интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Магнитный пускатель с тепловым реле и кнопками управления, схема, принцип действия. Тепловое реле на схеме


схема, принцип действия, технические характеристики

Что представляет собой тепловое реле, для чего оно служит? На чем основан принцип действия устройства, и какими характеристиками оно обладает? Что нужно учитывать при выборе реле и его установке? На эти и другие вопросы вы найдете ответы в нашей статье. Также мы рассмотрим основные схемы подключения реле.

Что такое тепловое реле для электродвигателя

Прибором под названием тепловое реле (ТР) называют ряд устройств, разработанных для защиты электромеханических машин (двигателей) и аккумуляторных батарей от перегрева при токовых перегрузках. Также реле этого типа присутствуют в электрических цепях, осуществляющих контроль температурного режима на стадии выполнения разных технологических операций в производстве и схемах нагревательных элементов.

тепловое реле для электродвигателя

Базовым компонентом, встроенным в тепловое реле, является группа металлических пластин, части которых имеют разный коэффициент теплового расширения (биметалл). Механическая часть представлена подвижной системой, связанной с электрическими контактами защиты. Электротепловое реле обычно идет вместе с магнитным пускателем и автоматом защиты.

Принцип действия устройства

Тепловые перегрузки в двигателях и других электрических устройствах происходят тогда, когда величина проходящего через нагрузку тока превышает номинальный рабочий ток аппарата. На свойстве тока разогревать проводник при прохождении и построено ТР. Встроенные в него биметаллические пластины рассчитаны на определенную токовую нагрузку, превышение которой приводит к сильной их деформации (изгибу).

автомат защиты

Пластины надавливают на подвижный рычаг, который, в свою очередь, воздействует на защитный контакт, размыкающий цепь. По сути, ток, при котором цепь разомкнулась, и есть током срабатывания. Его величина эквивалентна температуре, превышение которой может привести к физическому разрушению электрических приборов.

Современные ТР имеют стандартную группу контактов, одна пара которых является нормально замкнутой – 95, 96; другая – нормально разомкнутой – 97, 98. Первая предназначена для подключения пускателя, вторая – для схем сигнализации. Тепловое реле для электродвигателя способно работать в двух режимах. Автоматический предусматривает самостоятельное включение контактов пускателя при охлаждении пластин. В ручном режиме контакты в исходное состояние возвращает оператор, нажимая на кнопку «сброс». Также можно отрегулировать порог срабатывания устройства путем вращения подстроечного винта.

 схема реле

Еще одной функцией защитного устройства является отключение двигателя при обрыве фазы. В таком случае двигатель также перегревается, потребляя больший ток, и, соответственно, пластины реле разрывают цепь. Для предотвращения воздействия токов короткого замыкания, от которого ТР не в силах защитить двигатель, в цепь обязательно включают автомат защиты.

Виды тепловых реле

Существуют следующие модификации устройств – РТЛ, ТРН, РТТ и ТРП.

  • Особенности ТРП-реле. Устройство этого типа подходит для применения в условиях повышенной механической нагрузки. Оно обладает ударопрочным корпусом и вибростойким механизмом. Чувствительность элемента автоматики не зависит от температуры окружающего пространства, так как точка срабатывания лежит за пределом в 200 градусов по Цельсию. В основном применяют с двигателями асинхронного типа трехфазного питания (предел по току – 600 ампер и питание – до 500 вольт) и в цепях тока постоянного величиной до 440 вольт. Схема реле предусматривает специальный нагревательный элемент для передачи тепла пластине, а также плавную регулировку изгиба последней. За счет этого можно менять предел срабатывания механизма до 5 %.

реле защиты двигателя

  • Особенности РТЛ-реле. Механизм устройства выполнен таким образом, что позволяет защищать нагрузку электродвигателя от перегрузок по току, а также в тех случаях, когда произошел обрыв фазы, и возникла фазовая асимметрия. Рабочий диапазон по току лежит в пределах 0.10-86.00 ампер. Бывают модели, совмещенные с пускателями либо нет.
  • Особенности РТТ-реле. Назначением является защита двигателей асинхронных, где ротор коротко замкнут, от токовых скачков, а также в случаях несоответствия фаз. Бывают встроены в магнитные пускатели и в схемы, управляемые электроприводами.

Технические характеристики

Самая важная характеристика теплового реле для электродвигателя – это зависимость скорости отключения контактов от величины тока. Она показывает быстродействие устройства при перегрузках и называется время-токовым показателем.

К основным характеристикам относят:

  • Номинальный ток. Это рабочий ток, на который рассчитано срабатывание устройства.
  • Номинальный ток рабочей пластины. Ток, при котором биметалл способен деформироваться в рабочем пределе без необратимых нарушений.
  • Пределы регулировки уставки по току. Диапазон тока, в котором реле будет срабатывать, выполняя защитную функцию.

Как подключить реле в схему

Чаще всего ТР подключают к нагрузке (двигателю) не напрямую, а через пускатель. В классической схеме подключения в качестве управляющего контакта используют КК1.1, который в исходном состоянии замкнут. Силовая группа (через нее идет электричество на двигатель) представлена КК1-контактом.

как подключить реле

В момент, когда автомат защиты подает фазу, питающую цепь через стоп-кнопку, она проходит на кнопку "пуск" (3 контакт). При нажатии последней питание получает обмотка пускателя, а он, в свою очередь, подключает нагрузку. Фазы, поступающие на двигатель, также проходят через биметаллические пластины реле. Как только величина проходящего тока начинает превышать номинальный, защита срабатывает и обесточивает пускатель.

Следующая схема очень похожа на выше описанную с тем лишь отличием, что КК1.1-контакт (95-96 на корпусе) включен в ноль обмотки пускателя. Это более упрощенный вариант, который широко применяют. При реверсивной схеме подключения двигателя в цепи присутствуют два пускателя. Управление ними при помощи теплового реле возможно только, когда последнее включено в разрыв нулевого провода, являющегося общим для обоих пускателей.

Выбор реле

Главный параметр, по которому выбирают тепловое реле для электродвигателя, – это номинальный ток. Этот показатель высчитывают, опираясь на величину рабочего (номинального) тока электродвигателя. Идеально, когда ток срабатывания устройства выше рабочего в 0,2-0,3 раза при продолжительности перегрузки в треть часа.

электротепловое реле

Следует различать кратковременную перегрузку, где греется лишь провод обмотки электромашины, от перегрузки длительной, которую сопровождает разогрев всего корпуса. В последнем варианте нагрев продолжается до часа, и, следовательно, лишь в этом случае целесообразно применение ТР. На выбор теплового реле также влияют внешние факторы эксплуатации, а именно температура окружающей среды и ее стабильность. При постоянных скачках температуры необходимо, чтобы схема реле имела встроенную температурную компенсацию типа ТРН.

Что нужно учитывать при установке реле

Важно помнить, что биметаллическая пластина может нагреваться не только от проходящего тока, но и от температуры окружения. Это в первую очередь влияет на скорость срабатывания, хотя перегрузок по току может и не быть. Другой вариант, когда реле защиты двигателя попадает в зону принудительного охлаждения. В этом случае, наоборот, двигатель может испытывать тепловую перегрузку, а устройство защиты не срабатывать.

нагрузка электродвигателя

Чтобы избежать подобных ситуаций, следует придерживаться таких правил установки:

  • Выбирать реле с допустимо большей температурой срабатывания без ущерба для нагрузки.
  • Устанавливать защитное устройство в помещении, где расположен сам двигатель.
  • Избегать мест повышенного теплового излучения или близость кондиционеров.
  • Применять модели, имеющие функцию встроенной термокомпенсации.
  • Пользоваться регулировкой срабатывания пластины, настраивать в соответствии с фактической температурой в месте установки.

Заключение

Все электромонтажные работы по подключению реле и прочего высоковольтного оборудования должен выполнять квалифицированный специалист, имеющий допуск и профильное образование. Самостоятельное проведение подобных работ сопряжено с опасностью для жизни и работоспособности электрических устройств. Если же все-таки необходимо разобраться с тем, как подключить реле, при его покупке нужно требовать распечатку схемы, которая обычно идет в комплекте с изделием.

fb.ru

Тепловое реле - принцип работы, виды, устройство. Инструкция как выбрать и подключить оборудование

Для безопасности эксплуатации электротехнического оборудования должны использоваться специальные приспособления, которые контролируют соответствие условий и параметров работы нормативным требованиям. Одним из таких устройств является тепловое реле, не допускающее перегрев приборов.

Краткое содержимое статьи:

Назначение устройства

Высокая нагрузка, которую испытывают электродвигатели, обусловливает рост потребления электроэнергии в процессе функционирования. Это часто приводит к превышению нормативных параметров работы оборудования. Перегрузка в электрической цепи является причиной быстрого роста температуры. А она, в свою очередь, вызывает появление неисправностей и аварий.

Назначение теплового реле состоит в создании предпосылок для поддержания нормальных условий эксплуатации посредством возможности отключения электроэнергии при перегрузках и риске аварии.

Это устройство замыкает или размыкает цепь по сигналу, поступающему от агрегата в зависимости от текущей рабочей температуры. В результате электродвигатель защищается от токовых перегрузок.

Среди преимуществ данного устройства можно отметить:

  • компактные размеры;
  • незначительный вес;
  • несложность конструктивного исполнения;
  • долговечность эксплуатации;
  • доступность по цене.

Но при этом потребуется периодическая проверка работоспособности и настройка.

Принципы работы

В тепловом реле чаще всего присутствуют две биметаллические пластины. Они имеют разные коэффициенты расширения – у одной этот параметр больший по величине, а у другой меньший. Там где пластины прилегают друг к другу, обеспечивается их жесткое крепление или прокатом, или сваркой.

При нагревании неподвижно закрепленной пластины происходит ее изгиб. Эта особенность и лежит в основе принципа действия теплового реле. Часто в качестве применяемых материалов выступают инвар и сталь немагнитного или хромированного исполнения.

Биметаллическая часть начинает нагреваться вследствие воздействия тепла. Оно выделяется в пластине нагрузочным током. Но нагрев также может производиться и по другой схеме – через нагреватель, по которому идет ток.

Наиболее высокие показатели эффективности работы реле обеспечиваются при комбинированном способе нагревания – от тепла тока, идущего через пластину, и от нагревателя. После того как пластинка прогнется, ее свободный конец взаимодействует с контактным блоком реле.

Разновидности приспособлений

Применение находят разнообразные типы тепловых реле, которые имеют разные параметры действия и свою сферу использования:

РТЛ – является трехфазной модификацией. Она эффективна при защите моторов электрического типа от перегрузок, роторного заклинивания, фазного перекоса или длительного запуска. Такое реле можно крепить на клеммы ПМЛ на пускателе или непосредственно на КРЛ при самостоятельной эксплуатации.

РТТ – также трехфазный вариант, но применяют его при создании систем безопасности эксплуатации короткозамкнутых моторов. Реле может защитить от продолжительного запуска или заклинивания. Крепится на пускатель ПМЕ и ПМА в корпусной его части или же на отдельную панель при самостоятельной работе.

РТИ – работает при наличии трехфазного питания и защищает двигатели от тяжелых режимов. Для установки используется корпус пускателя типа КМИ или КМТ.

ТРН – устройство на 2 фазы для контроля пуска и последующего функционирования. Предусмотрен ручной способ перевода контактов в первоначальный вид. Преимущество – отсутствие влияния температурного режима вовне.

Твердотельное 3-х фазное с подвижными элементами. Работает с той же целью, что и другие модификации, но может эксплуатироваться даже в условиях риска взрывных явлений. Это обусловлено нечувствительностью к состоянию среды.

РТК – отслеживает состояние и изменение одного показателя, а сам термоконтроль производится щупом.

РТЭ – является непосредственным элементом конструкции агрегата. Оно состоит из проводника, изготовленного из особого сплава. При достижении температурой определенного уровня материал начинает плавиться.

На фото теплового реле можно рассмотреть особенности конструкции отдельных их видов. Эти отличия нужно принимать во внимание при выборе необходимого вам для конкретной ситуации компонента.

Как выбирать

Перед тем, как изучать инструкцию для подключения теплового реле, необходимо изучить основные критерии, на основании которых это устройство выбирается. Важным параметром является связь между нагрузочным током и периодом срабатывания устройства.

Учитывают также и состояние, которое станет сигналом для активизации реле – холодное или перегретое. При этом нагревательные компоненты отличаются термической неустойчивостью в ситуации, когда действуют токи короткого замыкания.

Показатель номинальной нагрузки двигателя является основой для расчета требуемого тока реле. Как правило, термореле будет срабатывать, если в течение 20-30 минут имеет место перегрузка в 20-30%. Причем постоянная компонента периода нагревания электродвижка находится в зависимости от времени перегрузки.

Если такое превышение нормативной нагрузки незначительно по времени, то постоянная будет равна 5-10 минутам. А вот в ситуации длительных отклонений в нагреве будет задействована не одна обмотка, а вся масса движка. Тогда параметр постоянной нагрева растет до 40 минут или 1 часа.

Учитывают и зависимость нагрева пластины от температуры среды. Если окружающее пространство нагревается, то и ток, при котором реле активизируется, будет меньше. Поэтому при отклонении температуры от номинала требуется дополнительная регулировка реле. Также его следует ставить в тех же условиях, в которых работает и сам агрегат.

Существуют и другие значимые характеристики тепловых реле:

  • напряжение силового типа;
  • параметры регулировочных контактов;
  • мощность при запуске контактов;
  • пределы срабатывания;
  • восприимчивость фазных перекосов;
  • класс выключения.

Особенности подключения

Часто используемая схема подключения теплового реле своими руками предполагает использование контакта постоянно замкнутого типа. Этот контакт (NC или НЗ по маркировке) функционирует в последовательной связи с отключающей кнопкой «стоп», расположенной на пульте управления.

В стандартных условиях такой контакт связан с подключением системы сигнализации, которая дает информацию об активизации защиты агрегата. В усложненных схемах возможно построение механизма аварийного размыкания цепи и остановки двигателя.

Само термореле находится в цепи после контакторов, но перед двигателем. Включение размыкающегося реле производится кнопкой «стоп». При этом используется последовательная схема.

Тепловые реле являются эффективным способом обезопасить работу электродвигателя. Они имеют различные характеристики, сферу применения, отличаются стоимостью. Поэтому целесообразно заранее определиться с наиболее подходящим типом устройства, ориентируясь на модели от проверенных производителей.

Фото теплового реле

electrikmaster.ru

принцип работы, устройство, как выбрать

Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность.

Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Содержание статьи:

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Конструкция тепловвого реле

Состоит прибор из корпуса (1), пластины биметаллической (2), толкателя (3), пластины исполнительной (4), пружины (5), регулировочного винта (6), пластины компенсатора (7), контактов (8), эксцентрика (9), кнопки возврата (10)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Тепловое реле в разрезе

Приспособление ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток уставки обычно указан на щитке.

Принцип работы приспособления

Автоматический выключатель, выполняя защитную функцию, разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.

В схеме перед термореле находится магнитный пускатель. Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.

Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.

Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.

Биметаллические пластины

Составные части биметаллической пластины выполнены из пары разнородных металлов, имеющих неодинаковые коэффициенты расширения. Нагрев заставляет ее изгибаться и взаимодействовать с контактами

Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании тепловых реле.

При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.

Схема термореле

По такой схеме функционирует тепловое реле. Незакрепленный конец биметаллической пластины при ее прогибе воздействует на контакты термореле

Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.

Как подключить тепловое реле

Замкнутый контакт (normal connected), при помощи которого производят подключение теплового модуля к магнитному пускателю, обозначают NC или НЗ, что расшифровывается, как нормально замкнутый. Буквенным сочетанием NO обозначают нормально разомкнутый контакт.

В несложной схеме он применяется для подачи сигнала, свидетельствующего о срабатывании защиты двигателя из-за превышения пороговой температуры.

При внедрении в сложные схемы управления он способен формировать в аварийном порядке сигнал выведения из рабочего состояния конвейера.

Размещение реле

Прибор размещают за контакторами, но перед электродвигателем. Подсоединение контакта normal connected к кнопке «Стоп» на пульте управления осуществляют по последовательной схеме

Обозначение клемм контакторов диктует ГОСТ: нормально замкнутый — 95-96, нормально разомкнутый — 97-98. К первой паре подключают пускатель, вторую используют для схем сигнализации. Так как двигатель и тепловое реле нужно защищать от КЗ, цепь должна содержать автомат защиты.

Схема прибора включает кнопки «Тест» и «Стоп» или «Сброс». С помощью первой проверяют работоспособность, а второй — отключают защиту вручную.

При помощи переключателя поворотного взвода после включения защиты вновь запускают электродвигатель. На стеклянную крышку изделия наносят маркировку и пломбируют.

Если исходить из типа подключения, можно выделить две большие группы термореле. В первую входят устройства, монтируемые за магнитным пускателем и те, что подключаются с использованием перемычек.

Во вторую — приборы, устанавливаемые на контактор пускателя непосредственно.

Обозначение элементов реле на схеме

Схема теплового реле. На нее нанесены обозначения управляющих элементов и выводов. У разных моделей эти обозначения могут отличаться

В последнем случае при запуске основная нагрузка приходится на контактор. Здесь тепловой модуль оснащен медными контактами, подключенными к входам пускателя непосредственно.

К ТР подключают провода от двигателя. Само реле в такой схеме представляет промежуточный узел, анализирующий ток, протекающий транзитом к двигателю от магнитного пускателя.

Нюансы при установке прибора

На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.

Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.

Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:

  1. При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
  2. Защиту монтировать в одном помещении с защищаемым объектом.
  3. Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
  4. Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
  5. Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.

Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.

Последовательное подключение термореле

Ток в тепловом реле движется последовательно через его нагревательный модуль и дальше к двигателю. С обмоткой пускателя прибор соединяют дополнительные контакты

При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.

Существующие типы устройств

Класс тепловых реле включает несколько видов: ТРН,РТЛ, ТРП, РТИ, РТТ. Применение каждого обусловлено особенностями конструкции.

Первое в этом ряду, токовое реле двухфазное (ТРН), используют в основном для электрозащиты двигателей асинхронных, имеющих короткозамкнутый ротор. Как правило, они работают от сети с номиналом до 500 В, частотой 50 Гц.

Оснащено реле ручным механизмом управления контактами. Габариты ТРН дают возможность встраивать их в комплектные устройства как закрытого, так и открытого типа станций, координирующих работу приводов. Функцию защиты от КЗ они не выполняют и сами нуждаются в ней.

Реле ТРП имеют механизм, устойчивый к вибрациям, ударопрочный корпус. Разработаны для охраны асинхронных трехфазных двигателей, функционирующих в условиях больших механических нагрузок.

Рассчитаны они на максимальный ток 600 А и напряжение максимум 500 В, а в цепях с постоянным током — 440 В. Автоматика нечувствительна к внешней температуре и срабатывает тогда, когда показатель превышает 200 °C.

Устройства РТЛ — трехфазные, кроме защиты двигателя от перегрузок, предохраняют от заклинивания ротор. Они страхуют его от поломок в случае перекоса фаз, при затяжном пуске.

Работают автономно с клеммниками КРЛ и в модификации с магнитным пускателем ПМЛ. Токовый рабочий промежуток — от 0,10 до 86 А.

Контактор и тепловое реле

Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение

РТТ-приспособление защищает асинхронные двигатели от токовых бросков, перекоса фаз, заклинивания и других нештатных ситуаций. Используется и как самостоятельный прибор, и в виде встройки в пускатели ПМА, ПМЕ.

Изделие трехфазное РТИ наделено теми же функциями, что и предыдущее, но используется в модификации с пускателями КТМ и КМИ.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Маркировка термореле

Предприятия-изготовители иногда включают в маркировку дополнительные символы. Их значение нужно уточнять у самого производителя

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Время-токовые характеристики

Время-токовые характеристики ТР и защищаемого двигателя. При токах КЗ нагревательные элементы реле становятся термически неустойчивыми

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния.

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

Таблица для выбора реле

В таблице приведены технические характеристики термореле типа РТЛ. По ней можно подобрать устройство с необходимыми параметрами по мощности двигателя

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток (In). Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле (Iср.).

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2х2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

Срабатывание защиты

При срабатывании защиты сначала устраняют первопричину остановки, а затем возвращают «теплушку» в исходное состояние при помощи клавиши возврата

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов.

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных моделях подключения теплового реле одинаков. Для лучшей ориентации в схемах с отличающимися друг от друга цифровыми и буквенными обозначениями важно его усвоить. В идеале все работы должен выполнять рабочий, имеющий допуск к работе в условиях высокого напряжения.

sovet-ingenera.com

Тепловая защита электродвигателя. Электротепловое реле.

Здравствуйте уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Ручной и автоматический режим работы реле

Предположим, что сработало реле и своими контактами обесточило пускатель.При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Удачи!

sesaga.ru

на 220В, 380В, с тепловым реле и кнопками управления

puskat 1 Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. pusk 4 Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение. puskat 2

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже). 220 V Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз. 380 V

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. tepl rele Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

pue8.ru

Тепловое реле РТИ 1312 — назначение, подключение

2016-07-01 Статьи  

Тепловое реле, или как его еще называют реле перегрузки — это коммутационное устройство, предназначенное для защиты электродвигателей от токовой перегрузки и в случае обрыва фазы. При превышении потребляемого двигателем тока нагрузки тепловое реле разомкнет цепь, отключит магнитный пускатель, тем самым защитив двигатель.

Тепловое реле не предназначено для защиты от короткого замыкания, поэтому в цепь питания перед магнитным пускателем устанавливают автоматический выключатель.

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух пластин, которые сварены из металлов с разными коэффициентами теплового расширения. При воздействии высокой температуры биметаллическая пластина изгибается в сторону металла с меньшим коэффициентом расширения. Достигнув определённой температуры, пластина давит на защёлку расцепителя и под действием пружины происходит размыкание подвижных контактов реле и следовательно размыкание всей электрической цепи.

Если реле находится в режиме автоматического включения, то после остывания биметаллического элемента исполнительный механизм и подвижные контакты реле вернутся в исходное положение. При этом электрическая цепь восстановится и контактор будет готов к работе. Если же реле находится в ручном режиме, то после каждого срабатывания перевод реле в исходное положение должен осуществляться ручным воздействием.

Выбирая тепловое реле, надо исходить из номинального тока нагрузки плюс небольшой запас. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока. Например, если на шильде электродвигателя указан ток 16А, то выбираем тепловое реле с запасом примерно на 18-20А.

Таблица по выбору тепловых реле РТИ

Таблица по выбору тепловых реле РТИ

На примере РТИ 1312 покажу устройство теплового реле.

РТИ1312 подключается к контактору непосредственно своими штыревыми контактами.

РТИ1312

В зависимости от величины и типа пускателей первый и второй контакты теплового реле могут регулироваться вправо-влево. Сбоку на наклейке указано, какой тип контакторов подходит для данного реле.

РТИ 1312

В зависимости от величины протекающего тока в реле предусмотрена регулировка уставки срабатывания по току с помощью поворотного регулятора, расположенного на передней панели реле. Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Передняя панель РТИ 1312

Рис.1 Передняя панель РТИ 1312

Также на панели управления расположена кнопка «TEST»,имитирующая срабатывание защиты реле и проверки его работоспособности. Выступающая красная кнопка «STOP»предназначена для принудительного размыкания нормально-замкнутого контакта NC. При этом питание на катушке контактора пропадает и нагрузка отключается.

Электротепловое реле может работать в ручном или автоматическом режиме. Режим работы реле задается поворотным переключателем «RESET». При автоматическом режиме переключатель утоплен и при срабатывании теплового реле оно автоматически включится после остывания биметаллической пластины. Для перевода реле в ручной режим необходимо повернуть переключатель против часовой стрелки.

Рис.2 Автоматический режим работы

Рис.3 Ручной режим работы

После того, как тепловое реле настроено, его можно закрыть прозрачной защитной крышкой и при необходимости опломбировать. Для этого на передней панели и крышке имеются специальные проушины.

Электрическая схема реле РТИ 1312

Рис.4 Электрическая схема реле РТИ 1312

Входное напряжение подходит на контакты 1,3,5, а выходное напряжение на нагрузку поступает с контактов 2, 4, 6. Кнопки «TEST» и «RESET» меняют положение подвижных контактов реле, а кнопкой «STOP» меняется положение только нормально-замкнутого контакта (95 — 96).

Нормально-замкнутые контакты применяются в схемах управления электродвигателями через магнитный пускатель, а нормально-разомкнутые контакты — в основном в цепях сигнализации, например для вывода световой индикации на панель оператора.

Типичная схема подключения нереверсивного пускателя с тепловым реле выглядит так:

Подробнее о работе данной схемы вы можете прочитать в статье Магнитный пускатель, здесь же я хочу остановиться только на подключении теплового реле. Как видно из схемы на силовые контакты теплового реле подключаются только две фазы, а третья идет напрямую на двигатель. В современных тепловых реле задействованы все три фазы. Также используется дополнительный нормально-замкнутый контакт реле. При перегрузки двигателя он разомкнется и разорвет цепь питания катушки контактора.

При срабатывании теплового реле не стоит сразу же пытаться включать его снова, необходимо выждать время пока биметаллические пластины не остынут. Кроме того стоит определить причину срабатывания — проверить всю схему подключения, подтянуть контакты, проверить температуру двигателя, потребление тока по каждой фазе двигателя.

electric-blogger.ru

Тепловое реле для электродвигателя

Содержание:
  1. Как работает тепловое реле защиты электродвигателя
  2. Причины срабатывания
  3. Схема подключения
  4. Как подобрать тепловое реле для электродвигателя

В течение длительного рабочего процесса у любых электродвигателей перегреваются обмотки, портится изоляционное покрытие. Подобные ситуации нередко приводят к межвитковым замыканиям, выгоранию полюсов и другим негативным последствиям, требующим срочного дорогостоящего ремонта. Избежать этого помогает тепловое реле для электродвигателя, установленное в цепь питания и обеспечивающее надежную защиту от перегрева. Данный прибор осуществляет контроль над величиной тока, и в случае длительного отклонения от номинала установки производит размыкание контактов. Таким образом, цепь управления остается без питания, а пусковое устройство размыкается. Тепловое реле надежно защищает агрегат от механических перегрузок, заклинивания ротора, перекоса фаз и других аварийных ситуаций.

Как работает тепловое реле защиты электродвигателя

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Причины срабатывания теплового реле электродвигателя

Под действием электрического тока, протекающего по проводнику, происходит его нагревание. С возрастанием силы тока в проводнике с одним и тем же поперечным сечением, увеличивается и его нагрев, то есть происходит рост нагрузки. В связи с этим, причины срабатывания заключаются преимущественно в повышении температуры.

Эта же тепловая энергия нагревает и биметаллическую пластину, которая под влиянием температуры изгибается и соприкасается с исполнительной пластиной температурного компенсатора через толкатель. В свою очередь, эта пластина расцепляет замкнутые контакты в магнитном пускателе и приводит в рабочее состояние кнопку включения реле. Сам температурный компенсатор является своеобразным противовесом, снижающим влияние дополнительного нагрева под действием температуры окружающей среды. Изгиб пластины происходит в противоположную сторону, а для его регулировки используется специальный винт.

Эксцентрик или регулятор тока срабатывания оборудован шкалой на 5 делений влево и 5 делений вправо, для соответствующего уменьшения и увеличения тока относительно центральной риски. Чтобы отрегулировать ток срабатывания, необходимо изменить зазор между исполнительной пластиной и толкателем. Изменение зазора выполняется движком эксцентрика, воздействующим на пластину температурного компенсатора. После срабатывания теплового реле специалисты рекомендуют выдержать временную паузу, чтобы тепловой расцепитель мог остыть. Следует тщательно осмотреть электродвигатель и найти причину срабатывания прибора.

Тепловое реле для электродвигателя схема подключения

Непосредственное подключение тепловых реле к контакторы осуществляется напрямую с помощью штыревых контактов. После подключения, в зависимости от величины тока, протекающего в цепи, необходимо отрегулировать уставки срабатывания колесиком поворотного регулятора. Нужный ток уставки обозначен на шкале специальными рисками, нанесенными на корпус прибора.

Панель управления реле оборудована кнопкой TEST, с помощью которой проверяется работоспособность устройства путем имитации срабатывания защиты. Кнопка STOP красного цвета позволяет принудительно разомкнуть нормально замкнутый контакт. При этом отключается питание, поступающее на катушку контактора, что в свою очередь приводит к отключению нагрузки. Примерно по такой схеме подключаются и работают все тепловые реле для защиты электродвигателей и их модификации.

Для работы теплового реле предусмотрен ручной или автоматический режим, задаваемый при помощи поворотного переключателя RESET. Автоматический режим предполагает утопленный выключатель и автоматическое включение реле после срабатывания, когда остынет биметаллическая пластина. Перевод прибора в ручной режим осуществляется поворотом переключателя против часовой стрелки.

Схема подключения с нормально замкнутыми контактами используется для управления электродвигателем с помощью магнитного пускателя. К силовым контактам теплового реле выполняется подключение лишь двух фаз, а третья фаза подключается напрямую к двигателю. В работе современных устройств принимают участие все три фазы совместно с дополнительным нормально замкнутым контактом реле. При возникновении перегрузок он размыкается и разрывает цепь питания контактора.

Выбор теплового реле для электродвигателя

В условиях разнообразия конструкций и моделей электрических двигателей и соответствующих тепловых реле, выбор наиболее подходящего сочетания может вызвать определенные затруднения, особенно у неспециалистов. Для того чтобы выбрать наиболее оптимальное устройство, отвечающее всем требованиям, необходимо придерживаться определенных рекомендаций.

Основным требованием ко всем тепловым реле является соответствие их номинала току оборудования, которое требуется защитить. Сами устройства тоже должны быть защищены от коротких замыканий, поэтому в схемах подключения используются предохранители.

Необходимо заранее установить условия эксплуатации тепловых реле, и в каких пределах они могут применяться. Если в системе защиты велика вероятность работы электродвигателя в аварийных режимах, не связанных с ростом потребления электроэнергии, в этих случаях тепловое реле будет бесполезным и не обеспечит надежную защиту. Для этого в обмотку статора электродвигателя включаются элементы специальной тепловой защиты.

Если же тепловая защита двигателя не связана с какими-либо специальными требованиями, решение вопроса как подобрать тепловое реле для электродвигателя, таблица поможет выбрать наиболее подходящее устройство с оптимальными техническими характеристиками.

Защитное устройство выбирается с учетом максимального рабочего тока реле, который не должен быть меньше, чем номинальный ток защищаемого электродвигателя. Тем не менее, рекомендуется, чтобы установочный ток реле незначительно превышал номинал агрегата.

Следует обращать внимание и на возможность регулировок тока с большим запасом в обе стороны – увеличения и уменьшения. В этом случае обеспечивается более надежная и управляемая защита.

electric-220.ru


Каталог товаров
    .