от разных силовых трансформаторов).

 

* Главная особенность этой схемы в том, что 1-й и 2-й вводы в данном щите АВР не защищены вводными автоматическими выключателями. Автоматические выключатели есть вообще-то, но в РУ ТП, и в другом помещении, и без блок-контактов автоматического отключения. (Ну, когда выключатели «выбивают», то замыкаются / размыкаются именно эти блок-контакты и которые используют потом в релейке – это очень важные контакты! По ним можно судить об аварии на вводе).

  

Некоторые могут сказать: «Что тут особенного – схема проста, наоборот – экономия!». Тем не менее, как я говорил в прошлых статьях, есть штатные режимы работы и есть внештатные, которые наиболее проблемные. Вот это один из них… Но об этом позже, при рассмотрении режимов работы данного АВР.

** Вторая особенность (тоже главная) – здесь невозможно предусмотреть механические блокировки между секционным автоматическим выключателем и рубильниками. Только электрические и временные. Кстати, звездочки или астериски (*,**) – важные пункты, на которые я буду иногда ссылаться в тексте.

Штатные режимы работы

 

  • 1-й и 2-й вводы с номинальным напряжением, включены. Все ОК! Это штатное, нормальное положение. S1 перевелся в положение «1», S2 тоже в положение «1». QF – отключен. Каждая секция питается от своего ввода. ДГУ не работает (но всегда готов!).
  • 1-й ввод «пропал» - (вышел из установленного номинального режима). Это также штатное положение (режим резервирования – АВР от 2-го ввода). При этом должно произойти следующее - S1 переходит в положение «0»! Это обязательно! После этого, через выдержку времени, QF включается, S2 остается в положении «1» и, таким образом, 1-я секция запитывается от 2-го ввода. Причем, введена именно такая последовательность! Это как «Отче Наш»! Иначе будет сюрприз под названием «встречное включение», причем полное – 3-х фазное (если вдруг появится вновь напряжение 1-го ввода).

Поясню подробно или еще попугаю последствиями.

 

Например, S1 не перейдет в «0», а останется в положении «1». При этом включится QF. И напряжение со 2-го ввода поступит на низкую сторону силового трансформатора Тр1 ТП. Этого допустить нельзя, однозначно. (Ну, если в ТП предусмотрена защита от поступления обратного напряжения, то еще ничего. Но как я говорил ранее, у нас проблема с электриками, проблема с оборудованием – силовая часть работает, а вот защитная релейка не всегда, если она есть вообще!).

  Восстановление состояния должно происходить строго в обратном порядке!

  • 1-й ввод восстановился. При этом, вначале, отключается QF и потом, через выдержку времени, S1 переходит в положение «1». Восстанавливается нормальная работа. При нарушении порядка переключений -> встречное включение между 1-м и 2-м вводами!
  • 2-й ввод «пропал». Все происходит аналогично рассмотренным в п.2). и в п.3).
  • Режим, когда «пропали» оба ввода, например, сразу. Это также штатный режим работы АВР – аварийный, но предусмотренный и заложенный в систему АВР.

При этом рубильники S1 и S2 должны перейти в состояние «0». QF также разомкнут, т.е отключен. В этом случае поступает сигнал на запуск ДГУ, которая запускается, выходит на нормальный режим работы и номинальное напряжение поступает на шины 3-го ввода.

  • Далее S1 и S2 одновременно переводятся в положение «2». При этом напряжение поступает одновременно на обе секции нагрузок. Режим восстановления 1-го ввода. Штатный режим восстановления АВР на работу от 1-го ввода.

Появляется нормальное напряжение на шинах 1-го ввода. При этом, S1 и S2 также переключаются в положение «0». Затем S1 переключается в положение «1» и, далее, включается секционный автоматический выключатель QF. Т.е. мы прошли частично режим работы п.3).

  • Режим восстановления 2-го ввода. Штатный режим восстановления АВР на работу от 2-го ввода (при работе ДГУ, после режима п.5).
Схема, в общем, симметрична – этим она хороша, но этим она и проблематична для блокировки QF, как при пропадании 1-го ввода, так и при пропадании 2-го ввода (**).

Выше были показаны и рассмотрены так называемые «штатные» режимы работы, предусмотренные для данной схемы. Но существуют, как я уже говорил – нештатные режимы работы, которые необходимо обязательно предусматривать для любых схем АВР! Эти все режимы необходимо прописывать в инструкциях, руководствах по эксплуатации.

Данные режимы могут быть «новостью» и неожиданным «открытием» для самих производителей, когда, например, звонят вам из службы эксплуатации и рассказывают, что ваш АВР выкинул неожиданный «фортель» и не переключился или переключился не так, как ожидали от него...

  И тут начинаются поиски, мозговые штурмы – а что же произошло???! (при этом электрики уже восстановили нормальный режим работы АВР и он как бы опять нормально работает – это в лучшем случае. В худшем – они перешли в ручной режим работы или полуавтоматический***). Но факт зафиксировали и необходимо найти причину.

Рассмотрим далее полуавтоматический*** режим работы АВР и нештатные режимы, а также коснемся релейной схемы управления…

 

Но вот теперь можно добавить несколько строк на тему «Контроль, управление АВР». В последней части статьи о работе АВР (особенно последняя схема) я упоминал о сложностях в работе этой непростой схемы.

Были описаны штатные режимы работы – когда все работает как надо в различных вариациях. Но был предусмотрен полуавтоматический режим работы АВР…

 

Вообще, если рассматривать режимы работы (повторение – мать учения :) то мое мнение, что все схемы сложных щитовых с АВР должны иметь три основных режима работы:

  • автоматический (согласно логике работы данного АВР)
  • полуавтоматический
Автоматический режим был уже рассмотрен в последней статье. (т.е это полностью автоматический режим, когда АВР работает самостоятельно, без присутствия обслуживающего персонала).

 

Полуавтоматический – это когда обслуживающий персонал управляет системой АВР при помощи кнопок управления.

 

Ручной режим – это когда обслуживающий персонал управляет элементами коммутирующей части АВР «вручную». Т.е. непосредственно включая и отключая рубильники, автоматы.

Зачем это надо? Да, действительно, зачем?... На самом деле, это еще одна из степеней гибкости системы управления и ее надежности… Если отказал автоматический режим работы, но переключения необходимо произвести, то это возможно сделать кнопками. При этом с контроллером автоматического управления**** можно разобраться позже, не влияя на работу щита, или произвести его (контроллера) замену или вообще демонтировать.

 

Ну, а если произошел отказ или сбой напряжения оперативного питания, то возможно произвести коммутации непосредственно, вручную (Конечно же, при полном соблюдении правил безопасности, в соответствии с разработанной инструкцией для данного случая).

 

Вот теперь, после отступления, можно продолжить говорить о полуавтоматическом режиме.

При этом напряжение оперативного питания присутствует, автоматический режим отключен, но управление рубильниками производится кнопками «ВКЛ» - Положение «1» / Положение «2» и «ОТКЛ» – Положение «0». Для секционного автоматического выключателя здесь предусмотрены кнопки «ВКЛ» и «ОТКЛ». Да, еще при этом, работают электрические блокировки между коммутирующими устройствами.

Иными словами, все штатные режимы схемы АВР выполняются с помощью кнопок. Например, рубильники S1, S2 находятся в положении «1», секционный автомат отключен. Но пропал 1-й ввод и необходимо запитать 1-ю секцию от 2-го ввода.

  • Нажимаем кнопку «ОТКЛ» S1 – рубильник переключается в положение «0».
  • Нажимаем кнопку «ВКЛ.» секционного автомата QF, который включается.

И, вуаля! – 1-я секция запитана от 2-го ввода. Аналогично можно произвести те же действия при пропадании 2-го ввода из начального состояния.

Восстановление основного режима работы происходит строго в обратном порядке.

  • Вначале отключаем секционный автомат кнопкой «ОТКЛ» и только потом…
  • …Производим включение рубильника S1 кнопкой «ВКЛ» – Положение «1».
  • Как я уже писал, для рубильника S2 проделывают те же действия.

Что касается электрической блокировки, то, например, когда каждый рубильник находится в положении «1» – секционный автоматический выключатель включить нажатием кнопки «ВКЛ» нельзя.

Да, еще… Если оба ввода пропали, то ДГ запускается обслуживающим персоналом, он стартует и на 3-м вводе появляется напряжение. Рубильники S1, S2 переключаются:

  • Вначале в положение «0». И это важно!
  • И теперь нажатием кнопок «ВКЛ» - Положение «2» переводим рубильники во 2-е положение. Таким образом секции 1 и 2 запитаны от ДГ.
  • При восстановлении вводов переключения производятся в обратном порядке! Строго в обратном!

Управление АВР

 

Здесь следует учитывать такой «нештатный» режим, я бы даже сказал «катастрофически аварийный» режим – представьте себе, что рубильник S1 остался в положении «1» (хотя там нет напряжения), а рубильник S2 перевели на питание от ДГ (положение «2»), а потом (ведь все может быть), этот умник включил секционник… И тут получится авария, т.к. напряжение от ДГ поступит на секцию «2» потом на секцию «1» через «секционник» и потом на 1-й ввод – но в обратном направлении! «Это есть очень плохо»! Связано с опасностью для жизни людей и прочим неприятностям…

 

Вот тут и предусмотрена еще электрическая блокировка, которая не позволяет включать секционный автоматический выключатель в данном случае.

Но в ручном режиме это состояние можно создать! Поэтому – сложное устройство должны обслуживать обученные специалисты, знающие инструкции, данное устройство и т.д. и т.п…

P.S. При обозначении кнопок включения / отключения считаю, что кнопки включения нужно обозначать «ВКЛ» а выключения «ОТКЛ». Понятно, что еще и цветом надо обозначать, ну, черная/зеленая кнопка – это кнопка «ВКЛ» А красная – это «ОТКЛ». Но не «ВЫКЛ»!!! Зрительно написание «ВКЛ» и «ВЫКЛ» весьма схоже, а посему их можно перепутать, что может быть очень опасно.

P.S.S. O контроллере АВР или блоке АВР или он же БУАВР, о котором я подробно расскажу далее, а именно - в следующем выпуске Automation Weekly UA

 

Связаться с автором можно по адресу: [email protected]

ua.automation.com


Каталог товаров
    .