Начнём немного углубляться в понимание электроники и построение схем. Начнём сегодня с маркировки импортных варисторов и их проверки на работоспособность. С первоначальными и необходимыми знаниями о варисторах, вы можете ознакомиться в статье, принцип работы варистора, очень рекомендую к прочтению. Сразу скажем, что варисторы, не зависимо от производителей, маркируются и расшифровываются практически одинаково и по одной схеме. К слову говоря, фирм производителей, то же, не сильно много. Фирма полностью называется как ElectronicPartsandcomponents, эту конторы считают очень авторитетной на рынке пассивных компонентов. Конечно, данное утверждение относится к Европейской части мира. Обозначения, принятые для дисковых варисторов, выглядят следующим образом. S 6 K 210, сейчас расшифруем эту маркировку варистора. S– Тип варистора, дисковый метало — оксидный варистор. 6 – диаметр диска элемента, выраженный в миллиметрах. К.– Точность значения, эта буква соответствует 10 процентам. 210 – действующие значение напряжения, в данном случае равно 210 вольт. Допустим, у вас имеется радиоэлемент, нанесённой на прямоугольном корпусе маркировкой CN 1210 M 8. Сейчас рассмотрим и этот вариант. Практически всё одинаково с предыдущим примером, только вместо диаметра диска, обозначается его типоразмер. CN. – Тип изделия. 1210 – как раз этот самый типоразмер. М – точность 8 – напряжение радиоэлемента. После прочтённой маркировки на приборе, мы смело можем сказать, что перед нами варистор. Для проверки варисторов, можно воспользоваться тем же способом что и проверка резисторов. Вот ещё несколько дельно советов и рекомендаций. Как правило, это внешний осмотр, обращаем особое внимание на корпус варистора. На нем не должно быть трещин, сколов и потемнений краски корпуса от действия высоких температур. Короче, визуально он должен быть как новый из магазина радиодеталей. Следующий способ проверки, традиционно мультиметром, в положение измерения сопротивления. Производить замер следует с высоких величин, сопротивление варистора, должно быть большим. Мерить необходимо щупами мультиметра в обеих позициях, то есть, произвели замер, поменяли щупы местами, меряем дальше. Показания в обоих случаях должны быть одинаковыми. Если мультиметр показывает короткое замыкание, это отсутствие сопротивления, и оно равно бесконечности, варистор можно выкинуть. Впаивайте в схему только новую деталь, ни в коем случае не используйте бывшие в употребление варисторы, тем более если они из сгоревшего блока питания. energytik.net Обозначение на схеме Вари́стор (англ. vari(able) (resi)stor — переменный резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП). В русскоязычной литературе часто применяется термин разрядник[источник не указан 288 дней] для обозначения варистора или устройства защиты от импульсных перенапряжений (УЗИП) на основе варистора. Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника — преимущественно порошкообразного карбида кремния SiC или оксида цинка ZnO, и связующего вещества (глина, жидкое стекло, лаки, смолы и др.). Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом. Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов. Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd: где U и I — напряжение и ток варистора. Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO. Температурный коэффициент сопротивления варистора — отрицательная величина. Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,1 мА до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ. Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др. Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения. Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры. dic.academic.ru В предыдущей статье, посвящённой варисторам, мы рассказали как именно заменить варистор и маркировку варисторов. Но очень часто нам задают вопрос, каким варистором заменить сгоревший, как подобрать аналог и у всех-ли варисторов одинаковая маркировка. Подбирать варисторы для замены логичней не по фирме производителю и не по цвету, а по: Диаметр соответствует способности варистора поглотить определённую мощность импульса, поэтому следует заменять на такой же, или больше. Напряжение срабатывания можно узнать по маркировке - из таблицы и по нему подобрать аналог из имеющихся. Если маркировка не сохранилась, то подобрать можно по: К примеру, если он стоит на входе прибора работающего от переменной сети 220 В, то как правило, он рассчитан на классификационное напряжение - 470 В, 560 В реже 430 В. Это соответствует среднеквадратичному значению переменного напряжения 300 В, 350 В и 275 В соответственно. В подавляющем большинстве случаев ставят на напряжение 470 В, тогда исключаются частые сгорания предохранителя и радиоэлементы платы защищены надёжней. Если у вас есть варистор со стёртой маркировкой или такой нет в таблице аналогов, то вполне возможно измерить напряжение срабатывания варистора. Для этого достаточно подключить его к блоку питания, который может обеспечить необходимое напряжение и у которого можно ограничить максимальный ток, чтобы варистор не разрушился (полярность подключения не имеет значения) У меня к сожалению такого под рукой не оказалось, поэтому я выбрал другой способ. Я подключил варистор к мегомметру, который измеряет сопротивление высоким напряжением, у данного прибора три предела 250 В, 500 В и 1000 В, что оказалось вполне достаточно. Я проверял два варистора - на 470 В и на 680 В, первый на пределе 500 В, второй 1000 В. Как видно на фото, параметры вполне укладываются в допуск 10%. Перед измерением обязательно прочтите инструкцию к прибору и убедитесь, что данная операция не повредит его, а также соблюдайте все требования по технике безопасности при работе с высоким напряжением. masterxoloda.ru материалы в категории Варистор- это одна из разновидностей резисторов. Основное свойство варистора- он изменяет свое сопротивление под воздействием приложенного к нему напряжения.Отсюда и название варистор- от английского словосочетания vari(able) (resi)stor — переменный резистор. На схеме варистор обозначается так: К основным параметрам варисторов можно отнести: Вольт-Амперная характеристика варисторов отражена на диаграмме ниже.Небольшое пояснение: ВАХ варисторов зависят от материала из которого они изготавливаются: синий график — на основе ZnO, красный график — на основе SiC Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника ( преимущественно порошкообразного карбида кремния SiC или оксида цинка ZnO), и связующего вещества (глина, жидкое стекло, лаки,смолы и др.). Далее поверхность полученного элемента металлизируют и припаивают к ней выводы. Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Варисторы бывают даже и переменные- применялись для регулировки фокуса в отечественных телевизорах. radio-uchebnik.ru Варистор является пассивным двухвыводным, твердотельным полупроводниковым прибором, который используется для обеспечения защиты электрических и электронных схем. В отличие от плавкого предохранителя или автоматического выключателя, которые обеспечивают защиту по току, варистор обеспечивает защиту от перенапряжения с помощью стабилизации напряжения подобно стабилитрону. Слово "Варистор" является аббревиатурой и сочетанием слов «Varistor - variable resistor», резистор, имеющий переменное сопротивление, что в свою очередь описывает режим его работы. Его буквальный перевод с английского (Переменный Резистор) может немного ввести в заблуждения - сравнивая его с потенциометром или реостатом. Но, в отличие от потенциометра, сопротивление которого может быть изменено вручную, варистор меняет свое сопротивления автоматически с изменением напряжения на его контактах, что делает его сопротивление зависимым от напряжения, другими словами его можно охарактеризовать как нелинейный резистор. В настоящее время резистивный элемент варистора изготавливают из полупроводникового материала. Это позволяет использовать его как в цепях переменного, так и постоянного тока. Варистор во многом похож по размеру и внешнему виду на конденсатор и его часто путают с ним. Тем не менее, конденсатор не может подавлять скачки напряжения таким же образом, как варистор. Не секрет, что когда в цепи электропитания схемы какого-либо устройства возникает импульс высокого напряжения, то исход зачастую бывает плачевным. Поэтому применение варистора играет важную роль в системе защиты чувствительных электронных схем от скачков напряжения и высоковольтных переходных процессов. Всплески напряжения возникают в различных электрических схемах независимо от того, работают они от сети переменного или постоянного тока. Они часто возникают в самой схеме или поступают в нее от внешних источников. Высоковольтные всплески напряжения могут быстро нарастать и доходить до нескольких тысяч вольт, и именно от этих импульсов напряжения необходимо защищать электронные компоненты схемы. Один из самых распространенных источников подобных импульсов – индуктивный выброс, вызванный переключением катушек индуктивности, выпрямительных трансформаторов, двигателей постоянного тока, скачки напряжения от включения люминесцентных ламп и так далее. Варисторы подключаются непосредственно к цепям электропитания (фаза - нейтраль, фаза-фаза) при работе на переменном токе, либо плюс и минус питания при работе на постоянном токе и должны быть рассчитаны на соответствующее напряжение. Варисторы также могут быть использованы для стабилизации постоянного напряжения и главным образом для защиты электронной схемы от высоких импульсов напряжения. При нормальной работе, варистор имеет очень высокое сопротивление, поэтому его работа схожа с работой стабилитрона. Однако, когда на варисторе напряжение превышает номинальное значение, его эффективное сопротивление сильно уменьшается, как показано на рисунке выше. Мы знаем из закона Ома, что ток и напряжение имеют прямую зависимость при постоянном сопротивлении. Отсюда следует, что ток прямо пропорционален разности потенциалов на концах резистора. Но ВАХ (вольт-амперная характеристика) варистора не является прямолинейной, поэтому в результате небольшого изменения напряжения происходит значительное изменение тока. Ниже приведена кривая зависимости тока от напряжения для типичного варистора: Мы можем видеть сверху, что варистор имеет симметричную двунаправленную характеристику, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоиды, подобно работе стабилитрона.Когда нет всплесков напряжения, в квадранте IV наблюдается постоянное значение тока, это ток утечки, составляющий всего несколько мкА, протекающий через варистор. Из-за своего высокого сопротивления, варистор не оказывает влияние на цепь питания, пока напряжение находится на номинальном уровне. Номинальный уровень напряжения (классификационное напряжение) - это такое напряжение, которое необходимо приложить на выводы варистора, чтобы через него проходил ток в 1 мА. В свою очередь величина этого напряжения будет отличаться в зависимости от материала, из которого изготовлен варистор. При превышении классификационного уровня напряжения, варистор совершает переход от изолирующего состояния в электропроводящее состояние. Когда импульсное напряжение, поступающее на варистор, становится больше, чем номинальное значение, его сопротивление резко снижается за счет лавинного эффекта в полупроводниковом материале. При этом малый ток утечки, протекающий через варистор, быстро возрастает, но в тоже время напряжение на нем остается на уровне чуть выше напряжения самого варистора. Другими словами, варистор стабилизирует напряжение на самом себе путем пропускания через себя повышенного значения тока, которое может достигать не одну сотню ампер. Поскольку варистор, подключаясь к обоим контактам питания, ведет себя как диэлектрик, то при нормальном напряжении он работает скорее как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет определенную емкость, которая прямо пропорциональна его площади и обратно пропорциональна его толщине. При применении в цепях постоянного тока, емкость варистора остается более-менее постоянной при условии, что приложенное напряжение не больше номинального, и его емкость резко снижается при превышении номинального значения напряжения. Что касается схем на переменном токе, то его емкость может влиять на стабильность работы устройств. Чтобы для конкретного устройства правильно подобрать варистор, желательно знать сопротивление источника и мощность импульсов переходных процессов. Варисторы на основе оксидов металлов имеют широкий диапазон рабочего напряжения, начиная от 10 вольт и заканчивая свыше 1000 вольт переменного или постоянного тока. В общем необходимо знать на каком уровне напряжения нужно защитить схему электроприбора и взять варистор с небольшим запасом, например для сети 230 вольт подойдет варистор на 260 вольт. Максимальное значение тока (пиковый ток) на которое должен быть рассчитан варистор, определяется длительностью и количеством повторений всплесков напряжения. Если варистор установлен с малым пиковым током, то это может привести к его перегреву и выходу из строя. Таким образом, для безотказной работы, варистор должен быстро рассеивать поглощенную им энергию переходного импульса и безопасно возвращаться в исходное состояние. В данной статье мы узнали, что варистор это тип полупроводникового резистора, имеющий нелинейную ВАХ. Он является надежным и простым средством обеспечения защиты от перегрузки и скачков напряжения. Варисторы применяются в основном в чувствительных электронных схемах. В случае если питающее напряжение неожиданно превышает нормальное значение, варистор защищает схему за счет резкого снижения собственного сопротивления, шунтируя цепь питания и пропуская через себя пиковый ток, доходящий порой до сотен ампер. Классификационное напряжение варистора - это напряжение на самом варисторе при протекании через него тока в 1 мА. Эффективность работы варистора в электронной или электрической цепи зависит от правильного его выбора в отношении напряжения, тока и силы энергии всплесков. Скачать справочные материалы по зарубежным варисторам (3,0 Mb, скачано: 3 722) www.joyta.ru Резистор можно охарактеризовать как пассивный элемент электрической цепи. Резисторы используются в основном для контроля электрических параметров (напряжения и тока) в электроцепи, используя физическое свойство резистора, называемое сопротивлением. Существуют различные типы резисторов: В этой статье подробно обсудим принцип работы варистора, схема подключения и применение варистора на практике. Но, в первую очередь мы должны знать, что же такое варистор. Варистор — это особый тип резистора, сопротивление которого изменяется под действием приложенного к нему напряжения. Поэтому его еще называют вольта зависимый резистор (VDR). Это нелинейный полупроводниковый элемент получил свое название от слова переменный резистор (VARiable resistor) Эти варисторы используются в качестве защитного устройства для предотвращения кратковременных всплесков напряжения переходных процессов в электроцепи. По внешнему виду и размеру варистор схож с конденсатором, поэтому его часто путают с ним. В обычном рабочем состоянии варистор имеет высокое сопротивление. Всякий раз, когда переходное напряжение резко возрастает, сопротивление варистора тут же уменьшаться. Таким образом, он начитает проводить через себя ток, снижая тем самым напряжение до безопасного уровня. Существуют различные типы исполнения, однако варистор на основе окиси металла является наиболее часто используемым в электронных устройствах. Как было сказано выше, основное назначение варистора в электронных схемах — защита цепи от чрезмерного всплеска напряжения переходных процессов. Эти переходные процессы обычно происходят из-за разряда статического электричества и грозовых перенапряжений. Принцип работы варистора можно легко понять, взглянув на кривую зависимости сопротивления от приложенного напряжения. На графике выше видно, что во время нормального рабочего напряжения (скажем низкого напряжения) сопротивление его очень высоко и если напряжение превышает номинальное значение варистора, то его сопротивление начинает уменьшаться. Вольт-амперная характеристика (ВАХ) варистора показанная на рисунке выше. Из рисунка видно, небольшое изменение напряжения вызывает значительное изменение тока. Уровень напряжения (классификационное напряжение), при котором ток, протекающий через варистор составляет 1 мА, является уровнем, при котором варистор переходит из непроводящего состояния в проводящее. Это происходит потому, что, всякий раз, когда приложенное напряжение превышает или равно номинальному напряжению, происходит лавинный эффект, переводящий варистор в состояние электропроводности в результате снижения сопротивления. Таким образом, даже, несмотря на быстрый рост малого тока утечки, напряжение будет чуть выше номинального значения. Следовательно, варистор будет регулировать напряжение переходных процессов относительно приложенного напряжения. На рисунке выше показаны примеры применения варистора в различных системах защиты электроснабжения. Рассмотрим каждый случай по отдельности. Данная схема представляет собой защиту однофазной линии питания. Если напряжение переходных процессов поступает из сети на клеммы питания устройства, то данный всплеск уменьшит сопротивление варистора и таким образом произойдет защита электрической цепи. Следующая схема представляет собой защиту однофазной линии с заземлением. В этом случае варистор подключен аналогично предыдущей схеме с дополнительным включением варисторов по линии заземления. Третья схема предназначена для защиты полупроводниковых переключателей (транзистор, тиристор, симистор), которые коммутируют индуктивную нагрузку. И последняя схема предназначена для защиты переключателя (контактов) от искрения при включении электродвигателя. Справочник по варисторам - скачать (скачено: 1 299) fornk.ru Сейчас рассмотрим, принцип работы варистора и важные моменты, связанные с его применением и использованием. Доброго времени! Уважаемые читатели сайта energytik.net, сегодня поговорим об уникальном элементе электронной цепи. Этот радиоэлемент схемы одновременно является и полупроводником и многоразовым предохранителем. Изучать электронику и её ремонт с обслуживанием, правильно начинать с теоретических данных. Примите этот совет за основное правило, ко всей учебе. Название элемента варистора, происходит от английского языка, впрочем, как и подавляющее большинство радиоэлементов. Дословно, можно перевести как, переменный резистор. На языке С. Джобса, пишется variable resistor, просто взяли из первого слова, первые четыре буквы, а из второго последние, вот и получилось слово, варистор. Отличительным чертой и параметром сего изделия, является его ВАХ, проще выражаясь, вольт – амперная характеристика. Она у варистора, является не линейной, другими словами, резко меняется сопротивление, при подаче на него, большего, чем необходимого, для правильной работы аппаратуры напряжения. Начнём с того что, по сути он является резистором, и в нормальном режиме работы электроники, он имеет огромное, омическое сопротивление. Практически всегда, оно равняется порядка нескольких сотен мега Ом (МОм). Как только, на концах его выводов, напряжение достигает необходимого для защиты уровня, его сопротивление, резко уменьшается. После этого, его сопротивление не составляет и сотни Ом. Когда сопротивление варистора, достигает совсем низкого значения и примерно равняется нулю, происходит короткое замыкание. В результате чего, перегорает предохранитель, который перед варистором в цепи фазы или нуля. Выходом из строя, предохранитель размыкает электрическую цепь и оставляет схему без напряжения. Самое приятное, что после пропажи напряжения, варистор снова восстанавливается и готов к работе. Меняем предохранитель в схеме, и если вам сильно повезло, электронное устройство начинает полноценно и правильно функционировать. В схему, он включается параллельно источнику питания. На примере источника питания для компьютера, его ставят параллельно фазы и нуля, у варистора, всего два вывода. Графическое обозначение варисторов на принципиально электрической схеме, очень напоминает простой резистор. Через этот прямоугольник, проходит диагональная линия, на одном конце которой, располагается английская буква U, которая и обозначает напряжение. На схеме, буквенное обозначение варистора выполняется на английском языке и выглядит следующим образом RU. Как вы уже поняли, задача варистора, сводится к защите электронике от высокого и скачкообразного напряжения в сети домашней электропроводки. Основное место установки варисторов, это первичные цепи электрооборудования. Вы их сразу можете увидеть в блоках питания компьютеров, пусковых системах для ламп дневного освещения, в народе именуемых, балластами. В схемах, они принимают участие в стабилизации токов и напряжений, а так же их токов. Подобные аппараты, применяются и в линиях воздушных электропередачи, там их называют разрядниками, у них рабочие напряжение, составляет 20 000 вольт, прочтите статью по ссылки, расширите свой кругозор. Рабочий диапазон работы варисторов, достигает 200 вольт, начинается с совсем незначительного значения, равняется трём вольтам. Диапазон по токам, от 0,1 до 1 ампера, это касается низковольтных деталей. Прочтите следующие статью про маркировку и проверку варисторов. energytik.netВаристор. Что это такое? Принцип работы. Варистор обозначение на схеме
Маркировка импортных варисторов, проверка их на целостность
Маркировка импортных варисторов.
Маркировка варисторов фирмы Epcos.
Данные по маркировки SMD прямоугольных варисторов компании Epcos.
Рекомендации по проверке на целостность и установки варистора.
Варистор - это... Что такое Варистор?
Изготовление
Свойства
Применение
Параметры
Литература
Ссылки
Как подобрать аналог варистора
Параметры и маркировка варисторов разных производителей
Как измерить параметры варистора
мир электроники - Варистор
Варистор
Обозначение варисторов на схемах
Основные параметры варисторов
Вольт-Амперная характеристика варисторов
Из чего изготавливаются варисторы
Варистор. Принцип работы и применение
Форма волны переменного тока в переходном процессе
Статическое сопротивление варистора
Емкость варистора
Подбор варистора
Варианты подключения варистора
Подведем итог
Варистор. Что это такое? Принцип работы
Варистор. Что это такое?
Принцип работы варистора
Применение варистора
Принцип работы варистора
Принцип работы варистора в электрической схеме
Как выглядит и обозначается варистор на схеме
Применение варисторов на практике.
Поделиться с друзьями: